JPH11126690A - Manufacture of thin film electroluminescent element - Google Patents
Manufacture of thin film electroluminescent elementInfo
- Publication number
- JPH11126690A JPH11126690A JP10098818A JP9881898A JPH11126690A JP H11126690 A JPH11126690 A JP H11126690A JP 10098818 A JP10098818 A JP 10098818A JP 9881898 A JP9881898 A JP 9881898A JP H11126690 A JPH11126690 A JP H11126690A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- heat treatment
- glass substrate
- emitting layer
- alkali glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は薄型表示装置に用い
る薄膜EL素子の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film EL device used for a thin display device.
【0002】[0002]
【従来の技術】発光層への電圧印加によりエレクトロル
ミネッセンス(以下、ELと記す)を呈する薄膜EL素
子は、高輝度発光、高速応答、広視野角、薄型軽量、高
解像度などの多くの優れた特徴を有することから、薄型
表示装置として注目されている。2. Description of the Related Art Thin-film EL devices exhibiting electroluminescence (hereinafter referred to as EL) by applying a voltage to a light-emitting layer have many excellent properties such as high-brightness light emission, high-speed response, wide viewing angle, thin and light weight, and high resolution. Because of its features, it has attracted attention as a thin display device.
【0003】図5は典型的な薄膜EL装置の断面図であ
る。薄膜EL素子はガラス基板1aに、第1の電極層2
a、第1の絶縁層3a、発光層4、第2の絶縁層3bお
よび第2の電極層2bが積層されてなる。発光層4を保
護するために、他の対向ガラス基板1bが支持部材6を
介して被せられ、2枚の基板の間には防湿のためシリコ
ーンオイル5が充填されている。電源Eは第1の電極層
2aと第2の電極層2bとに接続された電源Eから印加
された電圧により発光層4は発光し、発光々はガラス基
板1aまたは対向ガラス基板1bを透過してEL素子外
部に放射される。FIG. 5 is a sectional view of a typical thin film EL device. A thin film EL element is formed on a glass substrate 1a by a first electrode layer 2
a, a first insulating layer 3a, a light emitting layer 4, a second insulating layer 3b, and a second electrode layer 2b are laminated. In order to protect the light emitting layer 4, another counter glass substrate 1b is covered via a support member 6, and a silicone oil 5 is filled between the two substrates for moisture proof. In the power supply E, the light emitting layer 4 emits light by a voltage applied from the power supply E connected to the first electrode layer 2a and the second electrode layer 2b, and the light emission passes through the glass substrate 1a or the opposite glass substrate 1b. And emitted outside the EL element.
【0004】EL素子の発光色は、発光層を構成する硫
化亜鉛(ZnS )や硫化ストロンチウム(SrS )などの半
導体母体と、添加される発光中心の組合せできまり、例
えば黄橙色の発光は硫化亜鉛(ZnS )母体に発光中心と
してマンガン(Mn)を添加することにより得られる。し
かしながら、現在実用レベルの輝度に達しているものは
マンガン(Mn)を硫化亜鉛(ZnS )にドープしたZnS:Mn
による黄橙色発光のモノカラーディスプレイのみであ
る。このためマルチカラーまたはフルカラー用の薄膜E
L素子の開発が強く望まれている。アルカリ土類金属硫
化物、なかでも硫化ストロンチウム(SrS )、硫化カル
シウム(CaS )は母体材料として有望であり、発光中心
として希土類であるセリウム(Ce)、ユーロピウム(E
u)、プラセオジウム(Pr)を添加することにより、青
緑色(SrS:Ce)、赤色(CaS:Eu)、白色(SrS:Ce、E
u)、白色(SrS:Pr)に発光することが知られている。The luminescent color of an EL element is determined by a combination of a semiconductor base such as zinc sulfide (ZnS) or strontium sulfide (SrS) constituting a luminescent layer and a luminescent center to be added. It is obtained by adding manganese (Mn) as a luminescent center to a (ZnS) matrix. However, the one that has reached the practical level of luminance at present is ZnS: Mn in which manganese (Mn) is doped into zinc sulfide (ZnS).
Only a monochromatic display that emits yellow-orange light. Therefore, the thin film E for multi-color or full color
The development of L elements is strongly desired. Alkaline earth metal sulfides, especially strontium sulfide (SrS) and calcium sulfide (CaS), are promising as base materials, and cerium (Ce), europium (E
u), praseodymium (Pr), blue-green (SrS: Ce), red (CaS: Eu), white (SrS: Ce, E
u), it is known to emit light in white (SrS: Pr).
【0005】上記の発光層は成膜後、高温に加熱保持さ
れる熱処理により輝度および寿命特性が向上することが
知られており、一般的に行われている。一方、発光層が
形成される基板としては、発光々の透過率、発光効率へ
の影響のある不純物、ディスプレイ組み立てのための平
坦性、上記の発光層の熱処理温度に対する耐熱性に対し
てはガラスの中では石英ガラスが最適であるが、コスト
面で全く実用性がない。そのため、特に不純物と熱的に
劣るソーダガラスと石英ガラスの中間にあるノンアルカ
リガラスが一般的に使用されている。It is known that the above-mentioned light-emitting layer is improved in luminance and life characteristics by a heat treatment which is heated and held at a high temperature after film formation. On the other hand, as the substrate on which the light emitting layer is formed, the transmittance of light emission, impurities that affect the light emission efficiency, the flatness for assembling the display, and the heat resistance of the light emitting layer to the heat treatment temperature are glass. Among them, quartz glass is the best, but is not practical at all in terms of cost. For this reason, non-alkali glass, which is intermediate between soda glass and quartz glass, which is thermally inferior to impurities, is generally used.
【0006】[0006]
【発明が解決しようとする課題】上記の発光層の輝度お
よび寿命特性の改善の熱処理は高温の方が効果的である
ことは知られており、一方EL装置の輝度の均一性はガ
ラス基板と対向ガラス基板(熱処理されてなく平坦度は
良い)との平行度に依存しており、これはガラス基板の
変形(反り)に依存している。従来のように単純に設定
温度まで昇温し保持する方法の場合、基板に用いられて
いるノンアルカリガラスの変形のため590℃程度が変
形限界温度となっている。この程度の温度ではEL用発
光層、特に青緑色(SrS:Ce)の発光層の特性改善はまだ
十分でなく、マルチカラー、フルカラー用の薄膜EL素
子実現の障害となっている。It is known that the above heat treatment for improving the luminance and life characteristics of the light emitting layer is more effective at a high temperature, while the luminance uniformity of the EL device is different from that of the glass substrate. It depends on the parallelism with the opposing glass substrate (which has not been heat-treated and has good flatness), and this depends on the deformation (warpage) of the glass substrate. In the case of the conventional method in which the temperature is simply raised to the set temperature and maintained, the deformation limit temperature is about 590 ° C. due to deformation of the non-alkali glass used for the substrate. At such a temperature, the characteristics of the EL light-emitting layer, particularly the blue-green (SrS: Ce) light-emitting layer, have not yet been sufficiently improved, which is an obstacle to realizing a multi-color and full-color thin-film EL element.
【0007】上記の問題点に鑑み、本発明の目的は、ノ
ンアルカリガラス基板を用いながら発光輝度、寿命特性
に優れるアルカリ土類金属硫化物を発光層とするEL素
子の製造方法を提供することにある。In view of the above problems, an object of the present invention is to provide a method of manufacturing an EL device using an alkaline earth metal sulfide as a light emitting layer, which is excellent in light emission luminance and lifespan, using a non-alkali glass substrate. It is in.
【0008】[0008]
【課題を解決するための手段】上記の目的を達成するた
めに、ノンアルカリガラス基板上に形成された第1の電
極、第1の絶縁層、発光層、第2の絶縁層および第2の
電極が順次積層されてなる薄膜EL素子の製造方法にお
いて、少なくとも発光層成膜後に、発光層を単一温度で
熱処理する場合おけるノンアルカリガラス基板の変形限
界温度以下で、かつその近傍の第1の保持温度に保持し
た後、次いで第1の保持温度より高温の第2の保持温度
で熱処理することとする。In order to achieve the above object, a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode formed on a non-alkali glass substrate are provided. In a method of manufacturing a thin film EL element in which electrodes are sequentially laminated, at least after forming a light emitting layer, a first temperature near or below a deformation limit temperature of a non-alkali glass substrate when the light emitting layer is heat-treated at a single temperature. Then, heat treatment is performed at a second holding temperature higher than the first holding temperature.
【0009】前記第1の保持温度は570℃ないし59
0℃であると良い。前記第2の保持温度は590℃ない
し650℃であると良い。前記第2の保持温度は、前記
ノンアルカリガラス基板の変形限界温度以上にすること
ができる。The first holding temperature is 570 ° C. to 59 ° C.
The temperature is preferably 0 ° C. The second holding temperature is preferably 590 ° C. to 650 ° C. The second holding temperature can be equal to or higher than a deformation limit temperature of the non-alkali glass substrate.
【0010】[0010]
実施例1 歪み点(粘度が4×1014 poiseとなる温度)660℃
のノンアルカリガラスを基板として用い熱処理前後の基
板の反りと熱処理方法との関係を調べた。基板サイズは
面積150×220cm、厚さ1.1mmである。Example 1 Strain point (temperature at which viscosity becomes 4 × 10 14 poise) 660 ° C.
Using a non-alkali glass as a substrate, the relationship between the warpage of the substrate before and after the heat treatment and the heat treatment method was examined. The substrate has an area of 150 × 220 cm and a thickness of 1.1 mm.
【0011】図4は本発明に係る熱処理を行った熱処理
装置の断面図である。外側を加熱ヒーター7で覆った熱
処理管6の内部にはヒーターを内蔵する表面が平面の基
板ホルダー5が設置してある。排気口6vから真空引き
し、ガス導入口6iから任意のガスを導入することによ
りガス置換ができ、またガス導入しながら排出口6oか
らガス排出できる。任意の雰囲気中で任意の温度プロフ
ァイルの熱処理を行うことができる。FIG. 4 is a cross-sectional view of a heat treatment apparatus for performing a heat treatment according to the present invention. Inside the heat treatment tube 6 whose outside is covered with a heater 7, a substrate holder 5 having a flat surface and containing a heater is installed. The gas can be replaced by evacuating from the exhaust port 6v and introducing an arbitrary gas from the gas inlet 6i, and the gas can be discharged from the outlet 6o while introducing the gas. Heat treatment with an arbitrary temperature profile can be performed in an arbitrary atmosphere.
【0012】本発明に係る2段熱処理は次の通りであ
る。基板1を上記の熱処理装置に入れ、4Paまで真空排
気し、10%H2S/Arガスでガス置換した後、大気圧のガ
スフローしながら、昇温速度60℃/minで第1の保持温
度(590℃)まで昇温し30分保持後、60℃/minで
第2の保持温度まで昇温し60分保持した後、降温速度
30℃/minで室温まで降温した。H2S ガスは発光層の熱
処理のときに必要であり、ガラス基板のみの熱処理には
何ら影響はない。The two-step heat treatment according to the present invention is as follows. The substrate 1 is placed in the heat treatment apparatus described above, evacuated to 4 Pa, and purged with 10% H 2 S / Ar gas. Then, the first holding is performed at a heating rate of 60 ° C./min while flowing gas at atmospheric pressure. After the temperature was raised to a temperature (590 ° C.) and held for 30 minutes, the temperature was raised to a second holding temperature at 60 ° C./min and held for 60 minutes, and then the temperature was lowered to room temperature at a rate of 30 ° C./min. The H 2 S gas is necessary for the heat treatment of the light emitting layer, and has no effect on the heat treatment of the glass substrate alone.
【0013】比較のため、従来熱処理も行った。同じノ
ンアルカリガラス基板を、上記の雰囲気中で、60℃/m
inで従来の保持の温度まで昇温し、1時間30分保持
後、30℃/minで室温まで降温した。熱処理後の基板の
変形量は平面定盤と重ね、その時に生じた最大の隙間
(反り)を測定した。この実験では熱処理前は変形のな
いことを確認した基板を用いた。For comparison, a conventional heat treatment was also performed. The same non-alkali glass substrate was heated at 60 ° C./m
In, the temperature was raised to the conventional temperature for holding, and after holding for 1 hour and 30 minutes, the temperature was lowered to room temperature at 30 ° C./min. The amount of deformation of the substrate after the heat treatment was measured by measuring the maximum gap (warpage) generated at that time by overlapping the flat surface plate. In this experiment, a substrate which was confirmed to have no deformation before heat treatment was used.
【0014】図1は本発明に係るノンアルカリガラス基
板の熱処理後の変形量の熱処理温度依存性を示すグラフ
である。折れ線aは本発明に係る2段熱処理の場合であ
り、折れ線bは従来熱処理の場合であり、横軸は第2の
保持温度および従来の保持温度である。このグラフよ
り、従来熱処理では590℃以上では変形量は保持温度
と共に増加しているが、2段熱処理では650℃以上で
はじめて変形が保持温度と共に増加することが判る。な
お、ノンアルカリガラス基板の変形には、第1電極層か
ら発光層および第2の絶縁層までの多層膜の影響はみら
れなかった。FIG. 1 is a graph showing the heat treatment temperature dependency of the deformation amount of the non-alkali glass substrate according to the present invention after the heat treatment. The polygonal line a indicates the case of the two-step heat treatment according to the present invention, the polygonal line b indicates the case of the conventional heat treatment, and the horizontal axis indicates the second holding temperature and the conventional holding temperature. From this graph, it can be seen that the deformation increases with the holding temperature at 590 ° C. or higher in the conventional heat treatment, but the deformation increases with the holding temperature only at 650 ° C. or higher in the two-step heat treatment. Note that the deformation of the non-alkali glass substrate was not affected by the multilayer film from the first electrode layer to the light emitting layer and the second insulating layer.
【0015】また、歪み点600℃で上記と同じサイズ
のノンアルカリガラス基板の場合は、従来熱処理では変
形限界温度は570℃であったが、第1の保持温度を5
70℃、第2の保持温度を630℃として、変形を抑え
ることができた。上記の事実からは、熱処理の違いがノ
ンアルカリガラスの変形の違いに及ぼす作用は明らかに
するまでは至らなかった。しかし、本発明によれば、従
来の1保持温度(単一温度)の熱処理では限界であった
変形限界温度以上の温度までの熱処理が変形を伴わずに
行えるので、これまでノンアルカリガラス基板が変形す
るため不可能であった発光層の熱処理が、従来より高温
で行うことができ、従来よりも高輝度が得られると期待
できる。In the case of a non-alkali glass substrate having a strain point of 600 ° C. and the same size as that described above, the deformation limit temperature in the conventional heat treatment was 570 ° C., but the first holding temperature was 5 ° C.
Deformation could be suppressed by setting the second holding temperature to 630 ° C. at 70 ° C. From the above facts, the effect of the difference in heat treatment on the difference in deformation of the non-alkali glass could not be clarified. However, according to the present invention, since the heat treatment up to the deformation limit temperature, which was the limit in the conventional heat treatment at one holding temperature (single temperature), can be performed without deformation, the non-alkali glass substrate has hitherto been used. The heat treatment of the light-emitting layer, which was not possible due to deformation, can be performed at a higher temperature than in the past, and it can be expected that higher luminance than in the past can be obtained.
【0016】発光層迄を形成したノンアルカリガラス基
板(歪み点660℃)に上記の2段熱処理を行い、図5
の構成のEL素子を試作し、輝度の向上と輝度の寿命の
向上を確認した。先ず、ノンアルカリガラス基板に膜厚
200nm程度のITO 層を成膜し第1の電極層を形成し
た。次に、スパッタにより、膜厚30nmのSiO2層と、膜
厚180nmのSiON層とを順次積層し第1の絶縁層を形成
した。次に、硫化ストロンチウム(SrS )母体に発光中
心としてセリウム(Ce)を0.2mol%ドープした硫化ス
トロンチウム(SrS )ペレットを原料として、電子ビー
ム蒸着により発光層を成膜した。基板温度500℃で膜
厚1200nmの発光層を形成した。次に、再びスパッタ
により厚さ180nmのSiN 層と厚さ30nmのSiO2層とを
順次積層し、第2の絶縁層を形成した。ここで上記の熱
処理を行った後、Alを電子ビーム蒸着して第2の電極層
を形成し、輝度とその寿命を測定した。比較のため、熱
処理を従来熱処理を行い、その他は変えてないEL素子
も作製した。The above-described two-step heat treatment was performed on the non-alkali glass substrate (strain point: 660 ° C.) on which the light emitting layer was formed.
An EL device having the above configuration was manufactured as a prototype, and it was confirmed that the luminance and the life of the luminance were improved. First, an ITO layer having a thickness of about 200 nm was formed on a non-alkali glass substrate to form a first electrode layer. Next, a first insulating layer was formed by sequentially laminating an SiO 2 layer having a thickness of 30 nm and a SiON layer having a thickness of 180 nm by sputtering. Next, using a strontium sulfide (SrS) pellet obtained by doping a strontium sulfide (SrS) matrix with 0.2 mol% of cerium (Ce) as a luminescent center as a raw material, a light emitting layer was formed by electron beam evaporation. A light emitting layer having a thickness of 1200 nm was formed at a substrate temperature of 500 ° C. Next, a 180-nm-thick SiN layer and a 30-nm-thick SiO 2 layer were sequentially laminated again by sputtering to form a second insulating layer. Here, after performing the above heat treatment, Al was deposited by electron beam evaporation to form a second electrode layer, and the luminance and the life thereof were measured. For comparison, a conventional heat treatment was performed for the heat treatment, and the other EL elements were not changed.
【0017】図2は本発明に係る2段熱処理を行ったE
L素子の輝度の印加電圧依存性を示すグラフである。カ
ーブcは本発明に係る熱処理を経たEL素子でありカー
ブdは従来の熱処理を経たEL素子である。また、図3
は本発明に係る2段熱処理を行ったEL素子の連続発光
時の輝度の時間変化を示すグラフである。カーブeは本
発明に係る熱処理を経たEL素子でありカーブfは従来
の熱処理を経たEL素子である。FIG. 2 is a view showing E subjected to a two-step heat treatment according to the present invention.
4 is a graph showing the applied voltage dependence of the luminance of the L element. Curve c is the EL element that has undergone the heat treatment according to the present invention, and curve d is the EL element that has undergone the conventional heat treatment. FIG.
FIG. 5 is a graph showing a change over time in luminance during continuous light emission of an EL element subjected to a two-step heat treatment according to the present invention. Curve e is the EL element that has undergone the heat treatment according to the present invention, and curve f is the EL element that has undergone the conventional heat treatment.
【0018】上記の本発明に係るEL素子の製造方法を
適用できる発光層母材は、実施例に限定されるものでは
ない。例えば発光層は、SrS 、CaS 、BaS またはMgS な
ど、およびこれらの混合物、またはこれらとZnS などを
積層した膜などを用いることができる。また、発光中心
としての希土類も上記実施例に限定されるものではな
く、例えば、Ce、Eu、Prなどの化合物やこれらの混合物
などを用いることができる。The light-emitting layer base material to which the method for manufacturing an EL device according to the present invention can be applied is not limited to the examples. For example, as the light-emitting layer, SrS, CaS, BaS, MgS, or the like, a mixture thereof, or a film in which these are stacked with ZnS or the like can be used. Further, the rare earth element as the luminescent center is not limited to the above-described embodiment, and for example, a compound such as Ce, Eu, Pr or a mixture thereof can be used.
【0019】絶縁層も上記実施例に限定されるものでは
ない。例えばSiO2、SiON、Y2O3、TiO2、Al2O3 、HfO2、
Ta2O5 、BaTa2O5 、SrTiO3、PbTiO3またはZrO2などやこ
れらの混合の膜または積層膜を用いることができる。The insulating layer is not limited to the above embodiment. For example SiO 2, SiON, Y 2 O 3, TiO 2, Al 2 O 3, HfO 2,
Ta 2 O 5 , BaTa 2 O 5 , SrTiO 3 , PbTiO 3, ZrO 2, or the like, or a mixed film or a stacked film thereof can be used.
【0020】[0020]
【発明の効果】本発明によれば、ノンアルカリガラス基
板上に形成された第1の電極、第1の絶縁層、発光層、
第2の絶縁層および第2の電極が順次積層されてなる薄
膜エレクトロルミネッセンス(以下ELと記す)素子の
製造方法において、少なくとも発光層成膜後に、発光層
を単一温度で熱処理する場合おけるノンアルカリガラス
基板の変形限界温度以下で近傍の第1の保持温度に保持
した後 、次いで第1の保持温度より高温の第2の保持
温度で熱処理することとしたため、従来よりも高温で変
形せず熱処理できるようになり、結晶性の向上およびCe
(セリウム)等の発光中心の回りの結晶場の変化を防止
でき、輝度や寿命特性の向上したEL素子を得ることが
できる。According to the present invention, a first electrode, a first insulating layer, a light emitting layer,
In a method for manufacturing a thin-film electroluminescence (hereinafter, referred to as EL) element in which a second insulating layer and a second electrode are sequentially laminated, at least after the formation of the light-emitting layer, the light-emitting layer is heat-treated at a single temperature. After holding at a first holding temperature close to or below the deformation limit temperature of the alkali glass substrate, and then performing a heat treatment at a second holding temperature higher than the first holding temperature, it does not deform at a higher temperature than before. Heat treatment can be performed, improving crystallinity and Ce
It is possible to prevent a change in a crystal field around a light emission center of (cerium) or the like, and to obtain an EL element with improved luminance and life characteristics.
【図1】本発明に係るノンアルカリガラス基板の熱処理
後の変形量の熱処理温度依存性を示すグラフFIG. 1 is a graph showing the heat treatment temperature dependence of the deformation amount of a non-alkali glass substrate according to the present invention after the heat treatment.
【図2】本発明に係る2段熱処理を行ったEL素子の輝
度の印加電圧依存性を示すグラフFIG. 2 is a graph showing the applied voltage dependence of the luminance of an EL element subjected to a two-step heat treatment according to the present invention.
【図3】本発明に係る2段熱処理を行ったEL素子の連
続発光時の輝度の時間変化を示すグラフFIG. 3 is a graph showing a temporal change in luminance during continuous light emission of an EL element subjected to a two-step heat treatment according to the present invention.
【図4】本発明に係る熱処理を行った熱処理装置の断面
図FIG. 4 is a cross-sectional view of a heat treatment apparatus that has performed a heat treatment according to the present invention.
【図5】典型的な薄膜EL装置の断面図FIG. 5 is a cross-sectional view of a typical thin-film EL device.
1a ノンアルカリガラス基板 1b 対向ガラス基板 2a 第1の電極層 2b 第2の電極層 3a 第1の絶縁層 3b 第2の絶縁層 4 発光層 5 シリコーンオイル 6 支持材 7 炉体 7i ガス導入口 7o ガス排出口 7v 真空排気口 8 熱平板 9 外部ヒーター 1a Non-alkali glass substrate 1b Opposite glass substrate 2a First electrode layer 2b Second electrode layer 3a First insulating layer 3b Second insulating layer 4 Light emitting layer 5 Silicone oil 6 Supporting material 7 Furnace 7i Gas inlet 7o Gas outlet 7v Vacuum exhaust port 8 Hot plate 9 External heater
Claims (4)
1の電極、第1の絶縁層、発光層、第2の絶縁層および
第2の電極が順次積層されてなる薄膜エレクトロルミネ
ッセンス(以下ELと記す)素子の製造方法において、
少なくとも発光層成膜後に、発光層を単一温度で熱処理
する場合おけるノンアルカリガラス基板の変形限界温度
以下で、かつその近傍の第1の保持温度に保持した後、
次いで第1の保持温度より高温の第2の保持温度で熱処
理することを特徴とする薄膜EL素子の製造方法。1. A thin-film electroluminescence (hereinafter referred to as EL) in which a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode formed on a non-alkali glass substrate are sequentially laminated. The device manufacturing method)
At least after the formation of the light-emitting layer, after the light-emitting layer is kept at a first holding temperature that is equal to or lower than the deformation limit temperature of the non-alkali glass substrate when the heat treatment is performed at a single temperature, and
Then, a heat treatment is performed at a second holding temperature higher than the first holding temperature.
0℃であることを特徴とする請求項1に記載の薄膜EL
素子の製造方法。2. The first holding temperature is from 570 ° C. to 59 ° C.
The thin film EL according to claim 1, wherein the temperature is 0 ° C.
Device manufacturing method.
0℃であることを特徴とする請求項1または2に記載の
薄膜EL素子の製造方法。3. The second holding temperature is from 590 ° C. to 65 ° C.
The method according to claim 1, wherein the temperature is 0 ° C. 4.
ガラス基板の変形限界温度以上であることを特徴とする
請求項1、2または3に記載の薄膜EL素子の製造方
法。4. The method according to claim 1, wherein the second holding temperature is equal to or higher than a deformation limit temperature of the non-alkali glass substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10098818A JPH11126690A (en) | 1997-08-20 | 1998-04-10 | Manufacture of thin film electroluminescent element |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22362397 | 1997-08-20 | ||
JP9-223623 | 1997-08-20 | ||
JP10098818A JPH11126690A (en) | 1997-08-20 | 1998-04-10 | Manufacture of thin film electroluminescent element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11126690A true JPH11126690A (en) | 1999-05-11 |
Family
ID=26439926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10098818A Pending JPH11126690A (en) | 1997-08-20 | 1998-04-10 | Manufacture of thin film electroluminescent element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11126690A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1087649A3 (en) * | 1999-09-27 | 2003-08-13 | Sony Corporation | Printed wiring board and display apparatus |
JP2009076297A (en) * | 2007-09-20 | 2009-04-09 | Sanritsutsu:Kk | Inorganic electroluminescent element |
-
1998
- 1998-04-10 JP JP10098818A patent/JPH11126690A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1087649A3 (en) * | 1999-09-27 | 2003-08-13 | Sony Corporation | Printed wiring board and display apparatus |
SG109432A1 (en) * | 1999-09-27 | 2005-03-30 | Sony Corp | Printed wiring board and display apparatus |
US7417867B1 (en) | 1999-09-27 | 2008-08-26 | Sony Corporation | Printed wiring board and display apparatus |
JP2009076297A (en) * | 2007-09-20 | 2009-04-09 | Sanritsutsu:Kk | Inorganic electroluminescent element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3704068B2 (en) | EL panel | |
JP3479273B2 (en) | Phosphor thin film manufacturing method and EL panel | |
JP2002180038A (en) | Phosphor thin film and method for producing the same, and el panel | |
KR100748760B1 (en) | Luminescent device, display device, and display device control method | |
JP4230363B2 (en) | Phosphor thin film, manufacturing method thereof, and EL panel | |
US20020125821A1 (en) | Electroluminescent display formed on glass with a thick film dielectric layer | |
JP3472236B2 (en) | Phosphor thin film, manufacturing method thereof and EL panel | |
US20020125495A1 (en) | Thin film alternating current electroluminescent displays | |
JPH11126690A (en) | Manufacture of thin film electroluminescent element | |
KR100432681B1 (en) | Fluorescent Thin Film and EL Panel | |
JP2003217859A (en) | El panel | |
US6876146B2 (en) | Electroluminescence phosphor multilayer thin film and electroluminescence element | |
JP2001118677A (en) | Manufacturing method of target for inorganic electroluminescent phosphor thin film, phosphor thin film, inorganic electroluminescent element and sulfide phosphor thin film | |
JP4230164B2 (en) | Phosphor thin film, manufacturing method thereof, and EL panel | |
KR100405185B1 (en) | Fluorescent Thin Film, Preparation Method and EL Panel | |
JP3574829B2 (en) | Inorganic electroluminescent material, inorganic electroluminescent device using the same, and image display device | |
WO2002073708A2 (en) | Electroluminescent display device | |
JPH1092580A (en) | Thin film electroluminescent element and manufacture thereof | |
JPS6213798B2 (en) | ||
JPH05226075A (en) | Electric element having transparent oxide conductive film | |
JP2003217860A (en) | El panel and manufacturing method therefor | |
JP2002110351A (en) | Laminated phosphor and el panel | |
JP2001297877A (en) | Manufacturing method and apparatus of thin film electroluminescence element | |
JP2005290196A (en) | Phosphor material, phosphor thin film and its manufacturing method, light-emitting element, and el device | |
JPS62295391A (en) | Electroluminescence device |