JPH10163055A - Manufacture of high electric resistance rare earth permanent magnet - Google Patents
Manufacture of high electric resistance rare earth permanent magnetInfo
- Publication number
- JPH10163055A JPH10163055A JP8334947A JP33494796A JPH10163055A JP H10163055 A JPH10163055 A JP H10163055A JP 8334947 A JP8334947 A JP 8334947A JP 33494796 A JP33494796 A JP 33494796A JP H10163055 A JPH10163055 A JP H10163055A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- rare earth
- magnet
- magnet powder
- electric resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
- H01F1/0575—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
- H01F1/0577—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】[0001]
【発明に属する技術分野】本発明は、回転機器、電子部
品、電子機器等に使用される希土類永久磁石の製造方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rare earth permanent magnet used for rotating equipment, electronic parts, electronic equipment and the like.
【0002】[0002]
【従来の技術】従来より永久磁石式回転機器には、低価
格なフェライト永久磁石が主に使用されてきたが、近年
の回転機器の小型・高性能化に伴い、より高性能な希土
類永久磁石の使用頻度が年々増加している。代表的な希
土類永久磁石としては、R−Co系磁石、R−Fe−B
系磁石が挙げられ、生産性向上に伴い高性能・量産化が
進行している。2. Description of the Related Art Inexpensive ferrite permanent magnets have been mainly used for permanent magnet type rotating devices. However, with the recent trend toward smaller size and higher performance of rotating devices, rare earth permanent magnets with higher performance have been used. The frequency of use is increasing year by year. Representative rare earth permanent magnets include R-Co magnets, R-Fe-B
Series magnets, and high performance and mass production are progressing with the improvement of productivity.
【0003】[0003]
【発明が解決しようとする課題】しかしながら希土類永
久磁石は金属磁石である為に電気抵抗が低く、回転機器
等に組み込んだ場合渦電流損失が増大し、モータ効率を
低下させるという問題が発生する。そこで希土類磁石材
料の電気抵抗を高める試みがいくつか提案されている。
例えば樹脂バインダーを使用した希土類ボンド磁石では
10-2Ω・cmオーダーと希土類焼結磁石と比較して2
オーダー高い電気抵抗を有するが、機械的強度が低く、
冷凍機等コンプレッサ用モータに使用した際必要な耐冷
媒性も低い。また特開平5−121220号には、ボン
ド磁石粉をゾル・ゲル法によりセラミックスバインダー
をコートし、成形金型中で直接圧縮通電し、フル密度磁
石を得る方法が提案されているが、十分な磁気特性と電
気抵抗を得るに至っていない。したがって本発明は、十
分な磁気特性および高電気抵抗を有する希土類永久磁石
の製造方法を提供することを目的とする。However, since the rare-earth permanent magnet is a metal magnet, its electric resistance is low, and when it is incorporated in a rotating device or the like, a problem arises that eddy current loss increases and motor efficiency decreases. Therefore, several attempts to increase the electric resistance of the rare earth magnet material have been proposed.
For example, a rare-earth bonded magnet using a resin binder has an order of 10 −2 Ω · cm, which is 2 times smaller than that of a rare-earth sintered magnet.
Has high electrical resistance on the order, but low mechanical strength,
Low refrigerant resistance required when used in compressor motors such as refrigerators. Japanese Patent Application Laid-Open No. 5-121220 proposes a method in which a bonded magnet powder is coated with a ceramic binder by a sol-gel method, and compression current is applied directly in a molding die to obtain a full density magnet. Magnetic properties and electrical resistance have not yet been obtained. Accordingly, an object of the present invention is to provide a method for producing a rare earth permanent magnet having sufficient magnetic properties and high electric resistance.
【0004】[0004]
【課題を解決するための手段】本発明者等は、表面にパ
ラフィン系炭化水素等のバインダーを被覆したR2T1 4
B相および/またはR2T17相を有する磁石粉末(但し
RはYを含む希土類元素のうち少なくとも1種、Tは遷
移金属のうち少なくとも1種)に対し、磁石粉末のR元
素と反応せず電気抵抗を高める効果のあるフッ化物等の
絶縁物を添加・混合し、成形体とした後に脱バインダー
を行い、放電プラズマ焼結法等により緻密化してバルク
状の高電気抵抗磁石を得る方法を見いだした。したがっ
て、本発明は、R2T14B相および/またはR2T17相を
有する磁石粉末(但しRはYを含む希土類元素のうち少
なくとも1種、Tは遷移金属のうち少なくとも1種)と
バインダーと絶縁物とを混合し、成形した後に脱バイン
ダーを行い、緻密化する高電気抵抗希土類永久磁石の製
造方法である。ここで、バインダーを添加する理由は、
混合時に添加した絶縁物を磁石粉末表面に固定する為で
あり、磁石粉末間の絶縁性を保った状態で成形を行うこ
とが可能となるので、少ない絶縁物添加量で効率良く磁
石の電気抵抗を上げることができる。磁石粉末表面に絶
縁物を固定するためには、磁石粉末とバインダーを混合
して磁石粉末をバインダーで被覆した後に絶縁物と混合
することが望ましいが、絶縁物とバインダーを混合後磁
石粉末に被覆しても、磁石粉末とバインダーと絶縁物と
を共に混合してもよい。使用するバインダーは、磁石粉
末のR元素との反応を避けるためにパラフィン系炭化水
素等の比較的低温で脱バインダーできるものが好まし
い。また、絶縁物としては、電気抵抗を高める効果を有
する化合物を用いることができるが、磁石の磁気特性を
阻害しないためには、磁石粉末との反応性の低いアルカ
リ金属、アルカリ土類金属および希土類元素の内少なく
とも1種の元素を含むフッ化物を用いることが望まし
い。特に、CaF2、SrF2、NdF3は、磁石粉末と
の反応性が低く、電気抵抗を高める効果が大きい。磁石
粉末としては、R−Fe−B系焼結磁石粉末、R2T14
B相を有する超急冷磁石粉末、R2T14B系異方性磁石
粉末、R−Co系磁石粉末の内少なくとも1種を用いる
ことが好ましい。R2T14B相を有する超急冷磁石粉末
としては、R2T14B相およびRリッチ相を有する超急
冷磁石粉末、α−Fe相およびR2T14B相を有する超
急冷磁石粉末、Fe3B相およびR2T14B相を有する超
急冷磁石粉末等がある。The present inventors have SUMMARY OF THE INVENTION may, R 2 T 1 4 coated with paraffin binder such as hydrocarbons on the surface
A magnet powder having a B phase and / or an R 2 T 17 phase (where R is at least one of Y-containing rare earth elements and T is at least one of transition metals) is reacted with the R element of the magnet powder. A method of adding and mixing an insulator such as fluoride, which has the effect of increasing electric resistance, forming a molded body, removing the binder, and densifying by a discharge plasma sintering method or the like to obtain a bulk high electric resistance magnet. Was found. Therefore, the present invention relates to a magnetic powder having an R 2 T 14 B phase and / or an R 2 T 17 phase (where R is at least one of rare earth elements including Y and T is at least one of transition metals). This is a method for producing a high electric resistance rare earth permanent magnet in which a binder and an insulator are mixed, molded, debindered, and densified. Here, the reason for adding the binder is
This is to fix the insulator added during mixing to the surface of the magnet powder, and it is possible to perform molding while maintaining the insulating properties between the magnet powders. Can be raised. In order to fix the insulator on the surface of the magnet powder, it is desirable to mix the magnet powder and the binder, coat the magnet powder with the binder, and then mix with the insulator. Alternatively, the magnet powder, the binder, and the insulator may be mixed together. The binder to be used is preferably a binder such as paraffinic hydrocarbon which can be removed at a relatively low temperature in order to avoid a reaction with the R element of the magnet powder. As the insulator, a compound having an effect of increasing electric resistance can be used. However, in order not to hinder the magnetic properties of the magnet, alkali metals, alkaline earth metals, and rare earths having low reactivity with the magnet powder are used. It is desirable to use a fluoride containing at least one of the elements. In particular, CaF 2 , SrF 2 , and NdF 3 have low reactivity with the magnet powder and have a large effect of increasing electric resistance. As the magnet powder, R-Fe-B based sintered magnet powder, R 2 T 14
It is preferable to use at least one of a super-quenched magnet powder having a B phase, an R 2 T 14 B-based anisotropic magnet powder, and an R-Co-based magnet powder. Examples of the super-quenched magnet powder having an R 2 T 14 B phase include a super-quenched magnet powder having an R 2 T 14 B phase and an R-rich phase, a super-quenched magnet powder having an α-Fe phase and an R 2 T 14 B phase, There is a rapidly quenched magnet powder having an Fe 3 B phase and an R 2 T 14 B phase.
【0005】次に本発明高電気抵抗希土類永久磁石の製
造方法について説明する。磁石粉末は、R−Fe−B系
磁石粉末としては、溶解インゴットをジェットミル等で
微粉砕し平均粒径を1〜10μm、好ましくは3〜6μ
mとしたR−Fe−B系焼結磁石粉末、R2T14B相,
Rリッチ相を有する超急冷磁石粉末、R2T14B異方性
磁石粉末、R−Co系磁石粉末の場合はディスクミル等
で粉砕し、粒径を88〜500μmの範囲でふるい分け
したものを使用する。次に得られた磁石粉末に対して、
5wt%以下、好ましくは0.5〜1.5wt%の範囲
でバインダーを添加・混練し、磁石粉末表面に被覆させ
る。バインダーと磁石粉末とが反応せずに磁石粉末表面
に均一に被覆することができるよう融点が400℃以
下、好ましくは融点が30〜200℃のバインダーを用
いることが好ましく、混練はバインダーの融点付近の温
度で行うことが好ましい。また脱バインダー時に磁石粉
末とバインダーとが反応するのを防ぐため、脱バインダ
ーは400℃以下の温度で行うことが好ましいので、沸
点が400℃以下のバインダーを用いることが好まし
い。バインダーとしては、パラフィン系炭化水素を用い
ることができる。続いてこのバインダーを被覆した磁石
粉末に対してCaF2等の絶縁物を所定の割合で添加
し、磁石粉末表面を覆うように混合する。絶縁物は、磁
石粉末と反応せずに電気抵抗を高める効果があるアルカ
リ金属、アルカリ土類金属及び希土類元素の内少なくと
も1種以上の元素を含むフッ化物を用いる。絶縁物の粒
径は10μm以下が好ましい。なお磁石粉末と絶縁物の
混合比により電気抵抗及び磁気特性は変化するので、混
合比は用途に応じて選択すれば良いが、絶縁物を1〜5
0wt%の範囲で添加することにより実用的な磁気特性
と電気抵抗を兼ね備えた高電気抵抗希土類永久磁石が得
られる。得られた混合粉を成形金型に挿入し、等方性磁
粉を使用の場合は無磁場で、異方性磁粉使用の場合は磁
場中において所定の形状に成形する。成形体は真空また
は水素フロー中において加熱し脱バインダー処理および
緻密化を行う。脱バインダー処理は、緻密化の過程にお
いて行っても、緻密化に供す前に行ってもよい。脱バイ
ンダーの際、加熱温度は磁石粉末に含まれるR元素との
反応を避けるため400℃以下とすることが好ましく、
その温度範囲で脱脂できるバインダーを選択することが
好ましい。脱バインダー後の成形体は、緻密化を行い、
適当な熱処理を加えることで高電気抵抗希土類磁石が得
られる。緻密化は、焼結、放電プラズマ焼結、ホットプ
レス、据込み加工、押出し加工のいずれかにより行うこ
とができるが、高い電気抵抗希土類永久磁石を得るため
には、放電プラズマ焼結が好ましい。また、ホットプレ
ス、据込み加工、押出し加工を施す場合は、緻密化のた
め加熱下で行う。Next, a method of manufacturing the rare earth permanent magnet of the present invention will be described. As the R-Fe-B magnet powder, the melted ingot is finely pulverized by a jet mill or the like, and has an average particle diameter of 1 to 10 µm, preferably 3 to 6 µm.
m, R-Fe-B based sintered magnet powder, R 2 T 14 B phase,
In the case of a rapidly quenched magnet powder having an R-rich phase, an R 2 T 14 B anisotropic magnet powder, or an R-Co magnet powder, a powder crushed by a disk mill or the like and sieved in a particle size range of 88 to 500 μm is used. use. Next, for the obtained magnet powder,
A binder is added and kneaded in an amount of 5 wt% or less, preferably in a range of 0.5 to 1.5 wt%, so that the surface of the magnet powder is coated. It is preferable to use a binder having a melting point of 400 ° C. or less, preferably a melting point of 30 to 200 ° C. so that the binder and the magnetic powder can uniformly coat the surface of the magnetic powder without reacting. It is preferable to carry out at a temperature of Further, in order to prevent the magnet powder and the binder from reacting at the time of debinding, the debinding is preferably performed at a temperature of 400 ° C. or less. Therefore, it is preferable to use a binder having a boiling point of 400 ° C. or less. As the binder, a paraffinic hydrocarbon can be used. Subsequently, an insulator such as CaF 2 is added at a predetermined ratio to the magnet powder coated with the binder, and mixed so as to cover the surface of the magnet powder. As the insulator, a fluoride containing at least one or more of alkali metals, alkaline earth metals, and rare earth elements which have an effect of increasing electric resistance without reacting with the magnet powder is used. The particle size of the insulator is preferably 10 μm or less. Since the electric resistance and the magnetic properties change depending on the mixing ratio of the magnet powder and the insulator, the mixing ratio may be selected according to the application.
By adding in an amount of 0 wt%, a high electric resistance rare earth permanent magnet having both practical magnetic properties and electric resistance can be obtained. The obtained mixed powder is inserted into a molding die and molded into a predetermined shape in a magnetic field without using an isotropic magnetic powder or in a magnetic field when using anisotropic magnetic powder. The molded body is heated in a vacuum or a hydrogen flow to perform a binder removal treatment and a densification. The binder removal treatment may be performed in the process of densification or may be performed before subjecting to densification. At the time of debinding, the heating temperature is preferably set to 400 ° C. or lower to avoid a reaction with the R element contained in the magnet powder,
It is preferable to select a binder that can be degreased in that temperature range. The molded body after debinding is densified,
By applying an appropriate heat treatment, a high electric resistance rare earth magnet can be obtained. Densification can be performed by any of sintering, spark plasma sintering, hot pressing, upsetting, and extrusion, but in order to obtain a high electric resistance rare earth permanent magnet, discharge plasma sintering is preferable. When hot pressing, upsetting, or extruding is performed, heating is performed for densification.
【0006】[0006]
(実施例1)Nd12.5FebalCo17.5B6.6Ga0.2Z
r0.1Si0.1(at%)の組成を有するMQI社製R2
Fe14B異方性磁石粉末(水素吸脱法によるR2Fe14
B異方性磁石粉末)を粒径が150〜250μmとなる
ようにふるい分けし、そこにパラフィン系炭化水素1w
t%を70℃の加熱下において混練して粒子表面に被覆
した。高電気抵抗化の絶縁物として、サブミクロンオー
ダーのCaF2を用い、磁石粉末:80wt%,Ca
F2:20wt%の割合で混合した後に印加磁場11.
5kOe、成形圧6.0ton/cm2で磁場中成形を
行った。次に得られた成形体に対し、真空中で350℃
×1hの脱バインダー処理を行った後、放電プラズマ焼
結用グラファイト型に挿入して放電プラズマ焼結を行っ
た。放電プラズマ焼結条件は、到達真空度6×10-3t
orr,加圧0.25ton/cm2において40V,
750Aのパルス電流を60秒間印加することで粉末粒
子を活性化した後、直流電流を昇温速度約2℃/sとな
るように印加し725℃で250秒間保持する方法を用
いた。表1に得られた磁石の電気抵抗率、磁気特性及び
相対密度の値を示す(実施例1)。なお比較例として、
磁石粉末表面にバインダーを塗布しない場合の放電プラ
ズマ焼結体(比較例1−1)、並びに磁石粉末のみを外
部磁場11.5kOe,加圧6ton/cm2で横磁場
成形した圧粉体(比較例1−2)の電気抵抗率及び磁気
特性値を併記する。なお、電気抵抗率は、四端子法によ
り測定した。表1より、通常R−Fe−B系磁石(比較
例1−2)の電気抵抗率が10-4Ω・cmオーダーであ
るのに対し、表面にバインダーを塗布した磁石粉末にC
aF2を20wt%添加した磁石(実施例1)では10
-2Ω・cmオーダーへ向上しており、磁石粉末R元素と
CaF2及びバインダーの反応による磁気特性の劣化は
見受けられない。また、磁石粉末表面にバインダーを被
覆した磁石(実施例1)としない磁石(比較例1−1)
では、被覆した磁石の方が電気抵抗率が高くなってい
る。これは磁石粉末表面にバインダーを被覆することで
添加した絶縁物が表面を覆った状態で固定され、混合時
の分散性を保った状態で成形できた為である。また磁石
粉末の磁性相が粗大化を起こさない焼結温度(725
℃)において、融点が1360℃であるCaF2が緻密
化しフル密度となっている。これは、放電プラズマ焼結
ではジュール加熱により電気伝導度の低いCaF2が優
先的に加熱され、かつ加圧することにより、緻密化が促
進される為である。図1に実施例1より得られた磁石、
図2に比較例1−1より得られた磁石の組織写真をそれ
ぞれ示す。図中、白色の粒子が磁石粉末、磁石粉末を取
囲んでいる黒色の部分が絶縁物であるCaF2である。
図1、2より、図2に比べ、図1の方が磁石粉末とCa
F2がより分散して磁石粉末間の接触を妨げていること
がわかる。(Example 1) Nd 12.5 Fe bal Co 17.5 B 6.6 Ga 0.2 Z
R 2 having a composition of r 0.1 Si 0.1 (at%) manufactured by MQI
Fe 14 B anisotropic magnet powder (R 2 Fe 14
B anisotropic magnet powder) so as to have a particle size of 150 to 250 μm.
t% was kneaded under heating at 70 ° C. to coat the particle surface. Sub-micron-order CaF 2 was used as an insulator for increasing electric resistance, and magnet powder: 80 wt%, Ca
F 2 : Applied magnetic field after mixing at a ratio of 20 wt%.
The molding was performed in a magnetic field at 5 kOe and a molding pressure of 6.0 ton / cm 2 . Next, the obtained compact is heated at 350 ° C. in vacuum.
After performing a binder removal treatment of × 1 h, the resultant was inserted into a graphite mold for spark plasma sintering, and spark plasma sintering was performed. The conditions for spark plasma sintering are as follows: ultimate vacuum degree 6 × 10 −3 t
orr, 40 V at a pressure of 0.25 ton / cm 2 ,
After activating the powder particles by applying a 750 A pulse current for 60 seconds, a method was used in which a DC current was applied at a heating rate of about 2 ° C./s and held at 725 ° C. for 250 seconds. Table 1 shows the values of the electrical resistivity, magnetic properties and relative density of the obtained magnet (Example 1). As a comparative example,
A discharge plasma sintered body without a binder applied to the surface of the magnet powder (Comparative Example 1-1), and a green compact formed by molding only the magnet powder with an external magnetic field of 11.5 kOe and a pressure of 6 ton / cm 2 in a transverse magnetic field (Comparative Example) The electric resistivity and the magnetic characteristic values of Example 1-2) are also described. The electrical resistivity was measured by a four-terminal method. From Table 1, it can be seen that the electrical resistivity of the ordinary R-Fe-B-based magnet (Comparative Example 1-2) is on the order of 10 -4 Ω · cm, whereas the magnet powder coated with a binder on the surface has C
In the magnet (Example 1) to which 20 wt% of aF 2 is added, 10%
-2 Ω · cm order, and no deterioration in magnetic properties due to the reaction of the magnet powder R element with CaF 2 and the binder is observed. In addition, a magnet in which the surface of the magnet powder was coated with a binder (Example 1) and a magnet without (Comparative Example 1-1)
, The coated magnet has a higher electrical resistivity. This is because the insulating material added by coating the binder on the surface of the magnet powder was fixed while covering the surface, and molding could be performed with the dispersibility at the time of mixing maintained. Also, the sintering temperature (725) at which the magnetic phase of the magnet powder does not cause coarsening.
° C), CaF 2 having a melting point of 1360 ° C is dense and has a full density. This is because, in spark plasma sintering, CaF 2 having low electric conductivity is preferentially heated by Joule heating and pressurization promotes densification. FIG. 1 shows a magnet obtained from Example 1,
FIG. 2 shows a photograph of the structure of the magnet obtained from Comparative Example 1-1. In the figure, white particles are magnet powder, and black portions surrounding the magnet powder are CaF 2, which is an insulator.
1 and 2, the magnet powder and Ca were compared in FIG.
It can be seen that F 2 is more dispersed and hinders contact between the magnet powders.
【0007】[0007]
【表1】 [Table 1]
【0008】(実施例2)アーク溶解炉により、Nd
10.3Pr3.1Dy1.2FebalCo2.3B6.2Al0.5Ga
0.1Cu0.1(at%)となるインゴットを作製し、10
50℃×4hで均質化処理を行った後、水素処理にて粗
粉砕、ジェットミルにて微粉砕し、平均粒径4.5μm
のRリッチ相とR2Fe14B相とからなるR−Fe−B系磁
石粉末とした。その後、実施例1と同様の条件でパラフ
ィン系炭化水素の被覆、CaF2の添加、脱脂、放電プ
ラズマ焼結を行い、最後に得られた焼結体に対し900
℃×2h、500℃×30minの2段階熱処理を行っ
た。表2に得られた磁石の電気抵抗率、磁気特性及び相
対密度の値を示す(実施例2)。なお比較例として同組
成の希土類焼結磁石の値も併記する(比較例2)。(Embodiment 2) Nd was melted by an arc melting furnace.
10.3 Pr 3.1 Dy 1.2 Fe bal Co 2.3 B 6.2 Al 0.5 Ga
An ingot of 0.1 Cu 0.1 (at%) was prepared, and 10
After homogenization treatment at 50 ° C. × 4 h, the mixture is roughly pulverized by hydrogen treatment and finely pulverized by a jet mill to have an average particle size of 4.5 μm.
R-Fe-B-based magnet powder comprising an R-rich phase and an R 2 Fe 14 B phase. Then, under the same conditions as in Example 1, coating with paraffinic hydrocarbon, addition of CaF 2 , degreasing, and discharge plasma sintering were performed, and the sintered body finally obtained was 900
A two-stage heat treatment was performed at 500C for 30 minutes. Table 2 shows the values of the electrical resistivity, magnetic properties, and relative density of the obtained magnet (Example 2). As a comparative example, a value of a rare earth sintered magnet having the same composition is also described (Comparative Example 2).
【0009】[0009]
【表2】 [Table 2]
【0010】(実施例3)高周波溶解炉によりSm10.7
Co53.7Fe28.5Cu5.68Zr1.43となるインゴットを
作製し、1145℃×24hで溶体化処理を行った後、
ディスクミルにて粒径が150〜250μmとなるよう
にふるい分けしR2Co17相を有するRCo系磁石粉末
を得、(実施例1)と同様の条件でパラフィン系炭化水
素の被覆、CaF2の添加、脱脂、放電プラズマ焼結を
行った後に時効処理した。表3に得られた磁石の電気抵
抗率、磁気特性及び相対密度の値を示す(実施例3)。
なお比較例として磁石粉末のみを外部磁場11.5kO
e,加圧6ton/cm2で横磁場成形した圧粉体(比
較例3)の電気抵抗率及び磁気特性値を併記する。(Embodiment 3) Sm 10.7 by high frequency melting furnace
After producing an ingot of Co 53.7 Fe 28.5 Cu 5.68 Zr 1.43 and performing a solution treatment at 1145 ° C. × 24 h,
The mixture was sieved with a disk mill to a particle size of 150 to 250 μm to obtain an RCo-based magnet powder having an R 2 Co 17 phase, and coated with a paraffin-based hydrocarbon and CaF 2 under the same conditions as in (Example 1). After performing addition, degreasing, and spark plasma sintering, aging treatment was performed. Table 3 shows the values of the electrical resistivity, magnetic properties, and relative density of the obtained magnet (Example 3).
As a comparative example, only the magnetic powder was applied to an external magnetic field of 11.5 kO.
e, the electrical resistivity and the magnetic characteristic value of the green compact (Comparative Example 3) formed by applying a transverse magnetic field at a pressure of 6 ton / cm 2 are also shown.
【0011】[0011]
【表3】 [Table 3]
【発明の効果】本発明の製造方法により、十分な磁気特
性および高い電気抵抗を有する高電気抵抗希土類永久磁
石が得られる。According to the manufacturing method of the present invention, a high electric resistance rare earth permanent magnet having sufficient magnetic properties and high electric resistance can be obtained.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明により得られた高電気抵抗希土類永久磁
石の金属組織写真である。FIG. 1 is a photograph of a metal structure of a high electric resistance rare earth permanent magnet obtained according to the present invention.
【図2】比較例の高電気抵抗希土類永久磁石の金属組織
写真である。FIG. 2 is a photograph of a metal structure of a high electric resistance rare earth permanent magnet of a comparative example.
Claims (6)
有する磁石粉末(但しRはYを含む希土類元素のうち少
なくとも1種、Tは遷移金属のうち少なくとも1種)と
バインダーと絶縁物とを混合し、成形した後に脱バイン
ダーを行い、緻密化することを特徴とする高電気抵抗希
土類永久磁石の製造方法。1. A magnetic powder having an R 2 T 14 B phase and / or an R 2 T 17 phase (where R is at least one of Y-containing rare earth elements and T is at least one of transition metals) and a binder. A method for producing a high electric resistance rare earth permanent magnet, comprising: mixing a binder and an insulator; forming the mixture; demolding the mixture; and densifying the mixture.
属および希土類元素の内少なくとも1種の元素を含むフ
ッ化物である請求項1に記載の高電気抵抗希土類永久磁
石の製造方法。2. The method for producing a high electric resistance rare earth permanent magnet according to claim 1, wherein the insulator is a fluoride containing at least one element of an alkali metal, an alkaline earth metal and a rare earth element.
る請求項1または2に記載の高電気抵抗希土類永久磁石
の製造方法。3. The method according to claim 1, wherein the binder is a paraffinic hydrocarbon.
末、R2T14B相を有する超急冷磁石粉末、R2T14B系
異方性磁石粉末、R−Co系磁石粉末の内少なくとも1
種である請求項1ないし3のいずれかに記載の高電気抵
抗希土類永久磁石の製造方法。4. The magnet powder is an R—Fe—B sintered magnet powder, a super-quenched magnet powder having an R 2 T 14 B phase, an R 2 T 14 B anisotropic magnet powder, and an R—Co magnet powder. At least one of
The method for producing a high electric resistance rare earth permanent magnet according to any one of claims 1 to 3, which is a seed.
内少なくとも1種である請求項1ないし4のいずれかに
記載の高電気抵抗希土類永久磁石の製造方法。5. The method according to claim 1, wherein the insulator is at least one of CaF 2 , SrF 2 , and NdF 3 .
ットプレス、据込み加工、押出し加工のいずれかである
請求項1ないし5のいずれかに記載の高電気抵抗希土類
永久磁石の製造方法。6. The production of a high electric resistance rare earth permanent magnet according to claim 1, wherein the densification is any one of sintering, spark plasma sintering, hot pressing, upsetting, and extrusion. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8334947A JPH10163055A (en) | 1996-11-29 | 1996-11-29 | Manufacture of high electric resistance rare earth permanent magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8334947A JPH10163055A (en) | 1996-11-29 | 1996-11-29 | Manufacture of high electric resistance rare earth permanent magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10163055A true JPH10163055A (en) | 1998-06-19 |
Family
ID=18283020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8334947A Pending JPH10163055A (en) | 1996-11-29 | 1996-11-29 | Manufacture of high electric resistance rare earth permanent magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10163055A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000150213A (en) * | 1998-11-05 | 2000-05-30 | Sumitomo Special Metals Co Ltd | Rare earth magnetic powder for bonded magnet and its manufacture |
JP2003022905A (en) * | 2001-07-10 | 2003-01-24 | Daido Steel Co Ltd | High resistance rare earth magnet and its manufacturing method |
US6821357B2 (en) | 1998-03-23 | 2004-11-23 | Sumitomo Special Metals Co., Ltd. | Permanent magnets and R-TM-B based permanent magnets |
JP2006066870A (en) * | 2004-07-28 | 2006-03-09 | Hitachi Ltd | Rare-earth magnet |
JP2006066853A (en) * | 2004-06-25 | 2006-03-09 | Hitachi Ltd | Rare-earth magnet and its manufacturing method, and magnet motor |
JP2007116142A (en) * | 2005-09-26 | 2007-05-10 | Hitachi Ltd | Magnetic material, magnet and rotating machine |
JP2007157903A (en) * | 2005-12-02 | 2007-06-21 | Shin Etsu Chem Co Ltd | R-t-b-c rare earth sintered magnet |
JP2007157901A (en) * | 2005-12-02 | 2007-06-21 | Shin Etsu Chem Co Ltd | Method of manufacturing r-t-b-c sintered magnet |
JP2007173501A (en) * | 2005-12-22 | 2007-07-05 | Hitachi Ltd | Pressed powder magnet and rotating machine using it |
JP2007194599A (en) * | 2005-12-22 | 2007-08-02 | Hitachi Ltd | Low-loss magnet, and magnetic circuit using same |
JP2008060241A (en) * | 2006-08-30 | 2008-03-13 | Hitachi Ltd | High resistance rare-earth permanent magnet |
JP2010056572A (en) * | 2004-06-25 | 2010-03-11 | Hitachi Ltd | Rare-earth magnet |
US7988795B2 (en) | 2005-12-02 | 2011-08-02 | Shin-Etsu Chemical Co., Ltd. | R-T-B—C rare earth sintered magnet and making method |
US8358040B2 (en) | 2005-02-25 | 2013-01-22 | Hitachi, Ltd. | Permanent magnet type electric rotating machine |
CN103081037A (en) * | 2011-06-24 | 2013-05-01 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
CN103081039A (en) * | 2011-06-24 | 2013-05-01 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
CN103081041A (en) * | 2011-06-24 | 2013-05-01 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
DE112011102958T5 (en) | 2010-09-06 | 2013-06-20 | Daihatsu Motor Co., Ltd. | Magnetic material and process for its production |
JP2014132628A (en) * | 2012-12-06 | 2014-07-17 | Showa Denko Kk | Rare earth-transition metal-boron-based rare earth sintered magnet, and manufacturing method thereof |
KR101428672B1 (en) * | 2012-12-10 | 2014-08-08 | 한국생산기술연구원 | Nd-Fe-B magnet alloys and powders and the manufacturing method of the same by gas atomization |
US9147524B2 (en) | 2011-08-30 | 2015-09-29 | General Electric Company | High resistivity magnetic materials |
JP2018107452A (en) * | 2016-12-27 | 2018-07-05 | 有研稀土新材料股▲フン▼有限公司 | High-resistance high-density permanent magnet material and production method thereof |
KR20190058479A (en) | 2016-09-23 | 2019-05-29 | 닛토덴코 가부시키가이샤 | Method of manufacturing sintered body for sintered magnet and method of manufacturing permanent magnet using sintered body for forming sintered magnet |
KR20190058517A (en) | 2016-09-23 | 2019-05-29 | 닛토덴코 가부시키가이샤 | Sintered body for forming rare earth sintered magnet and method for manufacturing the same |
CN111243813A (en) * | 2020-03-12 | 2020-06-05 | 钢铁研究总院 | High-resistivity neodymium iron boron permanent magnet alloy and preparation method thereof |
-
1996
- 1996-11-29 JP JP8334947A patent/JPH10163055A/en active Pending
Cited By (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6821357B2 (en) | 1998-03-23 | 2004-11-23 | Sumitomo Special Metals Co., Ltd. | Permanent magnets and R-TM-B based permanent magnets |
US7025837B2 (en) | 1998-03-23 | 2006-04-11 | Sumitomo Special Metals Co., Ltd. | Permanent magnets and R-TM-B based permanent magnets |
JP2000150213A (en) * | 1998-11-05 | 2000-05-30 | Sumitomo Special Metals Co Ltd | Rare earth magnetic powder for bonded magnet and its manufacture |
JP2003022905A (en) * | 2001-07-10 | 2003-01-24 | Daido Steel Co Ltd | High resistance rare earth magnet and its manufacturing method |
US8084128B2 (en) | 2004-06-25 | 2011-12-27 | Hitachi, Ltd. | Rare-earth magnet and manufacturing method thereof and magnet motor |
US7871475B2 (en) | 2004-06-25 | 2011-01-18 | Hitachi, Ltd. | Rare-earth magnet and manufacturing method thereof and magnet motor |
JP2006066853A (en) * | 2004-06-25 | 2006-03-09 | Hitachi Ltd | Rare-earth magnet and its manufacturing method, and magnet motor |
JP2010062585A (en) * | 2004-06-25 | 2010-03-18 | Hitachi Ltd | Rare-earth magnet and magnet motor |
JP2010056572A (en) * | 2004-06-25 | 2010-03-11 | Hitachi Ltd | Rare-earth magnet |
JP2006066870A (en) * | 2004-07-28 | 2006-03-09 | Hitachi Ltd | Rare-earth magnet |
JP4654709B2 (en) * | 2004-07-28 | 2011-03-23 | 株式会社日立製作所 | Rare earth magnets |
US8119260B2 (en) | 2004-07-28 | 2012-02-21 | Hitachi, Ltd. | Rare-earth magnet |
US20120175986A1 (en) * | 2004-07-28 | 2012-07-12 | Matahiro Komuro | Rare-earth magnet |
US8358040B2 (en) | 2005-02-25 | 2013-01-22 | Hitachi, Ltd. | Permanent magnet type electric rotating machine |
JP2007116142A (en) * | 2005-09-26 | 2007-05-10 | Hitachi Ltd | Magnetic material, magnet and rotating machine |
JP4702542B2 (en) * | 2005-12-02 | 2011-06-15 | 信越化学工業株式会社 | Manufacturing method of RTBC type sintered magnet |
JP4702543B2 (en) * | 2005-12-02 | 2011-06-15 | 信越化学工業株式会社 | R-T-B-C type rare earth sintered magnet |
US7988795B2 (en) | 2005-12-02 | 2011-08-02 | Shin-Etsu Chemical Co., Ltd. | R-T-B—C rare earth sintered magnet and making method |
JP2007157901A (en) * | 2005-12-02 | 2007-06-21 | Shin Etsu Chem Co Ltd | Method of manufacturing r-t-b-c sintered magnet |
JP2007157903A (en) * | 2005-12-02 | 2007-06-21 | Shin Etsu Chem Co Ltd | R-t-b-c rare earth sintered magnet |
JP2007194599A (en) * | 2005-12-22 | 2007-08-02 | Hitachi Ltd | Low-loss magnet, and magnetic circuit using same |
US8388769B2 (en) | 2005-12-22 | 2013-03-05 | Hitachi, Ltd. | Powdered-iron magnet and rotating machine using the same |
JP4719568B2 (en) * | 2005-12-22 | 2011-07-06 | 日立オートモティブシステムズ株式会社 | Powder magnet and rotating machine using the same |
JP2007173501A (en) * | 2005-12-22 | 2007-07-05 | Hitachi Ltd | Pressed powder magnet and rotating machine using it |
JP2008060241A (en) * | 2006-08-30 | 2008-03-13 | Hitachi Ltd | High resistance rare-earth permanent magnet |
JP4700578B2 (en) * | 2006-08-30 | 2011-06-15 | 株式会社日立製作所 | Method for producing high resistance rare earth permanent magnet |
DE112011102958T5 (en) | 2010-09-06 | 2013-06-20 | Daihatsu Motor Co., Ltd. | Magnetic material and process for its production |
EP2685470A4 (en) * | 2011-06-24 | 2015-04-29 | Nitto Denko Corp | Rare earth permanent magnet and method for manufacturing rare earth permanent magnet |
CN103081037B (en) * | 2011-06-24 | 2016-08-03 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
CN103081039A (en) * | 2011-06-24 | 2013-05-01 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
EP2685470A1 (en) * | 2011-06-24 | 2014-01-15 | Nitto Denko Corporation | Rare earth permanent magnet and method for manufacturing rare earth permanent magnet |
CN103081041A (en) * | 2011-06-24 | 2013-05-01 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
CN103081041B (en) * | 2011-06-24 | 2017-07-11 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
CN103081037A (en) * | 2011-06-24 | 2013-05-01 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
EP2685475A4 (en) * | 2011-06-24 | 2015-05-06 | Nitto Denko Corp | Rare earth permanent magnet and method for manufacturing rare earth permanent magnet |
CN103081039B (en) * | 2011-06-24 | 2017-07-11 | 日东电工株式会社 | Rare earth permanent magnet and method for producing rare earth permanent magnet |
US10049798B2 (en) | 2011-08-30 | 2018-08-14 | General Electric Company | High resistivity magnetic materials |
US9147524B2 (en) | 2011-08-30 | 2015-09-29 | General Electric Company | High resistivity magnetic materials |
JP2014132628A (en) * | 2012-12-06 | 2014-07-17 | Showa Denko Kk | Rare earth-transition metal-boron-based rare earth sintered magnet, and manufacturing method thereof |
KR101428672B1 (en) * | 2012-12-10 | 2014-08-08 | 한국생산기술연구원 | Nd-Fe-B magnet alloys and powders and the manufacturing method of the same by gas atomization |
KR20190058479A (en) | 2016-09-23 | 2019-05-29 | 닛토덴코 가부시키가이샤 | Method of manufacturing sintered body for sintered magnet and method of manufacturing permanent magnet using sintered body for forming sintered magnet |
KR20190058517A (en) | 2016-09-23 | 2019-05-29 | 닛토덴코 가부시키가이샤 | Sintered body for forming rare earth sintered magnet and method for manufacturing the same |
JP2018107452A (en) * | 2016-12-27 | 2018-07-05 | 有研稀土新材料股▲フン▼有限公司 | High-resistance high-density permanent magnet material and production method thereof |
CN111243813A (en) * | 2020-03-12 | 2020-06-05 | 钢铁研究总院 | High-resistivity neodymium iron boron permanent magnet alloy and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10163055A (en) | Manufacture of high electric resistance rare earth permanent magnet | |
EP0239031B2 (en) | Method of manufacturing magnetic powder for a magnetically anisotropic bond magnet | |
JPH09186010A (en) | Large electric resistance rare earth magnet and its manufacture | |
JPH0669003B2 (en) | Powder for permanent magnet and method for manufacturing permanent magnet | |
JPWO2003085684A1 (en) | Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet, and manufacturing method thereof | |
JP2003257763A (en) | Manufacturing method for rare earth permanent magnet | |
JP3092672B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
CN114223044B (en) | Method for producing sintered magnet | |
JP3196224B2 (en) | Rare earth-Fe-Co-B anisotropic magnet | |
JPS6181607A (en) | Preparation of rare earth magnet | |
JP2003257764A (en) | Manufacturing method for rare earth permanent magnet | |
JP3634565B2 (en) | Method for producing anisotropic rare earth alloy powder for permanent magnet | |
JP3178848B2 (en) | Manufacturing method of permanent magnet | |
JPH09232122A (en) | Rare earth permanent magnet with high electric resistance and manufacture thereof | |
JPH01155603A (en) | Manufacture of oxidation-resistant rare-earth permanent magnet | |
JP2725004B2 (en) | Manufacturing method of permanent magnet | |
JPH07118408B2 (en) | Method for manufacturing polymer composite rare earth magnet | |
JPS61261448A (en) | Production of permanent magnet having high energy product | |
JPH05211102A (en) | Powder for permanent magnet and permanent magnet | |
JPH045737B2 (en) | ||
JPH0362775B2 (en) | ||
JP3032385B2 (en) | Fe-BR bonded magnet | |
JPH02260615A (en) | Quasi-anisotropic permanent magnet and manufacture thereof | |
JP3131022B2 (en) | Fe-BR bonded magnet | |
JPH0636916A (en) | Fe-b-r base bond magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20040525 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050916 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051020 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060224 |