JPH09308281A - Motor drive control apparatus in electric vehicle - Google Patents

Motor drive control apparatus in electric vehicle

Info

Publication number
JPH09308281A
JPH09308281A JP8121851A JP12185196A JPH09308281A JP H09308281 A JPH09308281 A JP H09308281A JP 8121851 A JP8121851 A JP 8121851A JP 12185196 A JP12185196 A JP 12185196A JP H09308281 A JPH09308281 A JP H09308281A
Authority
JP
Japan
Prior art keywords
motor
duty
target current
current
duty value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8121851A
Other languages
Japanese (ja)
Other versions
JP3706675B2 (en
Inventor
Taido Onuki
泰道 大貫
隆史 ▲鶴▼見
Takashi Tsurumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP12185196A priority Critical patent/JP3706675B2/en
Publication of JPH09308281A publication Critical patent/JPH09308281A/en
Application granted granted Critical
Publication of JP3706675B2 publication Critical patent/JP3706675B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively control fluctuation in the number of rotations of motor without use of a rotation sensor which provides lower detection accuracy when the number of rotations is low, in an electric vehicle which adjusts a duty value to be fed to a motor in order to match the actual current of motor to the target current. SOLUTION: Considering that a fluctuation ΔDuty of the duty value Duty outputted to an inverter 6 from a feed back control means 15 is changing proportional to a fluctuation ΔNm of the number of rotations Nm of motor 1, when the motor 1 having a lower accuracy of the motor rotation sensor S3 is rotating at a lower speed, fluctuation of motor rotation Nm is controlled by compensating for a target current ICMD outputted by a target current calculating means 14 depending on fluctuation of duty value ΔDuty. When the motor 1 is rotating at a high speed at which the motor rotation sensor S3 accurately detects the variation, the target current ICMD is compensated directly depending on the fluctuation ΔNm of the number of rotations of motor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、モータの実電流と
目標電流との偏差に基づいてモータに通電するデューテ
ィ値を調整することにより、前記実電流を前記目標電流
に収束させる電動車両におけるモータ駆動制御装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor for an electric vehicle that converges the actual current to the target current by adjusting the duty value applied to the motor based on the deviation between the actual current of the motor and the target current. The present invention relates to a drive control device.

【0002】[0002]

【従来の技術】電動車両に使用されるモータは、その構
造上の特性から回転数の変動が避けられず、特に低速回
転時には前記回転数の変動による振動が大きくなり、且
つその振動が駆動系の固有振動数に共振して車体振動の
原因となる問題があった。そこでモータ回転数の変動を
検出し、その変動に基づいてモータの電流を制御するこ
とにより前記振動の発生を抑制するものが、米国特許第
5349278号明細書により提案されている。
2. Description of the Related Art In a motor used in an electric vehicle, fluctuations in the number of revolutions are unavoidable due to its structural characteristics, and particularly at low speeds, the vibrations due to the variation in the number of revolutions become large, and the vibrations are generated in the drive system. There was a problem that it resonated with the natural frequency of and caused the vehicle body vibration. Therefore, U.S. Pat. No. 5,349,278 proposes a technique for detecting the fluctuation of the motor rotation speed and controlling the motor current based on the fluctuation to suppress the occurrence of the vibration.

【0003】[0003]

【発明が解決しようとする課題】ところで、モータ回転
数の検出に一般的に使用される電磁センサは、高速回転
時の検出精度は優れているものの、低速回転時の検出精
度が大幅に低下する問題がある。従って、かかるモータ
回転数センサを用いて検出したモータ回転数に基づいて
モータの電流を制御しても、その検出値自体の精度が低
いためにモータ回転数の変動を効果的に抑制することが
できず、特に低速回転時における振動の発生を防止する
ことが難しいという問題があった。
By the way, the electromagnetic sensor generally used for detecting the number of rotations of the motor is excellent in detection accuracy at high speed rotation, but the detection accuracy at low speed rotation is significantly lowered. There's a problem. Therefore, even if the motor current is controlled based on the motor rotation speed detected using such a motor rotation speed sensor, the fluctuation of the motor rotation speed can be effectively suppressed because the accuracy of the detected value itself is low. This is not possible, and there is a problem that it is difficult to prevent the occurrence of vibration, especially at low speed rotation.

【0004】本発明は前述の事情に鑑みてなされたもの
で、低速回転時に検出精度が低下するモータ回転数セン
サを用いることなく、モータ回転数の変動を効果的に抑
制することを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to effectively suppress fluctuations in motor rotation speed without using a motor rotation speed sensor whose detection accuracy decreases at low speed rotation. .

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、請求項1に記載された電動車両におけるモータ駆動
制御装置は、モータの目標電流を算出する目標電流算出
手段と、モータの実電流を算出する実電流算出手段と、
前記実電流を前記目標電流に一致させるべく、モータに
通電するデューティ値を調整するモータ電流フィードバ
ック制御手段と、前記デューティ値の変動量を算出する
デューティ値変動量算出手段と、前記デューティ値の変
動量に基づいて前記目標電流を補正する目標電流補正手
段とを備えたことを特徴とする。
In order to achieve the above object, a motor drive control device in an electric vehicle according to a first aspect of the present invention comprises a target current calculation means for calculating a target current of a motor and an actual current of the motor. An actual current calculation means for calculating
A motor current feedback control unit that adjusts a duty value for energizing a motor to match the actual current with the target current, a duty value variation amount calculation unit that calculates a variation amount of the duty value, and a variation of the duty value. Target current correction means for correcting the target current based on the amount is provided.

【0006】また請求項2に記載された電動車両におけ
るモータ駆動制御装置は、モータの目標電流を算出する
目標電流算出手段と、モータの実電流を算出する実電流
算出手段と、前記実電流を前記目標電流に一致させるべ
く、モータに通電するデューティ値を調整するモータ電
流フィードバック制御手段と、前記デューティ値の平均
値を算出する平均デューティ値算出手段と、前記デュー
ティ値及び前記平均デューティ値の偏差に基づいて前記
目標電流を補正する目標電流補正手段とを備えたことを
特徴とする。
According to a second aspect of the present invention, there is provided a motor drive control device for an electric vehicle, wherein a target current calculating means for calculating a target current of the motor, an actual current calculating means for calculating an actual current of the motor, and the actual current Motor current feedback control means for adjusting the duty value to be applied to the motor so as to match the target current, average duty value calculation means for calculating the average value of the duty value, deviation of the duty value and the average duty value And a target current correction means for correcting the target current based on the above.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態を、添
付図面に示した本発明の実施例に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described based on embodiments of the present invention shown in the accompanying drawings.

【0008】図1〜図5は本発明の第1実施例を示すも
ので、図1は電動車両の全体構成を示す図、図2は制御
系のブロック図、図3は作用を説明するフローチャー
ト、図4はモータ駆動回路の等価回路を示す図、図5は
ゲインの設定手法を説明するグラフである。
1 to 5 show a first embodiment of the present invention, FIG. 1 is a diagram showing the overall construction of an electric vehicle, FIG. 2 is a block diagram of a control system, and FIG. 3 is a flow chart for explaining the operation. FIG. 4 is a diagram showing an equivalent circuit of the motor drive circuit, and FIG. 5 is a graph for explaining a gain setting method.

【0009】図1に示すように、四輪の電動車両Vは、
三相交流モータ1のトルクがトランスミッション2を介
して伝達される駆動輪としての左右一対の前輪Wf,W
fと、従動輪としての左右一対の後輪Wr,Wrとを有
する。電動車両Vの後部に搭載された例えば288ボル
トのメインバッテリ3は、コンタクタ4、ジョイントボ
ックス5、コンタクタ4及びパワードライブユニットを
構成するインバータ6を介してモータ1に接続される。
例えば12ボルトのサブバッテリ7にメインスイッチ8
及びヒューズ9を介して接続された電子制御ユニット1
0は、モータ1の駆動トルク及び回生トルクを制御すべ
くインバータ6に接続される。サブバッテリ7をメイン
バッテリ3の電力で充電すべく、バッテリチャージャ1
1及びDC/DCコンバータ12が設けられる。
As shown in FIG. 1, a four-wheel electric vehicle V is
A pair of left and right front wheels Wf, W as driving wheels to which the torque of the three-phase AC motor 1 is transmitted via the transmission 2.
f and a pair of left and right rear wheels Wr, Wr as driven wheels. A main battery 3 of, for example, 288 volts mounted on the rear portion of the electric vehicle V is connected to the motor 1 via a contactor 4, a joint box 5, a contactor 4 and an inverter 6 that constitutes a power drive unit.
For example, a 12-volt sub battery 7 and a main switch 8
And electronic control unit 1 connected via fuse 9
0 is connected to the inverter 6 to control the drive torque and regenerative torque of the motor 1. In order to charge the sub battery 7 with the power of the main battery 3, the battery charger 1
1 and a DC / DC converter 12 are provided.

【0010】図2に示すように、モータ1とインバータ
6とを接続する交流回路には電流センサS1 …が設けら
れており、その出力信号が入力される実電流算出手段1
3はモータ1の実電流IACT を算出する。一方、アクセ
ル開度センサS2 で検出したアクセル開度θAPと、モー
タ回転数センサS3 で検出したモータ回転数Nmと、シ
フトポジションセンサS4 で検出したシフトポジション
Pとが目標電流算出手段14に入力される。目標電流算
出手段14は、アクセル開度θAP、モータ回転数Nm及
びポジションPに基づいてドライバーがモータ1に発生
させようとしているトルク指令値を例えばマップ検索に
よって算出するとともに、そのトルク指令値及びモータ
回転数Nmに基づいてモータ1に供給すべき、或いは回
生によりモータ1から取り出すべき目標電流ICMD を算
出する。
As shown in FIG. 2, an AC circuit connecting the motor 1 and the inverter 6 is provided with a current sensor S 1 ... And an actual current calculating means 1 to which an output signal thereof is inputted.
3 calculates the actual current I ACT of the motor 1. On the other hand, the accelerator opening theta AP detected by the accelerator opening sensor S 2, and the motor rotation speed Nm detected by the motor rotational speed sensor S 3, the shift position P and the target current calculating section detected by the shift position sensor S 4 14 is input. The target current calculation means 14 calculates the torque command value that the driver is trying to generate in the motor 1 based on the accelerator opening θ AP , the motor rotation speed Nm, and the position P, for example, by map search, and at the same time, calculates the torque command value and A target current I CMD to be supplied to the motor 1 or to be extracted from the motor 1 by regeneration is calculated based on the motor rotation speed Nm.

【0011】目標電流算出手段14で算出した目標電流
CMD と、実電流算出手段13で案出した実電流IACT
とはモータ電流フィードバック制御手段15に入力さ
れ、そこで算出された目標電流ICMD 及び実電流IACT
の偏差をゼロに収束させるべくモータ電流フィードバッ
ク制御手段15はインバータ6をデューティ制御する。
即ち、インバータ6は複数のスイッチング素子を備えお
り、モータ電流フィードバック制御手段15から各スイ
ッチィング素子にデューティ信号よりなるスイッチング
信号を入力することにより、モータ1の駆動時にはメイ
ンバッテリ3の直流電力を三相交流電力に変換して該モ
ータ1に供給し、モータ1の被駆動時(回生時)には該
モータ1が発電した三相交流電力を直流電力に変換して
メインバッテリ3に供給する。
The target current I CMD calculated by the target current calculation means 14 and the actual current I ACT devised by the actual current calculation means 13
Are input to the motor current feedback control means 15, and the target current I CMD and the actual current I ACT calculated there are
The motor current feedback control means 15 duty-controls the inverter 6 in order to converge the deviation of 0 to zero.
That is, the inverter 6 is provided with a plurality of switching elements, and by inputting a switching signal consisting of a duty signal from the motor current feedback control means 15 to each switching element, the DC power of the main battery 3 is three times when the motor 1 is driven. When the motor 1 is driven (regenerative), the three-phase AC power generated by the motor 1 is converted into DC power and supplied to the main battery 3.

【0012】モータ電流フィードバック制御手段15か
らインバータ6に入力されるデューティ値Dutyはデュー
ティ値変動量算出手段16にも入力され、そこでデュー
ティ値Dutyの変動量ΔDutyを算出する。またモータ回転
数Nmが入力されるモータ回転数変動量算出手段17
は、モータ回転数Nmの変動量ΔNmを算出する。前記
デューティ値Dutyの変動量ΔDuty及びモータ回転数Nm
の変動量ΔNmは目標電流補正手段18に入力される。
目標電流補正手段18は、モータ1の回転変動を低減す
べく、モータ回転数Nmが低いときにはデューティ値変
動量ΔDutyに基づいて目標電流算出手段14が出力する
目標電流ICMD を補正し、モータ回転数Nmが高いとき
にはモータ回転数変動量ΔNmに基づいて目標電流算出
手段14が出力する目標電流ICMD を補正する。
The duty value Duty input from the motor current feedback control means 15 to the inverter 6 is also input to the duty value variation amount calculation means 16, where the variation amount ΔDuty of the duty value Duty is calculated. Further, the motor rotation speed fluctuation amount calculation means 17 to which the motor rotation speed Nm is input
Calculates the fluctuation amount ΔNm of the motor rotation speed Nm. Variation amount ΔDuty of the duty value Duty and motor rotation speed Nm
The variation amount ΔNm of is input to the target current correction means 18.
The target current correction unit 18 corrects the target current I CMD output by the target current calculation unit 14 based on the duty value fluctuation amount ΔDuty to reduce the rotation fluctuation of the motor 1 when the motor rotation speed Nm is low, and the motor rotation speed is reduced. When the number Nm is high, the target current I CMD output by the target current calculation means 14 is corrected based on the motor rotation speed fluctuation amount ΔNm.

【0013】電子制御ユニット10のうち、実電流算出
手段13及びモータ電流フィードバック制御手段15は
電気回路からなるハードウエアにより構成されており、
他の手段は図3のフローチャートに示す機能を有するソ
フトウエアにより構成されている。
In the electronic control unit 10, the actual current calculation means 13 and the motor current feedback control means 15 are composed of hardware consisting of electric circuits,
The other means is composed of software having the functions shown in the flowchart of FIG.

【0014】次に、図3のフローチャートに基づいて本
発明の作用を更に説明する。
Next, the operation of the present invention will be further described based on the flowchart of FIG.

【0015】先ず、ステップS1で目標電流算出手段1
4にアクセル開度θAP、モータ回転数Nm及びシフトポ
ジションPを読み込み、ステップS2で目標電流ICMD
を算出する。次にステップS3でデューティ値変動量算
出手段16にデューティ値Dutyを読み込み、ステップS
4でデューティ値変動量ΔDutyを算出する。次にステッ
プS5でモータ回転数変動量算出手段17にモータ回転
数Nmを読み込み、ステップS6でモータ回転数変動量
ΔNmを算出する。
First, in step S1, the target current calculation means 1
4, the accelerator opening θ AP , the motor speed Nm and the shift position P are read, and the target current I CMD is read in step S2.
Is calculated. Next, in step S3, the duty value Duty calculation unit 16 reads the duty value Duty, and in step S3
In step 4, the duty value variation amount ΔDuty is calculated. Next, in step S5, the motor rotation speed fluctuation amount calculation unit 17 is loaded with the motor rotation speed Nm, and in step S6, the motor rotation speed fluctuation amount ΔNm is calculated.

【0016】続くステップS7でモータ回転数Nmが所
定値未満であってモータ回転数センサS3 の検出精度が
低い場合には、ステップS8において、目標電流補正手
段18が目標電流算出手段14の出力する目標電流I
CMD をデューティ値変動量ΔDutyに基づいて補正する。
即ち、ゲインK1 とデューティ値変動量ΔDutyとの積で
あるK1 *ΔDutyにより補正項を設定し、この補正項K
1 *ΔDutyを目標電流算出手段14の出力する目標電流
CMD から減算する。
In the subsequent step S7, when the motor rotation speed Nm is less than the predetermined value and the detection accuracy of the motor rotation speed sensor S 3 is low, the target current correction means 18 outputs the output of the target current calculation means 14 in step S8. Target current I
CMD is corrected based on the duty value variation amount ΔDuty.
That is, the correction term is set by K 1 * ΔDuty which is the product of the gain K 1 and the duty value variation amount ΔDuty.
1 * ΔDuty is subtracted from the target current I CMD output by the target current calculation means 14.

【0017】 ICMD ←ICMD −K1 *ΔDuty …(1) 而して、ステップS9でモータ電流フィードバック制御
手段15に前記補正後の目標電流ICMD を出力すること
により、モータ電流フィードバック制御手段15はモー
タ1の実電流IACT が前記目標電流ICMD に一致するよ
うにモータ1をフィードバック制御する。
I CMD ← I CMD −K 1 * ΔDuty (1) Then, in step S 9, the corrected target current I CMD is output to the motor current feedback control unit 15 to output the motor current feedback control unit. Reference numeral 15 feedback-controls the motor 1 so that the actual current I ACT of the motor 1 matches the target current I CMD .

【0018】ところで、モータ1の駆動回路は図4に示
す等価回路で置き換えることができる。ここで、モータ
1に流れる電流Iは、バッテリ電圧V、モータ1の抵抗
R、モータ1の逆起電力E及びデューティ値Dutyに基づ
いて、 I=(V*Duty−E)/R …(2) により表される。
By the way, the drive circuit of the motor 1 can be replaced with an equivalent circuit shown in FIG. Here, the current I flowing through the motor 1 is based on the battery voltage V, the resistance R of the motor 1, the back electromotive force E of the motor 1, and the duty value Duty. I = (V * Duty−E) / R (2 ) Is represented by.

【0019】(2)式において、電流フィードバック制
御によって電流Iは一定に保持されるため、バッテリ電
圧V及びモータ1の抵抗Rが一定であると仮定すると、
デューティ値Dutyと逆起電力Eとは比例することにな
る。そして逆起電力Eはモータ回転数Nmに比例するた
め、デューティ値Dutyはモータ回転数Nmに比例する。
つまり、デューティ値変動量ΔDutyを監視すれば、それ
は実質的にモータ回転数変動量ΔNmを監視することに
なる。而して、目標電流算出手段14が出力する目標電
流ICMD をゲインK1 とデューティ値変動量ΔDutyとの
積である補正項K 1 *ΔDutyで補正した補正後の目標電
流ICMD に基づいてモータ1をフィードバック制御する
ことにより、モータ1の低速回転時に検出精度が大幅に
低下するモータ回転数センサS3 の出力を用いることな
く、モータ1の回転数変動を効果的に抑制して振動の発
生を防止することができ、特にモータ回転数Nmが低い
車両の発進における振動の発生を効果的に防止すること
ができる。
In equation (2), the current feedback control is used.
Since the current I is kept constant by the control,
Assuming that the pressure V and the resistance R of the motor 1 are constant,
The duty value Duty and the counter electromotive force E are proportional.
You. The counter electromotive force E is proportional to the motor speed Nm.
Therefore, the duty value Duty is proportional to the motor rotation speed Nm.
In other words, if the duty value fluctuation amount ΔDuty is monitored,
Is to monitor the motor rotation speed fluctuation amount ΔNm.
Become. Thus, the target voltage output by the target current calculation means 14 is output.
Style ICMDGain K1And duty value variation ΔDuty
Correction term K which is the product 1* Target voltage after correction corrected with ΔDuty
Style ICMDFeedback control of the motor 1 based on
As a result, the detection accuracy is significantly improved when the motor 1 rotates at low speed.
Decreasing motor speed sensor SThreeDo not use the output of
Effectively suppress fluctuations in the rotation speed of the motor 1 and generate vibrations.
It is possible to prevent life, and especially the motor speed Nm is low.
Effectively prevent the occurrence of vibration when the vehicle starts
Can be.

【0020】また、前記ステップS7でモータ回転数N
mが所定値以上の場合、即ちモータ回転数センサS3
検出精度が充分に高い場合には、ステップS10におい
て、前記ステップS6で算出したモータ回転数変動量Δ
NmにゲインK2 を乗算した補正項K2 *ΔNmで目標
電流算出手段14の出力する目標電流ICMD を補正す
る。
In step S7, the motor rotation speed N
When m is equal to or greater than a predetermined value, that is, when the detection accuracy of the motor rotation speed sensor S 3 is sufficiently high, in step S10, the motor rotation speed fluctuation amount Δ calculated in step S6 is calculated.
The target current I CMD output from the target current calculation means 14 is corrected by the correction term K 2 * ΔNm obtained by multiplying Nm by the gain K 2 .

【0021】 ICMD ←ICMD −K2 *ΔNm …(3) この場合、モータ回転数センサS3 の検出精度が充分に
高く、しかもモータ回転数変動量ΔNmを直接用いてい
ることから、極めて高い精度でモータ1の回転数変動を
抑制することができる。
I CMD ← I CMD −K 2 * ΔNm (3) In this case, the detection accuracy of the motor rotation speed sensor S 3 is sufficiently high, and the motor rotation speed fluctuation amount ΔNm is directly used. The rotation speed fluctuation of the motor 1 can be suppressed with high accuracy.

【0022】ところで、モータ回転数Nmを増加させて
車両を加減速する場合、その加減速に伴ってモータ回転
数変動量ΔNmが発生するため、そのモータ回転数変動
量ΔNmの発生をモータ1の通常の回転変動に起因する
ものであると制御系が誤認し、モータ回転数Nmの変動
(即ち、加速及び減速)を抑制する制御を行ってしまう
場合がある。特にモータ回転数Nmが高い場合の補正に
使用される前記ゲインK2 を大きく設定すると、モータ
回転数Nmの増加抑制或いは減少抑制が強く働いて車両
の加速性能或いは回生制動時における車両の減速性能が
阻害されてしまう可能性がある。
By the way, when the motor rotation speed Nm is increased to accelerate or decelerate the vehicle, the motor rotation speed fluctuation amount ΔNm is generated along with the acceleration or deceleration. Therefore, the motor rotation speed fluctuation amount ΔNm is generated by the motor 1. The control system may erroneously recognize that it is due to a normal rotation fluctuation, and may perform control for suppressing fluctuations in the motor rotation speed Nm (that is, acceleration and deceleration). In particular, when the gain K 2 used for correction when the motor speed Nm is high is set to a large value, the increase or decrease of the motor speed Nm is strongly suppressed and the acceleration performance of the vehicle or the deceleration performance of the vehicle during regenerative braking is increased. May be hindered.

【0023】そこで、車両の加速時及び減速時における
モータ回転数変動量ΔNmが、通常のモータ回転数変動
量ΔNmに比べて小さいことに着目し、図5(A)に示
すように、モータ回転数変動量ΔNmが車両の通常の加
減速で発生する範囲内の小さい領域では、ゲインK2
ゼロに設定して車両の加速性能及び減速性能の低下を防
止しするとともに、モータ回転数変動量ΔNmが車両の
通常の加減速では発生し得ない程大きい領域では、ゲイ
ンK2 を所定値に設定して振動の発生を防止している。
Therefore, paying attention to the fact that the motor rotation speed fluctuation amount ΔNm during acceleration and deceleration of the vehicle is smaller than the normal motor rotation speed fluctuation amount ΔNm, and as shown in FIG. In a small range in which the number fluctuation amount ΔNm occurs in the normal acceleration / deceleration of the vehicle, the gain K 2 is set to zero to prevent the acceleration performance and the deceleration performance of the vehicle from deteriorating and the motor rotation speed fluctuation amount. In a region where ΔNm is too large to occur in normal acceleration / deceleration of the vehicle, the gain K 2 is set to a predetermined value to prevent the occurrence of vibration.

【0024】尚、図5(A)において、ゲインK2 をゼ
ロに設定する領域が加速側で狭く、減速側で広く設定さ
れているが、これは減速側では強い回生制動によって大
きなモータ回転数変動量ΔNmが発生する可能性がある
ためである。また、モータ回転数Nmが低い場合の補正
に使用される前記ゲインK1 は一定に保持されるが、こ
れはモータ回転数Nmが低い領域では急激な加速や減速
が実質的に発生しないためである。
In FIG. 5 (A), the region in which the gain K 2 is set to zero is narrow on the acceleration side and wide on the deceleration side. This is because the fluctuation amount ΔNm may occur. Further, the gain K 1 used for correction when the motor rotation speed Nm is low is held constant because rapid acceleration or deceleration does not substantially occur in the region where the motor rotation speed Nm is low. is there.

【0025】図5(B)には前記ゲインK2 を設定する
他の手法が示される。即ち、車両の加速時及び減速時に
おけるモータ回転数Nmの変動周波数は通常のモータ1
の回転振動の周波数に比べて極めて小さいため、前記周
波数の小さい領域でゲインK 2 をゼロに設定して車両の
加速性能及び減速性能を確保し、前記周波数の大きい領
域でゲインK2 を所定値に設定してモータ1の回転変動
を防止することができる。
The gain K is shown in FIG.TwoTo set
Other approaches are shown. That is, when accelerating and decelerating the vehicle
The fluctuation frequency of the motor speed Nm in the normal motor 1
It is extremely small compared to the frequency of the rotational vibration of
Gain K in the small wave number range TwoTo zero for the vehicle
Ensure the acceleration and deceleration performance,
Gain K in the rangeTwoIs set to a predetermined value and the rotation fluctuation of the motor 1
Can be prevented.

【0026】次に、図6及び図7に基づいて本発明の第
2実施例を説明する。尚、図6及び図7において、第1
実施例で説明した構成要素及びフローチャートのステッ
プに対応する構成要素及びステップには、それと同じ符
号及びステップ番号が付してある。
Next, a second embodiment of the present invention will be described with reference to FIGS. 6 and 7. Incidentally, in FIG. 6 and FIG.
The components and steps corresponding to the components and the steps of the flowcharts described in the embodiments have the same reference numerals and step numbers.

【0027】第2実施例は、モータ回転数Nmが所定値
未満の場合に、目標電流ICMD を平均デューティ値Duty
AVとデューティ値Dutyとの偏差DutyAV−Dutyに基づいて
補正し、且つモータ回転数Nmが所定値以上の場合に、
目標電流ICMD を平均モータ回転数NmAVとモータ回転
数Nmとの偏差NmAV−Nmに基づいて補正するもので
ある。
In the second embodiment, the target current I CMD is set to the average duty value Duty when the motor speed Nm is less than a predetermined value.
Corrected based on the deviation Duty AV -Duty the AV and duty value Duty, and if the motor rotation speed Nm is equal to or greater than a predetermined value,
The target current I CMD is corrected based on the deviation Nm AV −Nm between the average motor rotation speed Nm AV and the motor rotation speed Nm.

【0028】即ち、図6に示すように、第2実施例は、
第1実施例のデューティ値変動量算出手段16に代え
て、平均デューティ値算出手段16′を備え、また第1
実施例のモータ回転数変動量算出手段17に代えて、平
均モータ回転数算出手段17′を備える。平均デューテ
ィ値算出手段16′は、デューティ値Dutyの所定時間に
亘る平均値である平均デューティ値DutyAVを算出し、そ
の平均デューティ値Duty AVを目標電流補正手段18に出
力する。また平均モータ回転数算出手段17′は、モー
タ回転数Nmの所定時間に亘る平均値である平均モータ
回転数NmAVを算出し、その平均モータ回転数NmAV
目標電流補正手段18に出力する。
That is, as shown in FIG. 6, in the second embodiment,
Instead of the duty value fluctuation amount calculation means 16 of the first embodiment
The average duty value calculation means 16 ',
Instead of the motor rotation speed fluctuation amount calculation means 17 of the embodiment,
A uniform motor rotation speed calculation means 17 'is provided. Average duet
Value calculation means 16 'is set at a predetermined time of the duty value Duty.
Average duty value Duty which is the average value overAVAnd calculate
Average duty value of Duty AVTo the target current correction means 18
Power. Further, the average motor rotation speed calculation means 17 'is
Average motor that is the average value of the rotational speed Nm over a predetermined time
Rotation speed NmAVAnd the average motor speed NmAVTo
Output to the target current correction means 18.

【0029】而して、図7のフローチャートにおいて、
ステップS7でモータ回転数Nmが所定値未満の場合に
は、ステップS8′において、ステップS4′で求めた
平均デューティ値DutyAVとデューティ値Dutyとの偏差に
ゲインK1 を乗算した補正項により目標電流ICMD を補
正する。
Thus, in the flow chart of FIG.
If the motor rotation speed Nm is less than the predetermined value in step S7, in step S8 ', the target is determined by the correction term obtained by multiplying the deviation between the average duty value Duty AV and the duty value Duty obtained in step S4' by the gain K 1. Correct the current I CMD .

【0030】 ICMD ←ICMD −K1 *(DutyAV−Duty) …(4) またステップS7でモータ回転数Nmが所定値以上の場
合には、ステップS10′において、ステップS6′で
求めた平均モータ回転数NmAVとモータ回転数Nmとの
偏差にゲインK2 を乗算した補正項により目標電流I
CMD を補正する。
I CMD ← I CMD −K 1 * (Duty AV −Duty) (4) If the motor rotation speed Nm is equal to or higher than a predetermined value in step S 7, it is determined in step S 6 ′ in step S 10 ′. The target current I is calculated by the correction term obtained by multiplying the deviation between the average motor speed Nm AV and the motor speed Nm by the gain K 2.
Correct CMD .

【0031】 ICMD ←ICMD −K2 *(NmAV−Nm) …(5) 而して、この第2実施例は目標電流ICMD の補正項の算
出手法において第1実施例と異なっているが、第1実施
例において説明した作用効果と同様の作用効果を奏する
ことが可能である。
I CMD ← I CMD −K 2 * (Nm AV −Nm) (5) Therefore, the second embodiment differs from the first embodiment in the method of calculating the correction term of the target current I CMD. However, it is possible to achieve the same effects as the effects described in the first embodiment.

【0032】以上、本発明の実施例を詳述したが、本発
明はその要旨を逸脱しない範囲で種々の設計変更を行う
ことが可能である。
Although the embodiments of the present invention have been described in detail above, the present invention can be modified in various ways without departing from the scope of the invention.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、モータ
の実電流を目標電流に一致させるべくモータに通電する
デューティ値を調整するものにおいて、前記デューティ
値の変動量に基づいて、或いは前記デューティ値及び平
均デューティ値の偏差に基づいて前記目標電流を補正し
ているので、モータ回転数を直接検出することなくモー
タ回転数の変動を抑制して振動の発生を防止することが
できる。これにより、モータ回転数センサの検出精度が
低下するモータの低速回転時においても、モータ回転数
の変動を効果的に抑制することが可能となる。
As described above, according to the present invention, the duty value applied to the motor is adjusted so that the actual current of the motor matches the target current. Since the target current is corrected based on the deviation between the duty value and the average duty value, it is possible to suppress the fluctuation of the motor rotation speed and prevent the occurrence of vibration without directly detecting the motor rotation speed. As a result, even when the motor rotates at a low speed in which the detection accuracy of the motor rotation speed sensor decreases, it is possible to effectively suppress fluctuations in the motor rotation speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】電動車両の全体構成を示す図FIG. 1 is a diagram showing an overall configuration of an electric vehicle.

【図2】制御系のブロック図FIG. 2 is a block diagram of a control system.

【図3】作用を説明するフローチャートFIG. 3 is a flowchart explaining the operation.

【図4】モータ駆動回路の等価回路を示す図FIG. 4 is a diagram showing an equivalent circuit of a motor drive circuit.

【図5】ゲインの設定手法を説明するグラフFIG. 5 is a graph illustrating a gain setting method.

【図6】本発明の第2実施例に係る制御系のブロック図FIG. 6 is a block diagram of a control system according to a second embodiment of the present invention.

【図7】本発明の第2実施例に係るフローチャートFIG. 7 is a flowchart according to the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 モータ 13 実電流算出手段 14 目標電流算出手段 15 モータ電流フィードバック制御手段 16 デューティ値変動量算出手段 16′ 平均デューティ値算出手段 18 目標電流補正手段 Duty デューティ値 DutyAV 平均デューティ値 ΔDuty デューティ値変動量 IACT 実電流 ICMD 目標電流1 Motor 13 Actual Current Calculation Means 14 Target Current Calculation Means 15 Motor Current Feedback Control Means 16 Duty Value Fluctuation Calculation Means 16 'Average Duty Value Calculation Means 18 Target Current Correction Means Duty Duty Values Duty AV Average Duty Value ΔDuty Duty Value Fluctuations I ACT Actual current I CMD Target current

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 モータ(1)の目標電流(ICMD )を算
出する目標電流算出手段(14)と、 モータ(1)の実電流(IACT )を算出する実電流算出
手段(13)と、 前記実電流(IACT )を前記目標電流(ICMD )に一致
させるべく、モータ(1)に通電するデューティ値(Du
ty)を調整するモータ電流フィードバック制御手段(1
5)と、 前記デューティ値(Duty)の変動量(ΔDuty)を算出す
るデューティ値変動量算出手段(16)と、 前記デューティ値(Duty)の変動量(ΔDuty)に基づい
て前記目標電流(ICM D )を補正する目標電流補正手段
(18)と、を備えたことを特徴とする電動車両におけ
るモータ駆動制御装置。
1. A target current calculation means (14) for calculating a target current (I CMD ) of a motor (1), and an actual current calculation means (13) for calculating an actual current (I ACT ) of the motor (1). , A duty value (Du) for energizing the motor (1) so that the actual current (I ACT ) matches the target current (I CMD ).
motor current feedback control means (1)
5), a duty value fluctuation amount calculation means (16) for calculating a fluctuation amount (ΔDuty) of the duty value (Duty), and the target current (I) based on the fluctuation amount (ΔDuty) of the duty value (Duty). CM D) the motor drive control device in the electric vehicle, characterized in that it includes a target current correcting means (18) for correcting the.
【請求項2】 モータ(1)の目標電流(ICMD )を算
出する目標電流算出手段(14)と、 モータ(1)の実電流(IACT )を算出する実電流算出
手段(13)と、 前記実電流(IACT )を前記目標電流(ICMD )に一致
させるべく、モータ(1)に通電するデューティ値(Du
ty)を調整するモータ電流フィードバック制御手段(1
5)と、 前記デューティ値(Duty)の平均値(DutyAV)を算出す
る平均デューティ値算出手段(16′)と、 前記デューティ値(Duty)及び前記平均デューティ値
(DutyAV)の偏差に基づいて前記目標電流(ICMD )を
補正する目標電流補正手段(18)と、を備えたことを
特徴とする電動車両におけるモータ駆動制御装置。
2. A target current calculation means (14) for calculating a target current (I CMD ) of the motor (1), and an actual current calculation means (13) for calculating an actual current (I ACT ) of the motor (1). , A duty value (Du) for energizing the motor (1) so that the actual current (I ACT ) matches the target current (I CMD ).
motor current feedback control means (1)
5), an average duty value calculation means (16 ') for calculating an average value (Duty AV ) of the duty values (Duty), and a deviation between the duty value (Duty) and the average duty value (Duty AV ) And a target current correction means (18) for correcting the target current (I CMD ) according to the present invention.
JP12185196A 1996-05-16 1996-05-16 Motor drive control device for electric vehicle Expired - Fee Related JP3706675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12185196A JP3706675B2 (en) 1996-05-16 1996-05-16 Motor drive control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12185196A JP3706675B2 (en) 1996-05-16 1996-05-16 Motor drive control device for electric vehicle

Publications (2)

Publication Number Publication Date
JPH09308281A true JPH09308281A (en) 1997-11-28
JP3706675B2 JP3706675B2 (en) 2005-10-12

Family

ID=14821509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12185196A Expired - Fee Related JP3706675B2 (en) 1996-05-16 1996-05-16 Motor drive control device for electric vehicle

Country Status (1)

Country Link
JP (1) JP3706675B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043186A1 (en) * 2009-10-05 2011-04-14 太陽誘電株式会社 Regenerative brake device and motor-assisted vehicle provided with the same
US8095255B2 (en) 2008-07-23 2012-01-10 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
US8730483B2 (en) 2009-10-05 2014-05-20 Taiyo Yuden Co., Ltd. Interferometric measurement of displacement in axial direction of a grating
JP2016007097A (en) * 2014-06-20 2016-01-14 トヨタ車体株式会社 Controller of electric vehicle
JP2017123720A (en) * 2016-01-06 2017-07-13 株式会社リコー Current detection device, motor control system, image processing device, and sheet conveying device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8095255B2 (en) 2008-07-23 2012-01-10 Toyota Jidosha Kabushiki Kaisha Control apparatus for hybrid vehicle
WO2011043186A1 (en) * 2009-10-05 2011-04-14 太陽誘電株式会社 Regenerative brake device and motor-assisted vehicle provided with the same
JP2011083081A (en) * 2009-10-05 2011-04-21 Taiyo Yuden Co Ltd Regenerative brake device and motor-assisted vehicle provided with the same
CN102548787A (en) * 2009-10-05 2012-07-04 太阳诱电株式会社 Regenerative brake device and motor-assisted vehicle provided with the same
US8730483B2 (en) 2009-10-05 2014-05-20 Taiyo Yuden Co., Ltd. Interferometric measurement of displacement in axial direction of a grating
US9573569B2 (en) 2009-10-05 2017-02-21 Taiyo Yuden Co., Ltd. Regenerative brake device and motor-assisted vehicle provided with the same
JP2016007097A (en) * 2014-06-20 2016-01-14 トヨタ車体株式会社 Controller of electric vehicle
JP2017123720A (en) * 2016-01-06 2017-07-13 株式会社リコー Current detection device, motor control system, image processing device, and sheet conveying device

Also Published As

Publication number Publication date
JP3706675B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
US7005819B2 (en) Control apparatus for controlling traction motor equipped in vehicle
US5896283A (en) Controller for electric vehicle
US5880574A (en) Control system for electric vehicle
US5677610A (en) Control apparatus for electric vehicles
EP3466784A1 (en) Vehicle turning control device
JP3578019B2 (en) Hybrid vehicle
JP6682355B2 (en) Vehicle turning control device
JP2006187090A (en) Generator power controller
JP3831264B2 (en) Electric vehicle control device
WO2017018335A1 (en) Motor drive device
JPH09308281A (en) Motor drive control apparatus in electric vehicle
JPH1023615A (en) Controller for driving of electric vehicle
JP2003324998A (en) Electric vehicle controller
JP2005020830A (en) Yawing behavior of vehicle control device
JP6766445B2 (en) Electric power steering device
WO2017126389A1 (en) Electric motor device
JP2001197614A (en) Motor controller for electric motor car
JP2001224108A (en) Motor control device for electric vehicle
JPH1080012A (en) Controller for electric motor vehicle
JPH11225405A (en) Controller of motor-driven vehicle
US12090843B2 (en) Drive control device for vehicle
US20240270086A1 (en) Electric vehicle control method and electric vehicle control device
US20230241982A1 (en) Electric vehicle control method and electric vehicle control system
JP2001197613A (en) Motor controller for electric motor car

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees