JPH09275042A - Activated charcoal for organic solvent-based electric double layer capacitor - Google Patents
Activated charcoal for organic solvent-based electric double layer capacitorInfo
- Publication number
- JPH09275042A JPH09275042A JP8262300A JP26230096A JPH09275042A JP H09275042 A JPH09275042 A JP H09275042A JP 8262300 A JP8262300 A JP 8262300A JP 26230096 A JP26230096 A JP 26230096A JP H09275042 A JPH09275042 A JP H09275042A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- double layer
- electric double
- electrodes
- organic solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 137
- 239000003990 capacitor Substances 0.000 title claims abstract description 21
- 239000003960 organic solvent Substances 0.000 title claims description 10
- 239000011148 porous material Substances 0.000 claims abstract description 53
- 230000004913 activation Effects 0.000 claims abstract description 28
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 19
- 229920005989 resin Polymers 0.000 claims abstract description 19
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000003513 alkali Substances 0.000 claims abstract description 13
- 238000004458 analytical method Methods 0.000 claims abstract description 9
- 230000003213 activating effect Effects 0.000 claims abstract description 7
- 238000010304 firing Methods 0.000 claims description 12
- 230000004580 weight loss Effects 0.000 claims description 7
- 238000003917 TEM image Methods 0.000 claims description 6
- 238000002076 thermal analysis method Methods 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims 1
- 230000007423 decrease Effects 0.000 abstract description 7
- 230000003068 static effect Effects 0.000 abstract 2
- 239000003795 chemical substances by application Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 18
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- 239000012190 activator Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- -1 amine salt Chemical class 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000003610 charcoal Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical group CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- 241001479434 Agfa Species 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XJACLKHBZUPYOC-UHFFFAOYSA-N [C].ClC=C Chemical class [C].ClC=C XJACLKHBZUPYOC-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 238000010000 carbonizing Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000011849 charcoal-based material Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- OEVBSMLXBIKMBN-UHFFFAOYSA-N fluoro trifluoromethanesulfonate Chemical compound FOS(=O)(=O)C(F)(F)F OEVBSMLXBIKMBN-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000005621 tetraalkylammonium salts Chemical class 0.000 description 1
- UPOHIXYDQZCJLR-UHFFFAOYSA-J tetraethylazanium tetrafluoride Chemical compound C(C)[N+](CC)(CC)CC.[F-].[F-].[F-].[F-].C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC.C(C)[N+](CC)(CC)CC UPOHIXYDQZCJLR-UHFFFAOYSA-J 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/34—Carbon-based characterised by carbonisation or activation of carbon
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機電解液を使用
した電気二重層コンデンサの電極に用いられる活性炭に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to activated carbon used as an electrode of an electric double layer capacitor using an organic electrolytic solution.
【0002】[0002]
【従来の技術】電気二重層コンデンサは、ファラッド級
の大容量を有し、充放電サイクル特性にも優れることか
ら、電子機器のバックアップ電源、車載のバッテリーな
どの用途に使用されている。電気二重層コンデンサの電
極には、微細な細孔を有する活性炭が用いられている
が、電気二重層コンデンサを、より小型化・軽量化・大
容量化するために、静電密度の大きな活性炭が求められ
ている。このため、静電密度の大きな活性炭を得るべ
く、活性炭の各種特性について検討されており、例えば
「電極中の活性炭重量当たりの重量静電密度と活性炭の
比表面積とは、ほぼ直線的な比例関係にあり、活性炭電
極上の電気二重層容量は、炭種や細孔特性に影響を受け
ずほぼ一定である」とする仮説が提言されている(電気
化学,59,No.7,p.607−613,199
1)。2. Description of the Related Art An electric double layer capacitor has a farad-class large capacity and excellent charge / discharge cycle characteristics, and is therefore used for applications such as backup power supplies for electronic equipment and in-vehicle batteries. Activated carbon with fine pores is used for the electrodes of electric double layer capacitors, but in order to make electric double layer capacitors smaller, lighter and larger in capacity, activated carbon with a large electrostatic density is used. It has been demanded. Therefore, various characteristics of activated carbon have been studied in order to obtain activated carbon having a large electrostatic density. For example, "the weight electrostatic density per activated carbon weight in the electrode and the specific surface area of the activated carbon are in a substantially linear proportional relationship. , And the electric double layer capacity on the activated carbon electrode is almost constant without being affected by carbon species and pore characteristics (Electrochemistry, 59 , No. 7, p. 607). -613,199
1).
【0003】しかし、水銀電極などで観測される電気二
重層容量は20μF/cm2 程度であるから、1,50
0m2 /ccの表面積を有する活性炭の電気二重層容量
は、理論的には75F/ccとなるはずであるのに対
し、実際の電気二重層容量は13F/cc程度にしかな
らない。また、同じ比表面積を有する活性炭どうしで
も、その電気二重層容量が全く異なる場合もある。そこ
で、本発明者らは、上記仮説が、分析の限界が約10オ
ングストロームであるチッ素ガス吸着によるBET法で
計測された比表面積に基づいてなされていることに着目
し、上記仮説を検証すべく、10オングストローム未満
の微細な細孔も分析できる特殊な画像解析を行い、比表
面積の異なる電極用活性炭について静電密度と比表面積
の関係を調べたところ、両者の間には、直線的な比例関
係は存在せず、静電容量を左右する要素が他に存在する
との結論が得られた。なお、従来の電極用活性炭につい
て、下記実施例と同様の方法で試験した結果を図18に
示した。However, since the electric double layer capacity observed at a mercury electrode or the like is about 20 μF / cm 2 ,
The electric double layer capacity of activated carbon having a surface area of 0 m 2 / cc should be theoretically 75 F / cc, whereas the actual electric double layer capacity is only about 13 F / cc. In addition, the electric double layer capacities may be completely different between activated carbons having the same specific surface area. Therefore, the present inventors have verified that the above hypothesis is based on the specific surface area measured by the BET method by nitrogen gas adsorption, which has a limit of analysis of about 10 Å. Therefore, a special image analysis that can analyze even fine pores of less than 10 angstroms was performed, and the relationship between the electrostatic density and the specific surface area was investigated for activated carbon for electrodes with different specific surface areas. It was concluded that there is no proportional relationship and that there are other factors that influence the capacitance. The results of testing the conventional activated carbon for electrodes in the same manner as in the following examples are shown in FIG.
【0004】[0004]
【発明が解決しようとする課題】本発明は、かかる技術
的背景の下でなされたものであり、活性炭の静電密度を
左右する要素を究明し、電気二重層容量の大きなコンデ
ンサを得ることを目的とする。SUMMARY OF THE INVENTION The present invention has been made under such a technical background, and it has been sought to obtain a capacitor having a large electric double layer capacity by investigating the factors that influence the electrostatic density of activated carbon. To aim.
【0005】[0005]
【課題を解決するための手段】本発明は、塩化ビニル系
樹脂を焼成したのち、アルカリ賦活してなることを特徴
とする有機溶媒系電気二重層コンデンサ電極用活性炭を
提供するものである。The present invention provides an activated carbon for an organic solvent type electric double layer capacitor electrode, which is characterized in that a vinyl chloride resin is fired and then activated with an alkali.
【0006】[0006]
【発明の実施の形態】本発明の活性炭の出発原料は、塩
化ビニル系樹脂である。塩化ビニル系樹脂から活性炭を
作製するために、まず塩化ビニル系樹脂を焼成して炭化
する。BEST MODE FOR CARRYING OUT THE INVENTION The starting material for the activated carbon of the present invention is vinyl chloride resin. In order to produce activated carbon from vinyl chloride resin, first, vinyl chloride resin is fired and carbonized.
【0007】塩化ビニル系樹脂の熱分析を行うと、通
常、2段階の重量減少を示す。始めの重量減少は樹脂の
分解によるもので、ここである程度の炭素骨格が形成さ
れる。次に現れる2段階目の重量減少は、塩素、水素、
側枝の脱離によるものである。このため、本発明におい
ては、焼成温度は、熱分析による1段目の重量減少開始
温度以上、2,000℃以下とすることが好ましい。さ
らには、2段階目の重量減少で生じた分子レベルの細孔
が電気二重層コンデンサの静電容量の向上をもたらすこ
とから、焼成温度は、重量減少開始温度以上、1,00
0℃以下の温度であることがより好ましい。焼成温度が
2,000℃を超えると、賦活が進行し難くなる恐れが
ある。Thermal analysis of vinyl chloride resins usually shows a two-step weight loss. The initial weight loss is due to the decomposition of the resin, where some carbon skeleton is formed. The second stage weight loss that appears next is chlorine, hydrogen,
This is due to detachment of side branches. For this reason, in the present invention, it is preferable that the firing temperature is not less than the weight reduction start temperature of the first step by thermal analysis and not more than 2,000 ° C. Furthermore, since the pores at the molecular level generated by the weight reduction in the second stage bring about an improvement in the capacitance of the electric double layer capacitor, the firing temperature is not less than the weight reduction start temperature and is 1.00.
More preferably, the temperature is 0 ° C. or lower. If the firing temperature exceeds 2,000 ° C, activation may be difficult to proceed.
【0008】焼成方法としては、塩化ビニル系樹脂の2
段階目の重量減少開始温度まではどのような昇温速度で
もよいが、重量減少開始温度から重量減少終了温度まで
は、20〜150℃/時間、好ましくは40〜100℃
/時間の昇温速度で昇温することが好ましい。また、重
量減少終了温度から焼成温度までは、100〜300℃
/時間、好ましくは150〜250℃/時間の昇温速度
で昇温することが好ましい。また、焼成時間は、0〜2
4時間が好ましく、特に0.5〜5時間がより好まし
い。ここで、焼成時間とは、焼成温度到達後の時間であ
る。焼成雰囲気は、チッ素ガス、アルゴンガスなどの不
活性ガスであることが好ましい。As a firing method, a vinyl chloride resin is used.
Any heating rate may be applied up to the weight loss start temperature of the stage, but from the weight loss start temperature to the weight loss end temperature is 20 to 150 ° C / hour, preferably 40 to 100 ° C.
The temperature is preferably raised at a heating rate of / hour. Further, from the weight reduction end temperature to the firing temperature, 100 to 300 ° C.
It is preferable to raise the temperature at a heating rate of / hour, preferably 150 to 250 ° C / hour. The firing time is 0 to 2
4 hours are preferable, and 0.5 to 5 hours are particularly preferable. Here, the firing time is the time after the firing temperature is reached. The firing atmosphere is preferably an inert gas such as nitrogen gas or argon gas.
【0009】本発明では、塩化ビニル系樹脂から得られ
た炭化物をアルカリ賦活することで、電極用活性炭とな
す。アルカリ賦活に用いる活性化剤としては、細孔直径
20オングストローム以下の細孔が得られ易いことか
ら、リチウム、ナトリウム、カリウムなどの金属イオン
の塩類または水酸化物が好ましく、中でも、水酸化カリ
ウムが好適である。In the present invention, a charcoal-based material obtained from a vinyl chloride resin is activated with an alkali to form an activated carbon for an electrode. As the activator used for alkali activation, since it is easy to obtain pores having a pore diameter of 20 Å or less, salts or hydroxides of metal ions such as lithium, sodium and potassium are preferable, and potassium hydroxide is particularly preferable. It is suitable.
【0010】アルカリ賦活の方法は、通常の方法で行う
ことができ、例えば、炭化物と活性剤を混合したのち、
不活性ガス気流中で加熱することにより行う方法、炭化
物の材料である塩化ビニル系樹脂にあらかじめ活性化剤
を担持させたのち加熱して、炭化および賦活の工程を行
う方法、炭化物を水蒸気などのガス賦活法で賦活したの
ち、活性化剤で表面処理する方法が挙げられる。The alkali activation method can be carried out by an ordinary method. For example, after mixing a carbide and an activator,
A method performed by heating in an inert gas stream, a method of carrying an activator in advance on a vinyl chloride resin that is a material of a carbide and then heating it, a step of carbonizing and activating, a method of heating the carbide such as steam. A method of activating with a gas activation method and then surface-treating with an activator can be mentioned.
【0011】炭化物は、粒子内の賦活を均一に行うため
に、賦活前に粒径0.1〜300μm、特に1〜100
μmに粉砕しておくことが好ましい。粒径が0.1μm
未満であると、コンデンサの電極とした際に自己放電特
性に悪影響が見られ、一方、300μmを超えると、粒
子内で均一な賦活が行い難くなる恐れがある。The carbide has a particle size of 0.1 to 300 μm, especially 1 to 100 before activation in order to uniformly activate the particles.
It is preferable to pulverize to μm. Particle size 0.1 μm
When it is less than 300 μm, the self-discharge characteristics are adversely affected when it is used as an electrode of a capacitor, while when it exceeds 300 μm, it may be difficult to uniformly activate particles.
【0012】活性化剤として、水酸化カリウムなどの一
価の塩基を用いる場合には、炭化物と活性化剤との割合
は、重量比で、1:1〜4が好ましく、さらに1:1.
5〜3がより好ましく、特に1:1.8〜2.2が最も
好ましい。炭化物1重量部に対する活性化剤の割合が、
1重量部未満であると、賦活が充分に進行せず、一方、
4重量部を超えると、体積当たりの静電容量が低下する
恐れがある。When a monovalent base such as potassium hydroxide is used as the activator, the weight ratio of the charcoal to the activator is preferably 1: 1 to 4, more preferably 1: 1.
5 to 3 is more preferable, and 1: 1.8 to 2.2 is most preferable. The ratio of the activator to 1 part by weight of carbide is
If it is less than 1 part by weight, the activation will not proceed sufficiently, while
If it exceeds 4 parts by weight, the electrostatic capacity per volume may decrease.
【0013】賦活の温度は、500〜1,000℃が好
ましく、特に800℃付近がより好ましい。賦活温度が
500℃未満であると、賦活が進行せず、静電容量が小
さくなり、一方、1,000℃を超えると、賦活化率が
極端に低下し好ましくない。The activation temperature is preferably 500 to 1,000 ° C., more preferably around 800 ° C. If the activation temperature is less than 500 ° C, the activation will not proceed and the capacitance will be small, while if it exceeds 1,000 ° C, the activation rate will be extremely lowered, which is not preferable.
【0014】賦活時間は、1〜20時間が好ましく、特
に10〜15時間がより好ましい。賦活時間が1時間未
満であると、コンデンサの電極として用いた際の内部抵
抗が増大し、一方、20時間を超えると、単位体積当た
りの静電容量が低下する。The activation time is preferably 1 to 20 hours, more preferably 10 to 15 hours. When the activation time is less than 1 hour, the internal resistance when used as an electrode of the capacitor increases, while when it exceeds 20 hours, the electrostatic capacity per unit volume decreases.
【0015】このようにして得られた活性炭は、その細
孔分布が、10〜20オングストロームの間に最頻値を
有するものであることが好ましい。細孔直径がこのよう
なものであると、これをコンデンサに用いた場合に、電
極の重量静電密度の向上が認められる。このことは、活
性炭の細孔のうちの大部分が、電解液中で溶媒和してい
る電解イオンが吸着しやすい状態、例えば適当な大きさ
となり、電気二重層に寄与する細孔の割合が格段に大き
くなることによるものと考えられる。概念図を図1に示
す。The activated carbon thus obtained preferably has a pore size distribution having a mode value in the range of 10 to 20 angstroms. When the pore diameter is such a value, when it is used for a capacitor, an improvement in the weight electrostatic density of the electrode is recognized. This means that most of the pores of the activated carbon are in a state in which electrolytic ions that are solvated in the electrolytic solution are easily adsorbed, for example, have an appropriate size, and the proportion of the pores that contribute to the electric double layer is It is believed that this is due to the fact that it will be significantly larger. A conceptual diagram is shown in FIG.
【0016】特に、本発明の活性炭は、その細孔分布
が、13オングストローム付近に最頻値を有するもので
あることが好ましい。ここでいう最頻値とは、相対頻度
のうち最も大きい度数を示す細孔直径をいう。また、1
3オングストローム付近とは、厳密な意味で細孔直径が
13オングストロームである必要はなく、13オングス
トローム前後の範囲、例えば13±2オングストローム
程度の範囲を含むことを意味する。細孔直径の最頻値
が、13オングストローム付近であることにより、現在
知られている有機溶媒系電気二重層コンデンサ用電解液
のイオン径に対し、好適な細孔となる。すなわち、イオ
ンが速やかに吸着できる最小の孔径となることにより、
体積当たりの静電容量が大きくなる。このため、活性炭
の細孔のうち、細孔直径が10オングストローム未満の
ものが多くなると、イオンの吸着量が低下し、静電容量
が小さくなり、一方、20オングストロームを超えるも
のが多くなると、体積当たりの静電容量が低下する。Particularly, the activated carbon of the present invention preferably has a pore size distribution having a mode value near 13 angstroms. The mode value referred to here is the pore diameter showing the highest frequency among the relative frequencies. Also, 1
In the strict sense, "near 3 angstroms" does not necessarily mean that the pore diameter is 13 angstroms, but includes a range around 13 angstroms, for example, a range of about 13 ± 2 angstroms. Since the mode of the pore diameter is around 13 angstroms, the pores are suitable for the ionic diameter of currently known organic solvent-based electrolytic solution for electric double layer capacitors. That is, by having the smallest pore size that allows ions to be rapidly adsorbed,
The capacitance per volume becomes large. Therefore, if the number of pores of activated carbon having a pore diameter of less than 10 angstroms increases, the amount of adsorbed ions decreases and the capacitance decreases, while if the number of pores exceeding 20 angstroms increases, the volume of the activated carbon decreases. The capacitance per hit decreases.
【0017】活性炭の細孔分布は、透過型電子顕微鏡
(以下、「TEM」という)の画像をもとに、これを二
値化して得られた画像(以下、「二値化画像」という)
のフーリエ変換により得られるパワースペクトルによる
画像解析を行う方法により求める(以下、この方法を
「TEM画像解析法」という)。The pore distribution of activated carbon is an image obtained by binarizing an image of a transmission electron microscope (hereinafter referred to as "TEM") (hereinafter referred to as "binarized image").
It is obtained by a method of performing an image analysis by a power spectrum obtained by the Fourier transform of the above (hereinafter, this method is referred to as a "TEM image analysis method").
【0018】TEM画像解析法によると、従来のチッ素
ガス吸着法では分析が不可能であった、10オングスト
ローム未満の微細孔についても分析が可能となる上、細
孔の形状まで特定することが可能となる。According to the TEM image analysis method, it is possible to analyze even minute pores of less than 10 angstrom, which cannot be analyzed by the conventional nitrogen gas adsorption method, and it is possible to specify the shape of the pores. It will be possible.
【0019】細孔の分析は、10オングストローム未満
の微細孔を分析することができる方法であれば、TEM
画像解析法に限られない。このようにして作製された、
本発明の電極用活性炭は、結着剤などを使用して成形さ
れ、有機溶媒系電気二重層コンデンサ電極として用いら
れる。The analysis of pores can be carried out by TEM as long as it is possible to analyze fine pores of less than 10 Å.
The method is not limited to image analysis. Made in this way,
The activated carbon for an electrode of the present invention is molded using a binder or the like and used as an organic solvent-based electric double layer capacitor electrode.
【0020】このときに用いられる電解質としては、過
塩素酸、6フッ化リン酸、4フッ化ホウ酸、トリフルオ
ロアルキルスルホン酸のテトラフルオロメタンスルホン
酸のテトラアルキルアンモニウム塩、またはアミン塩な
どが挙げられる。電解質は、プロピレンカーボネート、
ブチレンカーボネート、γ−ブチロラクトン、アセトニ
トリル、ジメチルホルムアミド、1,2−ジメトキシエ
タン、スルホラン、ニトロエタンなどの極性溶媒に溶解
された状態で使用される。電解液の濃度は、好ましくは
0.1〜3モル/リットルであり、特に0.5〜1.5
モル/リットルがより好ましい。As the electrolyte used at this time, perchloric acid, hexafluorophosphoric acid, tetrafluoroboric acid, tetraalkylammonium salt of tetrafluoromethanesulfonic acid of trifluoroalkylsulfonic acid, amine salt, or the like is used. Can be mentioned. The electrolyte is propylene carbonate,
It is used in a state of being dissolved in a polar solvent such as butylene carbonate, γ-butyrolactone, acetonitrile, dimethylformamide, 1,2-dimethoxyethane, sulfolane and nitroethane. The concentration of the electrolytic solution is preferably 0.1 to 3 mol / liter, and particularly 0.5 to 1.5.
More preferably mol / l.
【0021】また、セパレータとしては、ポリエチレ
ン、ポリプロピレンなどのポリオレフィン、ポリエステ
ル、PVDF、セルロースなどのシートが用いられる。As the separator, a sheet of polyolefin such as polyethylene or polypropylene, polyester, PVDF or cellulose is used.
【0022】本発明の電極用活性炭を用いた有機溶媒系
電気二重層コンデンサの一例を、図17に示す。FIG. 17 shows an example of an organic solvent type electric double layer capacitor using the activated carbon for electrodes of the present invention.
【0023】[0023]
【実施例】以下、実施例を挙げて本発明をさらに具体的
に説明するが、本発明は、これらの実施例に限定される
ものではない。なお、特に断らない限り、以下の部およ
び%は、重量基準である。EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. The following parts and percentages are by weight unless otherwise specified.
【0024】実施例1〜5活性炭の作成 塩化ビニル系樹脂(PVC)をチッ素雰囲気で、図2に
示した焼成温度プロファイルで焼成し、炭化物としたの
ち、この炭化物を粉砕した。この炭化物に2倍重量の水
酸化カリウムを添加混合し、チッ素ガス対流下で表1の
賦活条件で炭化物をアルカリ賦活し電極用活性炭となし
た。炉冷後、活性炭を充分に水洗いしてアルカリ分を除
去したのち、乾燥した。なお、この塩化ビニル系樹脂に
ついての熱重量測定のチャートを図3に示した。Examples 1 to 5 Preparation of Activated Carbon Vinyl chloride resin (PVC) was fired in a nitrogen atmosphere at a firing temperature profile shown in FIG. 2 to obtain a carbide, and this carbide was crushed. To this charcoal, twice the weight of potassium hydroxide was added and mixed, and the charcoal was alkali-activated under the nitrogen gas convection under the activation conditions shown in Table 1 to obtain activated carbon for electrodes. After the furnace was cooled, the activated carbon was thoroughly washed with water to remove the alkali content and then dried. A thermogravimetric measurement chart of this vinyl chloride resin is shown in FIG.
【0025】得られた電極用活性炭について、TEM画
像解析法による細孔分布の測定、およびチッ素ガス吸着
法による比表面積の測定を行った。細孔分布を図4〜8
に、比表面積を図9および表2に示す。なお、細孔分布
の測定および比表面積の測定は、次の方法により行っ
た。With respect to the obtained activated carbon for electrodes, the pore distribution was measured by the TEM image analysis method and the specific surface area was measured by the nitrogen gas adsorption method. The pore distribution is shown in Figs.
The specific surface area is shown in FIG. 9 and Table 2. The pore distribution and the specific surface area were measured by the following methods.
【0026】(a)細孔分布の測定 加速電圧を120kVとした透過型電子顕微鏡〔フィリ
ップス社製、CM120〕で、倍率20万倍の電極用活
性炭の画像を得、これをさらに30倍に拡大して印画紙
に焼き付けたものを原画像とした。次いで、原画像を高
分析能のイメージスキャナー〔AGFA社製、Stud
io Scan II Si〕で読み込んで、二値化画像
を得た。得られた二値化画像に表出されたそれぞれの細
孔の面積と、その細孔の縦方向と、横方向の画像データ
を求め、これらのデータを解析して、それぞれの細孔の
縦方向と横方向の大きさと形状を特定したのち、細孔を
形状別に分類し、該形状別に分類されたすべての細孔の
細孔直径を統計的に集計し、細孔分布を表わした。(A) Measurement of pore distribution With a transmission electron microscope [CM120, manufactured by Phillips, Inc.] with an accelerating voltage of 120 kV, an image of activated carbon for an electrode having a magnification of 200,000 times was obtained and further magnified 30 times. Then, the original image was printed on photographic paper. Next, the original image is scanned with a high-resolution image scanner [AGFA, Stud
io Scan II Si] to obtain a binary image. The area of each pore expressed in the obtained binarized image, the vertical direction of the pore, and the image data in the horizontal direction were obtained, and these data were analyzed to determine the vertical direction of each pore. After specifying the size and shape in the direction and the lateral direction, the pores were classified by shape, and the pore diameters of all pores classified by the shape were statistically aggregated to express the pore distribution.
【0027】(b)比表面積の測定 比表面積測定装置〔Micromeritics社製の
Flow SorbII2300〕を用いて、BET一点
法で測定した。(B) Measurement of Specific Surface Area The specific surface area was measured by a BET single point method using a specific surface area measuring device [Flow Sorb II 2300 manufactured by Micromeritics].
【0028】充放電サイクル試験 得られた電極用活性炭81部に、導電材としてデンカブ
ラック〔電気化学工業(株)製、粒状〕を9部、結着材
としてフッ素樹脂〔三井デュポンフルオロケミカル
(株)製、テフロン6J〕を10部添加混合し、これを
プレスしてφ20mmの電極を作製した。この電極を、
PVDFシート〔日本ミリポア(株)製、JMWP〕を
セパレータとし、テトラエチルアンモニウム4フッ化ホ
ウ素のプロピレンカーボネート溶液(1モル/1リット
ル)を電解質として用いて、試験セルを組み立てた。こ
の電池セルについて、充電終止電位4V、放電終止電位
0V、充放電電流5mAで充放電を繰り返した。この電
極の電極密度および静電容量を測定した。その結果を図
10〜11および表2に示した。 Charge / Discharge Cycle Test On 81 parts of the obtained activated carbon for electrodes, 9 parts of Denka Black [granular manufactured by Denki Kagaku Kogyo KK] as a conductive material and a fluororesin [Mitsui DuPont Fluorochemicals Co. ), Teflon 6J] was added and mixed, and this was pressed to produce an electrode having a diameter of 20 mm. This electrode
A test cell was assembled using a PVDF sheet [JMWP manufactured by Nippon Millipore Corporation] as a separator and a propylene carbonate solution of tetraethylammonium tetrafluoride (1 mol / 1 liter) as an electrolyte. This battery cell was repeatedly charged and discharged at a charge end potential of 4 V, a discharge end potential of 0 V, and a charge / discharge current of 5 mA. The electrode density and capacitance of this electrode were measured. The results are shown in FIGS. 10 to 11 and Table 2.
【0029】比較例1〜4 活性炭の出発原料として、塩化ビニル系樹脂以外の、表
1に示した材料を用いたこと以外は、実施例1と同様に
電極用活性炭を作製し、電池セルを組み立てた。電極用
活性炭のTEM画像解析法による細孔分布を図12〜1
5に、チッ素ガス吸着法による比表面積を表2に示し
た。また、充放電サイクル後の、電極密度および静電容
量を測定した。その結果を表2に示した。Comparative Examples 1 to 4 Activated carbons for electrodes were prepared in the same manner as in Example 1 except that the materials shown in Table 1 other than vinyl chloride resin were used as starting materials for the activated carbons, and battery cells were prepared. Assembled The pore distribution of activated carbon for electrodes by TEM image analysis method is shown in FIGS.
5 and Table 2 show the specific surface areas by the nitrogen gas adsorption method. In addition, the electrode density and the capacitance after the charge / discharge cycle were measured. The results are shown in Table 2.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】図4〜8、表1によると、実施例1〜5の
電極用活性炭はいずれも、10〜20オングストローム
の細孔直径の累積相対頻度が全体の半分以上であり、か
つ13オングストローム付近の最頻値を有する細孔分布
となった。このため、本発明によると、容易に所望の細
孔分布を示す活性炭が得られることが分かった。また、
表2によると、実施例1〜5の電極用活性炭を用いた電
極は、静電密度、特に体積静電密度に優れることが分か
った。According to FIGS. 4 to 8 and Table 1, in all of the activated carbons for electrodes of Examples 1 to 5, the cumulative relative frequency of pore diameters of 10 to 20 angstroms is more than half of the whole, and around 13 angstroms. The resulting pore size distribution has a mode of. Therefore, it has been found that according to the present invention, activated carbon having a desired pore distribution can be easily obtained. Also,
According to Table 2, it was found that the electrodes using the activated carbon for electrodes of Examples 1 to 5 were excellent in electrostatic density, particularly in volume electrostatic density.
【0033】さらに、図9によると、チッ素ガスを用い
た測定方法による比表面積は、賦活時間が10時間まで
の実施例1〜3においては賦活時間との相関関係が認め
られたが、賦活時間が10時間を超えている実施例4〜
5においては相関関係が認められなかった。これに対
し、図10によると、賦活時間が長くなるにつれて、電
極用活性炭の密度が低下した。このため、図11からも
明らかなように、単位容積当たりの静電容量は、賦活時
間が10〜15時間の実施例3〜4が極大値を示すこと
が分かった。このことから、実施例3〜4の電極用活性
炭には、密度を低下させずにイオンの吸着する細孔が開
いているということができる。Further, according to FIG. 9, the specific surface area by the measuring method using nitrogen gas showed a correlation with the activation time in Examples 1 to 3 in which the activation time was up to 10 hours. Example 4 in which the time exceeds 10 hours
No correlation was observed in No. 5. On the other hand, according to FIG. 10, the density of the activated carbon for electrodes decreased as the activation time became longer. Therefore, as is clear from FIG. 11, it was found that the electrostatic capacity per unit volume exhibited a maximum value in Examples 3 to 4 in which the activation time was 10 to 15 hours. From this, it can be said that in the activated carbon for electrodes of Examples 3 to 4, the pores for adsorbing ions are opened without lowering the density.
【0034】一方、所望の細孔分布を示した比較例3の
電極用活性炭を除いては、充分な静電密度は得られなか
った。また、比較例3の電極用活性炭は、実施例1〜5
よりも重量静電密度は格段に大きく、実施例1〜5と大
差ないが、体積静電密度においては、実施例1〜5のい
ずれにも大きく劣っていることが分かった。On the other hand, a sufficient electrostatic density was not obtained except for the activated carbon for electrodes of Comparative Example 3 which showed a desired pore distribution. In addition, the activated carbon for an electrode of Comparative Example 3 is the same as that of Examples 1 to 5.
It was found that the weight electrostatic density was significantly larger than that of Examples 1 to 5 and was not so different from Examples 1 to 5, but the volume electrostatic density was significantly inferior to any of Examples 1 to 5.
【0035】実施例6〜11活性炭の作製 塩化ビニル系樹脂(PVC)を、チッ素気流下で、60
0℃で30分間保持して炭化物とした。この炭化物を粉
砕したのち、1.6倍重量の水酸化カリウムを添加混合
し、Inconel 601製ルツボに入れ、チッ素気
流下で、各温度で4時間保持した条件で、アルカリ賦活
し、洗浄後、活性炭とした。Examples 6 to 11 Preparation of activated carbon A vinyl chloride resin (PVC) was used in a nitrogen stream under pressure of 60.
It was kept at 0 ° C. for 30 minutes to obtain a carbide. After crushing this carbide, 1.6 times weight of potassium hydroxide was added and mixed, put in an Inconel 601 crucible, and alkali activated under the condition of keeping for 4 hours at each temperature under nitrogen flow, and after washing , Activated carbon.
【0036】充放電サイクル試験 得られた電極用活性炭85部に、導電材として、デンカ
ブラック〔電気化学工業(株)製〕を10部、結着材と
して、フッ素樹脂〔三井デュポンフルオロケミカル
(株)製、テフロン6J〕を5部添加混合し、これをプ
レスしてφ20mmの電極を作製した。この電極を、ガ
ラスフィルターをセパレータとして、メチルエチルピロ
リジニウムテトラフルオロボレイト(MEPY/B
F4 )のプロピレンカーボネート溶液(1モル/1リッ
トル)を電解液として用いて、試験セルを組み立てた。
このセルで、充電終止電位;3.5V、放電終止電位;
0V、充放電電流5mAで充放電を行い、電極中の活性
炭の静電容量を測定した。結果を図16に示す。上記と
図16から明らかなように、アルカリ賦活の際の水酸化
カリウムの添加量、賦活時間を最適化することにより、
静電容量が大きく向上することが分かる。 Charge / Discharge Cycle Test To 85 parts of the obtained activated carbon for electrodes, 10 parts of Denka Black [manufactured by Denki Kagaku Kogyo Co., Ltd.] as a conductive material, and a fluororesin [Mitsui DuPont Fluorochemicals Co. ), Teflon 6J] was added and mixed, and this was pressed to produce an electrode having a diameter of 20 mm. Methyl ethylpyrrolidinium tetrafluoroborate (MEPY / B)
A test cell was assembled using a propylene carbonate solution of F 4 (1 mol / 1 liter) as an electrolytic solution.
In this cell, charge end potential; 3.5 V, discharge end potential;
Charging / discharging was performed at 0 V and a charging / discharging current of 5 mA, and the electrostatic capacity of the activated carbon in the electrode was measured. The results are shown in Fig. 16. As is clear from the above and FIG. 16, by optimizing the addition amount of potassium hydroxide and the activation time at the time of alkali activation,
It can be seen that the capacitance is greatly improved.
【0037】[0037]
【発明の効果】本発明によれば、静電密度に優れた電極
用活性炭を確実に得ることができる。また、一定の賦活
条件のもとで賦活を行うことにより、体積静電容量に特
に優れた電極用活性炭が得られるため、エネルギー密度
の高いコンデンサが得られる。EFFECTS OF THE INVENTION According to the present invention, it is possible to reliably obtain activated carbon for an electrode having excellent electrostatic density. Further, by performing activation under a constant activation condition, activated carbon for an electrode having a particularly excellent volume capacitance can be obtained, so that a capacitor having a high energy density can be obtained.
【図1】電解質中、電解イオンが電極に吸着される様子
の概念を示した図である。FIG. 1 is a diagram showing the concept of how electrolytic ions are adsorbed by electrodes in an electrolyte.
【図2】実施例の塩化ビニル系樹脂の焼成温度プロファ
イルである。FIG. 2 is a firing temperature profile of the vinyl chloride resin of the example.
【図3】実施例に用いた塩化ビニル系樹脂の熱重量測定
のチャートである。FIG. 3 is a chart of thermogravimetric measurement of vinyl chloride resin used in Examples.
【図4】実施例1の電極用活性炭の細孔分布を表したチ
ャートである。FIG. 4 is a chart showing the pore distribution of the activated carbon for electrodes of Example 1.
【図5】実施例2の電極用活性炭の細孔分布を表したチ
ャートである。FIG. 5 is a chart showing the pore distribution of the activated carbon for electrodes of Example 2.
【図6】実施例3の電極用活性炭の細孔分布を表したチ
ャートである。FIG. 6 is a chart showing the pore distribution of the activated carbon for electrodes of Example 3.
【図7】実施例4の電極用活性炭の細孔分布を表したチ
ャートである。FIG. 7 is a chart showing the pore distribution of the activated carbon for electrodes of Example 4.
【図8】実施例5の電極用活性炭の細孔分布を表したチ
ャートである。FIG. 8 is a chart showing the pore distribution of the activated carbon for electrodes of Example 5.
【図9】実施例1〜5の電極用活性炭のチッ素ガス吸着
法により測定した比表面積と賦活時間の関係を表したチ
ャートである。FIG. 9 is a chart showing the relationship between the specific surface area of activated carbon for electrodes of Examples 1 to 5 measured by a nitrogen gas adsorption method and the activation time.
【図10】実施例1〜5の電極用活性炭を用いた電極の
体積電極密度と賦活時間との関係を示したチャートであ
る。FIG. 10 is a chart showing the relationship between volume electrode density and activation time of electrodes using the activated carbon for electrodes of Examples 1 to 5.
【図11】実施例1〜5の電極用活性炭を用いた電極の
重量電極密度と賦活時間との関係を示したチャートであ
る。FIG. 11 is a chart showing the relationship between the weight electrode density and the activation time of the electrodes using the activated carbon for electrodes of Examples 1 to 5.
【図12】比較例1の電極用活性炭の細孔分布を表した
チャートである。12 is a chart showing the pore distribution of activated carbon for electrodes of Comparative Example 1. FIG.
【図13】比較例2の電極用活性炭の細孔分布を表した
チャートである。13 is a chart showing the pore distribution of activated carbon for electrodes of Comparative Example 2. FIG.
【図14】比較例3の電極用活性炭の細孔分布を表した
チャートである。FIG. 14 is a chart showing the pore distribution of activated carbon for electrodes of Comparative Example 3.
【図15】比較例4の電極用活性炭の細孔分布を表した
チャートである。FIG. 15 is a chart showing the pore distribution of activated carbon for electrodes of Comparative Example 4.
【図16】実施例6〜11の電極用活性炭を用いた電極
の賦活温度と活性炭容積あたりの静電容量との関係を示
したチャートである。FIG. 16 is a chart showing the relationship between the activation temperature of electrodes using the activated carbon for electrodes of Examples 6 to 11 and the electrostatic capacity per volume of activated carbon.
【図17】本発明の電極用活性炭を用いた有機溶媒系電
気二重層コンデンサの一例を示す一部断面図構造図であ
る。FIG. 17 is a partial cross-sectional view structural diagram showing an example of an organic solvent-based electric double layer capacitor using the activated carbon for electrodes of the present invention.
【図18】従来の電極用活性炭の、静電容量と比表面積
の関係を示すチャートである。FIG. 18 is a chart showing the relationship between electrostatic capacity and specific surface area of conventional activated carbon for electrodes.
Claims (4)
カリ賦活してなることを特徴とする有機溶媒系電気二重
層コンデンサ電極用活性炭。1. An activated carbon for an organic solvent-based electric double layer capacitor electrode, which is obtained by firing a vinyl chloride resin and then activating it with an alkali.
布の最頻値が10〜20オングストロームの間にある請
求項1記載の有機溶媒系電気二重層コンデンサ電極用活
性炭。2. The activated carbon for an organic solvent-based electric double layer capacitor electrode according to claim 1, wherein the mode of the pore distribution of the activated carbon by the TEM image analysis method is in the range of 10 to 20 Å.
布の最頻値が13±2オングストロームである請求項2
記載の有機溶媒系電気二重層コンデンサ電極用活性炭。3. The mode of pore distribution of activated carbon measured by TEM image analysis is 13 ± 2 angstroms.
Activated carbon for an organic solvent-based electric double layer capacitor electrode as described.
段目の重量減少温度〜2,000℃で焼成したのち、ア
ルカリ賦活を、水酸化カリウムを用いて、賦活温度50
0〜1,000℃で、1〜20時間行うものである請求
項1〜3のいずれか1項記載の有機溶媒系電気二重層コ
ンデンサ電極用活性炭。4. A vinyl chloride resin is first analyzed by thermal analysis.
After calcination at the weight loss temperature of the second stage to 2,000 ° C., alkali activation is carried out using potassium hydroxide at an activation temperature of 50.
The activated carbon for an organic solvent type electric double layer capacitor electrode according to any one of claims 1 to 3, which is performed at 0 to 1,000 ° C for 1 to 20 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8262300A JPH09275042A (en) | 1996-02-09 | 1996-09-12 | Activated charcoal for organic solvent-based electric double layer capacitor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8-46912 | 1996-02-09 | ||
JP4691296 | 1996-02-09 | ||
JP8262300A JPH09275042A (en) | 1996-02-09 | 1996-09-12 | Activated charcoal for organic solvent-based electric double layer capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09275042A true JPH09275042A (en) | 1997-10-21 |
Family
ID=26387063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8262300A Pending JPH09275042A (en) | 1996-02-09 | 1996-09-12 | Activated charcoal for organic solvent-based electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09275042A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5877935A (en) * | 1996-09-17 | 1999-03-02 | Honda Giken Kogyo Kabushiki-Kaisha | Active carbon used for electrode for organic solvent type electric double layer capacitor |
US5891822A (en) * | 1996-09-17 | 1999-04-06 | Honda Giken Kogyo Kabushiki Kaisha | Production process of active carbon used for electrode for organic solvent type electric double layer capacitor |
WO2000011688A1 (en) * | 1998-08-25 | 2000-03-02 | Kanebo, Limited | Electrode material and method for producing the same |
JP2000150318A (en) * | 1998-11-18 | 2000-05-30 | Okamura Kenkyusho:Kk | Electric double layer capacitor |
US6442015B1 (en) | 1999-01-07 | 2002-08-27 | Ngk Insulators, Ltd. | Electrochemical capacitors |
US6574092B2 (en) | 2000-10-16 | 2003-06-03 | Nisshinbo Industries, Inc. | Carbonaceous material, polarizable electrode for electrical double-layer capacitor, and electrical double-layer capacitor |
US6592838B1 (en) | 1999-10-21 | 2003-07-15 | Matsushita Electric Industrial Co., Ltd. | Activated carbon for use in electric double layer capacitor and method of producing the same |
WO2004019356A1 (en) * | 2002-08-23 | 2004-03-04 | Nisshinbo Industries, Inc. | Electric double-layer capacitor |
US6785122B2 (en) | 2002-03-06 | 2004-08-31 | Honda Giken Kogyo Kabushiki Kaisha | Method for preparing electrolytic solution, electrolytic solution and electric double-layer capacitor |
JP2005281127A (en) * | 2004-03-01 | 2005-10-13 | Mitsubishi Gas Chem Co Inc | Production process for carbonized product and carbonized product obtained by the process |
US7068494B2 (en) | 2004-06-15 | 2006-06-27 | Honda Motor Co., Ltd. | Electric double layer capacitor |
JP2007043105A (en) * | 2005-06-30 | 2007-02-15 | Honda Motor Co Ltd | Electrolyte for electric double layer capacitor, and electric double layer capacitor |
US7224574B2 (en) | 2005-03-18 | 2007-05-29 | Honda Motor Co., Ltd. | Electric double layer capacitor |
US7391603B2 (en) | 2005-05-18 | 2008-06-24 | Honda Motor Co., Ltd. | Electric double layer capacitor and electrolytic solution therefor |
US7457101B2 (en) | 2005-09-08 | 2008-11-25 | Honda Motor Co., Ltd. | Electric double layer capacitor |
JP2011129794A (en) * | 2009-12-21 | 2011-06-30 | Panasonic Corp | Activated carbon for electrochemical device, and electrochemical device using the same |
JP5573673B2 (en) * | 2008-06-24 | 2014-08-20 | パナソニック株式会社 | Electrochemical element |
JP2014160816A (en) * | 2006-11-15 | 2014-09-04 | Energ2 Inc | Electric double layer capacitance device |
US9112230B2 (en) | 2009-07-01 | 2015-08-18 | Basf Se | Ultrapure synthetic carbon materials |
US9269502B2 (en) | 2010-12-28 | 2016-02-23 | Basf Se | Carbon materials comprising enhanced electrochemical properties |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
US9412523B2 (en) | 2010-09-30 | 2016-08-09 | Basf Se | Enhanced packing of energy storage particles |
US9680159B2 (en) | 2010-03-12 | 2017-06-13 | Basf Se | Mesoporous carbon materials comprising bifunctional catalysts |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10454103B2 (en) | 2013-03-14 | 2019-10-22 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US12046744B2 (en) | 2020-09-30 | 2024-07-23 | Group14 Technologies, Inc. | Passivated silicon-carbon composite materials |
-
1996
- 1996-09-12 JP JP8262300A patent/JPH09275042A/en active Pending
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5877935A (en) * | 1996-09-17 | 1999-03-02 | Honda Giken Kogyo Kabushiki-Kaisha | Active carbon used for electrode for organic solvent type electric double layer capacitor |
US5891822A (en) * | 1996-09-17 | 1999-04-06 | Honda Giken Kogyo Kabushiki Kaisha | Production process of active carbon used for electrode for organic solvent type electric double layer capacitor |
WO2000011688A1 (en) * | 1998-08-25 | 2000-03-02 | Kanebo, Limited | Electrode material and method for producing the same |
JP2000150318A (en) * | 1998-11-18 | 2000-05-30 | Okamura Kenkyusho:Kk | Electric double layer capacitor |
US6442015B1 (en) | 1999-01-07 | 2002-08-27 | Ngk Insulators, Ltd. | Electrochemical capacitors |
US6592838B1 (en) | 1999-10-21 | 2003-07-15 | Matsushita Electric Industrial Co., Ltd. | Activated carbon for use in electric double layer capacitor and method of producing the same |
US6574092B2 (en) | 2000-10-16 | 2003-06-03 | Nisshinbo Industries, Inc. | Carbonaceous material, polarizable electrode for electrical double-layer capacitor, and electrical double-layer capacitor |
US6785122B2 (en) | 2002-03-06 | 2004-08-31 | Honda Giken Kogyo Kabushiki Kaisha | Method for preparing electrolytic solution, electrolytic solution and electric double-layer capacitor |
WO2004019356A1 (en) * | 2002-08-23 | 2004-03-04 | Nisshinbo Industries, Inc. | Electric double-layer capacitor |
JPWO2004019356A1 (en) * | 2002-08-23 | 2005-12-15 | 日清紡績株式会社 | Electric double layer capacitor |
JP4548592B2 (en) * | 2002-08-23 | 2010-09-22 | 日清紡ホールディングス株式会社 | Electric double layer capacitor |
US7342769B2 (en) | 2002-08-23 | 2008-03-11 | Nisshinbo Industries, Inc. | Electric double-layer capacitor |
KR101016268B1 (en) * | 2002-08-23 | 2011-02-25 | 닛신보 홀딩스 가부시키 가이샤 | Electric double-layer capacitor |
JP2005281127A (en) * | 2004-03-01 | 2005-10-13 | Mitsubishi Gas Chem Co Inc | Production process for carbonized product and carbonized product obtained by the process |
US7068494B2 (en) | 2004-06-15 | 2006-06-27 | Honda Motor Co., Ltd. | Electric double layer capacitor |
US7224574B2 (en) | 2005-03-18 | 2007-05-29 | Honda Motor Co., Ltd. | Electric double layer capacitor |
US7391603B2 (en) | 2005-05-18 | 2008-06-24 | Honda Motor Co., Ltd. | Electric double layer capacitor and electrolytic solution therefor |
US7436651B2 (en) | 2005-06-30 | 2008-10-14 | Mitsubishi Chemical Corporation | Electric double layer capacitor and electrolytic solution therefor |
JP2007043105A (en) * | 2005-06-30 | 2007-02-15 | Honda Motor Co Ltd | Electrolyte for electric double layer capacitor, and electric double layer capacitor |
US7457101B2 (en) | 2005-09-08 | 2008-11-25 | Honda Motor Co., Ltd. | Electric double layer capacitor |
JP2014160816A (en) * | 2006-11-15 | 2014-09-04 | Energ2 Inc | Electric double layer capacitance device |
US10600581B2 (en) | 2006-11-15 | 2020-03-24 | Basf Se | Electric double layer capacitance device |
US10141122B2 (en) | 2006-11-15 | 2018-11-27 | Energ2, Inc. | Electric double layer capacitance device |
JP5573673B2 (en) * | 2008-06-24 | 2014-08-20 | パナソニック株式会社 | Electrochemical element |
US10287170B2 (en) | 2009-07-01 | 2019-05-14 | Basf Se | Ultrapure synthetic carbon materials |
US9112230B2 (en) | 2009-07-01 | 2015-08-18 | Basf Se | Ultrapure synthetic carbon materials |
US9580321B2 (en) | 2009-07-01 | 2017-02-28 | Basf Se | Ultrapure synthetic carbon materials |
JP2011129794A (en) * | 2009-12-21 | 2011-06-30 | Panasonic Corp | Activated carbon for electrochemical device, and electrochemical device using the same |
WO2011077663A1 (en) * | 2009-12-21 | 2011-06-30 | パナソニック株式会社 | Activated carbon for electrochemical element and electrochemical element using the same |
CN102696085A (en) * | 2009-12-21 | 2012-09-26 | 松下电器产业株式会社 | Activated carbon for electrochemical element and electrochemical element using the same |
US9680159B2 (en) | 2010-03-12 | 2017-06-13 | Basf Se | Mesoporous carbon materials comprising bifunctional catalysts |
US9985289B2 (en) | 2010-09-30 | 2018-05-29 | Basf Se | Enhanced packing of energy storage particles |
US9412523B2 (en) | 2010-09-30 | 2016-08-09 | Basf Se | Enhanced packing of energy storage particles |
US9269502B2 (en) | 2010-12-28 | 2016-02-23 | Basf Se | Carbon materials comprising enhanced electrochemical properties |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US11401363B2 (en) | 2012-02-09 | 2022-08-02 | Basf Se | Preparation of polymeric resins and carbon materials |
US12084549B2 (en) | 2012-02-09 | 2024-09-10 | Group 14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US12006400B2 (en) | 2012-02-09 | 2024-06-11 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11999828B2 (en) | 2012-02-09 | 2024-06-04 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
US11732079B2 (en) | 2012-02-09 | 2023-08-22 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11725074B2 (en) | 2012-02-09 | 2023-08-15 | Group 14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11718701B2 (en) | 2012-02-09 | 2023-08-08 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11495793B2 (en) | 2013-03-14 | 2022-11-08 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10454103B2 (en) | 2013-03-14 | 2019-10-22 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10714744B2 (en) | 2013-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10814304B2 (en) | 2013-11-05 | 2020-10-27 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US12064747B2 (en) | 2013-11-05 | 2024-08-20 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US11707728B2 (en) | 2013-11-05 | 2023-07-25 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10711140B2 (en) | 2014-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US11661517B2 (en) | 2014-03-14 | 2023-05-30 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US11611073B2 (en) | 2015-08-14 | 2023-03-21 | Group14 Technologies, Inc. | Composites of porous nano-featured silicon materials and carbon materials |
US11942630B2 (en) | 2015-08-14 | 2024-03-26 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US10608254B2 (en) | 2015-08-28 | 2020-03-31 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10784512B2 (en) | 2015-08-28 | 2020-09-22 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10923722B2 (en) | 2015-08-28 | 2021-02-16 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11646419B2 (en) | 2015-08-28 | 2023-05-09 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10756347B2 (en) | 2015-08-28 | 2020-08-25 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11495798B1 (en) | 2015-08-28 | 2022-11-08 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11437621B2 (en) | 2015-08-28 | 2022-09-06 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11492262B2 (en) | 2020-08-18 | 2022-11-08 | Group14Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11498838B2 (en) | 2020-08-18 | 2022-11-15 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low z |
US11804591B2 (en) | 2020-08-18 | 2023-10-31 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11611070B2 (en) | 2020-08-18 | 2023-03-21 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z |
US12057569B2 (en) | 2020-08-18 | 2024-08-06 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US12046744B2 (en) | 2020-09-30 | 2024-07-23 | Group14 Technologies, Inc. | Passivated silicon-carbon composite materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09275042A (en) | Activated charcoal for organic solvent-based electric double layer capacitor | |
Li et al. | Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification | |
JP4616052B2 (en) | Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor | |
JP5322435B2 (en) | Negative electrode active material for electricity storage devices | |
JP2010070393A (en) | Carbon material for electric double layer capacitor and method for producing the same | |
JP2005136397A (en) | Activated carbon, electrode material using it, and electric double layer capacitor | |
JP2014530502A (en) | High voltage electrochemical double layer capacitor | |
KR101814063B1 (en) | Carbon composite production method for a lithium-ion battery anode using tofu | |
EP1296338A1 (en) | Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor | |
KR101673171B1 (en) | Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same | |
JP2000100668A (en) | Manufacture of electric double layer capacitor | |
JP3406487B2 (en) | Activated carbon for electrode of organic solvent type electric double layer capacitor | |
WO2021241334A1 (en) | Electrochemical device | |
JP2008021833A (en) | Porous carbon material for electric double layer capacitor, manufacturing method thereof, and non-aqueous electric double layer capacitor | |
JP4053955B2 (en) | Manufacturing method of electric double layer capacitor | |
JP2000138141A (en) | Manufacture of carbon porous body for electric double layer capacitor polarizable electrode | |
JP2015230794A (en) | Conductive material for lithium ion secondary battery, composition for forming lithium ion secondary battery negative electrode, composition for forming lithium ion secondary battery positive electrode, negative electrode for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP5809200B2 (en) | Silicon-based negative electrode active material | |
JP2006278364A (en) | Polarizable electrode for electric double layer capacitor and electric double layer capacitor | |
Lee et al. | Effect of carbon coating on Li4Ti5O12 of anode material for hybrid capacitor | |
JP2008108979A (en) | Electrode material for electric double layer capacitor and manufacturing method thereof | |
JP2016051622A (en) | Active material for negative electrode | |
JP7304988B2 (en) | Silicon-carbon composite negative electrode active material for lithium secondary battery with improved electrochemical properties, manufacturing method thereof, and lithium secondary battery including the same | |
JP3406486B2 (en) | Method for producing activated carbon for organic solvent-based electric double layer capacitor electrode | |
JP2004031889A (en) | Porous carbon for electric double layer capacitor electrode, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030701 |