JPH09248468A - Photocatalyst material, polyfunctional material using the same and its production - Google Patents
Photocatalyst material, polyfunctional material using the same and its productionInfo
- Publication number
- JPH09248468A JPH09248468A JP8060419A JP6041996A JPH09248468A JP H09248468 A JPH09248468 A JP H09248468A JP 8060419 A JP8060419 A JP 8060419A JP 6041996 A JP6041996 A JP 6041996A JP H09248468 A JPH09248468 A JP H09248468A
- Authority
- JP
- Japan
- Prior art keywords
- photocatalyst
- base material
- film
- material according
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 111
- 239000011941 photocatalyst Substances 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910052751 metal Chemical class 0.000 claims abstract description 15
- 239000002184 metal Chemical class 0.000 claims abstract description 15
- 239000011521 glass Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 8
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 7
- 239000000758 substrate Substances 0.000 claims description 30
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 24
- 238000002834 transmittance Methods 0.000 claims description 23
- 230000001699 photocatalysis Effects 0.000 claims description 20
- 239000007777 multifunctional material Substances 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 5
- 238000003756 stirring Methods 0.000 claims description 5
- 238000007540 photo-reduction reaction Methods 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 210000003298 dental enamel Anatomy 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 238000007747 plating Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 229910052573 porcelain Inorganic materials 0.000 claims 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 6
- 230000001954 sterilising effect Effects 0.000 abstract description 5
- 239000010419 fine particle Substances 0.000 abstract description 2
- 238000005507 spraying Methods 0.000 abstract description 2
- 238000007598 dipping method Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 26
- 239000007789 gas Substances 0.000 description 18
- 239000011324 bead Substances 0.000 description 16
- 238000000354 decomposition reaction Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical group N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 11
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 5
- 229910001961 silver nitrate Inorganic materials 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 230000001877 deodorizing effect Effects 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 241000195493 Cryptophyta Species 0.000 description 3
- 230000000844 anti-bacterial effect Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 101710134784 Agnoprotein Proteins 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Landscapes
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Physical Water Treatments (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は悪臭分解装置や循
環水路における水質浄化システム等に用いられる光触媒
材及び光触媒材を用いた多機能材並びにその製造方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst material used in a foul odor decomposition apparatus, a water purification system in a circulating water channel and the like, a multifunctional material using the photocatalyst material and a method for producing the same.
【0002】[0002]
【従来の技術】従来から水の浄化に用いられている光触
媒材は、通常、板状や球状をしている。板状のものは光
源の照射方向を一定方向で固定した場合、有毒ガスや有
機物との反応が基材の片面に限られてしまうため、基材
として接触面を大きくするためには球状が好ましい。2. Description of the Related Art Photocatalytic materials conventionally used for purifying water are usually plate-shaped or spherical. If the plate-shaped one is fixed in a fixed direction of the light source, the reaction with toxic gas or organic matter is limited to one side of the base material, so a spherical shape is preferable for increasing the contact surface as the base material. .
【0003】基材を球状としたものは、特開平7−24
451号公報に開示されており、基材として石又はガラ
ス玉の表面に光触媒材料を付着させ、これを水槽内に敷
き詰め水槽内の水の浄化、殺菌を行うようにしている。The spherical base material is disclosed in JP-A-7-24.
Japanese Patent Publication No. 451 discloses a photocatalyst material adhered to the surface of stone or glass beads as a base material, which is spread in a water tank to purify and sterilize water in the water tank.
【0004】[0004]
【発明が解決しようとする課題】しかし、基材として石
等のように紫外線を透過しないものを用いた場合には、
光の照射を受けない部分が生じ、この部分においては光
触媒による浄化、殺菌作用が発揮されない。However, when a material that does not transmit ultraviolet rays, such as stone, is used as the base material,
There is a portion that is not irradiated with light, and the purification and sterilizing action by the photocatalyst is not exhibited in this portion.
【0005】また、ガラスのように透光性を有する基材
の場合でも、光触媒の膜厚を大きくすると、紫外線透過
率が極めて小さく(0に近く)なり、直接受光している
部分以外では光触媒材料による浄化、殺菌作用が発揮さ
れない。Further, even in the case of a transparent substrate such as glass, the ultraviolet transmittance becomes extremely small (close to 0) when the film thickness of the photocatalyst is increased, and the photocatalyst except for the portion directly receiving light. Purification and sterilization by the material is not exhibited.
【0006】[0006]
【課題を解決するための手段】前記課題を解決するた
め、本発明にかかる光触媒材は、基材に光触媒の膜を形
成させた光触媒材であって、その光触媒材全体としての
紫外線透過率を0.1%以上、好ましくは1〜50%と
した。ここで、光触媒材の紫外線透過率とは基材及び光
触媒膜を透過した光量(I)と入射光量(I0 )との比
(I/I0 )をいう。In order to solve the above problems, a photocatalyst material according to the present invention is a photocatalyst material in which a photocatalyst film is formed on a substrate, and the ultraviolet transmittance of the photocatalyst material as a whole is 0.1% or more, preferably 1 to 50%. Here, the ultraviolet transmittance of the photocatalyst material means the ratio (I / I0) of the amount of light (I) transmitted through the substrate and the photocatalyst film to the amount of incident light (I0).
【0007】前記基材としては球形状で、ガラス等を材
料とし、その紫外線透過率が50%以上のものが好まし
く、光触媒膜としては例えばTiO2又はTiO2と金属塩
の層から構成され、その紫外線透過率が3%以上、好ま
しくは3%以上70%以下のものが好ましい。基材とし
ては、上記の他に紫外線を透光可能な樹脂、セラミック
ス等の材料を用いることができ、また、光触媒材料とし
ては、活性の高いTiSrO3 、SnO2、ZnO、WO3
等を用いることができる。The substrate is preferably spherical and made of glass or the like and has a UV transmittance of 50% or more. The photocatalyst film is composed of, for example, TiO 2 or a layer of TiO 2 and a metal salt. The ultraviolet transmittance thereof is preferably 3% or more, more preferably 3% or more and 70% or less. In addition to the above, materials such as resins and ceramics capable of transmitting ultraviolet rays can be used as the base material, and as the photocatalytic material, highly active TiSrO 3 , SnO 2 , ZnO, WO 3 can be used.
Etc. can be used.
【0008】基材の紫外線透過率を50%以上としたの
は、これ以下では基材透過後の紫外線量が小さくなり、
光触媒による浄化、殺菌作用が十分に発揮できなくなる
からであり、光触媒の紫外線透過率を3%以上としたの
は、これ以下では光触媒膜による紫外線吸収が大きくな
り、透過後の紫外線量が光触媒を活性化させるのに十分
でないためである。また、紫外線透過率は大きい程よい
のであるが、光触媒膜の厚さを0.1μm以下にする
と、成膜が困難となり活性上も問題が生じるので、光触
媒膜の厚さは0.1μm以上とすべきであり、厚さを
0.1μmとした場合の紫外線透過率は70%であるの
で、紫外線透過率は70%以下が好ましいことになる。The ultraviolet transmittance of the base material is set to 50% or more because the amount of ultraviolet light after passing through the base material becomes small below this value.
This is because the photocatalyst cannot sufficiently exhibit the purifying and sterilizing effects. The reason why the ultraviolet ray transmittance of the photocatalyst is set to 3% or more is that below this, the ultraviolet absorption by the photocatalyst film becomes large, and the amount of ultraviolet rays after transmission becomes less than the photocatalyst. This is because it is not enough to activate. Further, the higher the ultraviolet transmittance, the better, but if the thickness of the photocatalyst film is 0.1 μm or less, the film formation becomes difficult and there is a problem in activity. Therefore, the thickness of the photocatalyst film is 0.1 μm or more. Since the ultraviolet transmittance is 70% when the thickness is 0.1 μm, the ultraviolet transmittance is preferably 70% or less.
【0009】また、本発明に係る多機能材は、タイル、
ホーロー又は陶磁器等の基板表面に上記の光触媒材を直
接保持せしめるか、釉薬層又は印刷層等のバインダ層を
介して保持せしめるようにした。このように、基板表面
に光触媒材を保持せしめることで、タイル等は表面に半
球状の凹凸が形成され、基板自体に光触媒機能を持たせ
ることができる。The multi-functional material according to the present invention is a tile,
The above-mentioned photocatalytic material was held directly on the surface of a substrate such as an enamel or ceramics, or it was held via a binder layer such as a glaze layer or a printing layer. Thus, by holding the photocatalytic material on the surface of the substrate, the tile or the like has hemispherical irregularities formed on the surface, and the substrate itself can have the photocatalytic function.
【0010】更に、本発明に係る光触媒材の製造方法
は、所定の紫外線透過率、つまり光触媒材となった場合
の紫外線透過率が0.1%以上となる基材と光触媒分散
液とを攪拌し、基材表面に光触媒膜を形成した後、30
0℃以上900℃以下で焼成するようにした。Further, in the method for producing a photocatalyst material according to the present invention, a substrate and a photocatalyst dispersion liquid having a predetermined ultraviolet transmittance, that is, an ultraviolet transmittance of 0.1% or more when the photocatalytic material is used, are stirred. Then, after forming the photocatalytic film on the surface of the substrate,
The firing was performed at 0 ° C or higher and 900 ° C or lower.
【0011】また、基材を光触媒微粒子を分散させた液
体ゾルにディッピングするか、スプレー塗布を行う場
合、添加するゾルの基材に対する混合比は1.0/10
0乃至3.6/100の範囲内が膜の均一性、強度の点
から好ましい。また、予め基材を80〜110℃に加熱
しておくことでも膜の均一性、強度が向上する。When the base material is dipped in a liquid sol in which photocatalyst fine particles are dispersed or spray coating is performed, the mixing ratio of the added sol to the base material is 1.0 / 10.
The range of 0 to 3.6 / 100 is preferable in terms of film uniformity and strength. Further, by heating the base material to 80 to 110 ° C. in advance, the uniformity and strength of the film are improved.
【0012】尚、前記のようにして得られた球状光触媒
体の活性を上げるため、Ag、Cu、Pt等の金属を被
覆させることも可能である。この場合には以下の方法に
より行う。即ち、金属塩水溶液に中に光触媒材料を浸漬
した後、紫外線ランプを照射して光還元メッキにより光
触媒表面に金属を被覆させる。この際、表面に残存する
余剰の金属塩を洗浄する。洗浄方法としては、長時間の
水中浸漬や希薄な酸溶液での洗浄等がある。余剰の金属
塩を洗浄することで、生態系に悪影響を及ぼす金属イオ
ンの溶出を防ぐことができ、また金属と光触媒による抗
菌、汚物分解、防藻効果を長期間に亘り安定して持続さ
せることができる。In order to enhance the activity of the spherical photocatalyst body obtained as described above, it is possible to coat it with a metal such as Ag, Cu or Pt. In this case, the following method is used. That is, after immersing the photocatalyst material in the metal salt aqueous solution, an ultraviolet lamp is irradiated to coat the metal on the photocatalyst surface by photoreduction plating. At this time, the excess metal salt remaining on the surface is washed. Examples of the cleaning method include immersion in water for a long time and cleaning with a dilute acid solution. By washing away excess metal salts, it is possible to prevent the elution of metal ions that adversely affect the ecosystem, and to sustain the antibacterial, dirt decomposition, and algae-proofing effects of the metal and photocatalyst for a long period of time. You can
【0013】[0013]
【発明の実施の形態】以下に本発明の実施の形態を実施
例1〜6に基づいて説明する。 (実施例1)球状光触媒材料の活性に及ぼす、基材、光
触媒膜、透光性の影響について、アンモニアの分解を例
として示す。実施例では以下の(表1)に示す種々の球
状基材にTiO2被覆量を変化させ、光触媒材の評価サン
プルを作製した。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to Examples 1 to 6. (Example 1) The effects of the base material, the photocatalyst film, and the translucency on the activity of the spherical photocatalyst material will be described by taking the decomposition of ammonia as an example. In the examples, various spherical base materials shown in the following (Table 1) were used, and the coating amount of TiO2 was changed to prepare photocatalyst material evaluation samples.
【0014】[0014]
【表1】 [Table 1]
【0015】図1は防臭機能評価装置(NH3ガス分解
率測定装置)のブロック構成図、図2はTiO2膜厚(μ
m)に対するアンモニアガス分解率(%)を示した図、
図3は基材に光触媒の膜を形成した光触媒材の紫外線透
過率とNH3ガス分解率との関係を示すグラフ、更に
(表2)は各評価サンプルの紫外線透過率とガス分解率
を示したものである。FIG. 1 is a block diagram of the deodorizing function evaluation device (NH 3 gas decomposition rate measuring device), and FIG. 2 is the TiO 2 film thickness (μ
m) showing the ammonia gas decomposition rate (%),
FIG. 3 is a graph showing the relationship between the UV transmittance and the NH 3 gas decomposition rate of the photocatalyst material having a photocatalyst film formed on the substrate, and (Table 2) shows the UV transmittance and gas decomposition rate of each evaluation sample. It is a thing.
【0016】[0016]
【表2】 [Table 2]
【0017】防臭機能評価装置10は、空気を吸引する
吸引ポンプ11、吸引した空気の清浄化を図る活性炭1
2、NH3ガス源13、評価サンプル14を収容する反
応容器15、NH3ガスの流通を制御するコック16
a,16b、ガス濃度が飽和したことを検知するガスセ
ンサ17、NH3ガス濃度を検知するガス検知管18、
評価サンプル14を照射する光源(BLBランプ)19
を備える。The deodorizing function evaluation apparatus 10 comprises a suction pump 11 for sucking air, and an activated carbon 1 for cleaning the sucked air.
2, a NH 3 gas source 13, a reaction container 15 containing the evaluation sample 14, and a cock 16 for controlling the flow of NH 3 gas
a, 16b, a gas sensor 17 for detecting that the gas concentration is saturated, a gas detection pipe 18 for detecting the NH 3 gas concentration,
Light source (BLB lamp) 19 for irradiating the evaluation sample 14
Is provided.
【0018】図2から、紫外線透過率がほとんど0であ
るセラミックボールを基材としたとき、アンモニアガス
分解率は、膜厚の増加に伴い僅かであるが増加し、2μ
m以上で増加が頭打ち(飽和)となり、これに対し、透
光性を有するガラスビーズ、樹脂を用いた場合、アンモ
ニアガス分解率は、基材の紫外線透過率が膜厚0.2〜
1.2μmの間で極大値を持つようになり、しかも膜厚
2μmまでは、セラミックスを基材としたとき見られた
飽和値を上回ることが判かる。From FIG. 2, when a ceramic ball having an ultraviolet ray transmittance of almost 0 is used as a base material, the decomposition rate of ammonia gas slightly increases with an increase in the film thickness and becomes 2 μm.
When the glass beads and the resin having translucency are used, the ammonia gas decomposition rate is as follows.
It can be seen that the maximum value is reached in the range of 1.2 μm, and that the film thickness up to 2 μm exceeds the saturation value found when the ceramic is used as the base material.
【0019】また、図3及び(表2)からガス分解率を
向上させるには、基材に光触媒膜を形成した光触媒材全
体としての紫外線透過率が少なくとも0.1%以上であ
ることが必要であり、1%以上50%以下が好ましいと
いえる。また、同様の観点から、光触媒膜の紫外線透過
率は3%以上70%以下が好ましい。Further, from FIG. 3 and (Table 2), in order to improve the gas decomposition rate, it is necessary that the ultraviolet transmittance of the entire photocatalytic material having the photocatalytic film formed on the substrate is at least 0.1% or more. Therefore, it can be said that 1% or more and 50% or less is preferable. From the same viewpoint, the ultraviolet transmittance of the photocatalytic film is preferably 3% or more and 70% or less.
【0020】ここで、上記防臭機能評価装置による評価
方法を説明する。 反応容器(内容積:460ml)15にビーズ(評価
サンプル14)100gを充填し、コック16aを開い
てアンモニアガス(20〜30ppm)を流通させる。
このとき、コック16bは排気方向に開いている。 アンモニアガスを十分に流通させ、ガス濃度が飽和に
達したことをガスセンサ17によって確認した後、コッ
ク16bを閉じ、アンモニアガスの流れを循環系とす
る。この時のガス濃度を検知管18により調べ、初期値
C0 を求める。 ビーズ(評価サンプル14)に光源(BLBランプ)
19からBLB光を照射する。 1時間後、反応容器15内のガス濃度Cを検知管18
により調べる。 、で検知した値から分解率を求める。(分解率=
C/C0 )Here, an evaluation method by the above deodorizing function evaluation device will be described. A reaction container (internal volume: 460 ml) 15 is filled with 100 g of beads (evaluation sample 14), the cock 16a is opened, and ammonia gas (20 to 30 ppm) is passed.
At this time, the cock 16b is open in the exhaust direction. After the gas sensor 17 confirms that the gas concentration has reached saturation by sufficiently circulating the ammonia gas, the cock 16b is closed and the flow of the ammonia gas is used as the circulation system. The gas concentration at this time is examined by the detector tube 18 to obtain an initial value C0. Light source (BLB lamp) for beads (evaluation sample 14)
BLB light is emitted from 19. After 1 hour, the gas concentration C in the reaction vessel 15 is detected by the detection tube 18
Investigate by Calculate the decomposition rate from the values detected at and. (Decomposition rate =
C / C0)
【0021】(実施例2)球状光触媒材料の活性に及ぼ
す基材の透光性の影響について、循環水槽の水処理の場
合を示す。図4は循環水槽の説明図であり、循環水槽2
0は、水槽(内容積60リットル、循環水量40リット
ル)21、水Wを循環させるためのポンプ22、流路2
3、ビーズ(球状光触媒材)24を備え、矢印で示すよ
うに循環する。(Embodiment 2) Regarding the effect of the translucency of the base material on the activity of the spherical photocatalyst material, the case of water treatment in a circulating water tank is shown. FIG. 4 is an explanatory view of the circulating water tank, and the circulating water tank 2
0 is a water tank (internal volume 60 liters, circulating water volume 40 liters) 21, pump 22 for circulating water W, flow path 2
3, beads (spherical photocatalyst material) 24 are provided and circulate as shown by an arrow.
【0022】種々の透光性を有する球状基材にTiO
2(表3参照)を被覆し、各光触媒体の光触媒活性を調
べるため、循環水槽20内に球状光触媒材24を設置
し、COD値、大腸菌数、藻の発生量を定期的に調べ
た。TiO2−Cu系光触媒を用いたときには、Cuイオ
ンの濃度も調べた。TiO 2 on a spherical substrate having various translucency
2 (see Table 3) was coated and a spherical photocatalyst material 24 was installed in the circulating water tank 20 in order to investigate the photocatalytic activity of each photocatalyst, and the COD value, the number of E. coli, and the amount of algae produced were periodically examined. When the TiO 2 —Cu based photocatalyst was used, the Cu ion concentration was also examined.
【0023】[0023]
【表3】 [Table 3]
【0024】各触媒材の製法としては、基材100gに
対し7.5%のTiO2ゾルを1.2g塗布し、混練した
後、800℃で焼成を行った。膜をTiO2−Cu系とす
る場合は、同様にして作成した光触媒体を3%Cu(C
H3COO)2に浸漬してBLBランプで5分間照射し
た。この後、1%のHCl溶液に10〜30秒浸漬して
余剰の金属を洗浄した。各基材に対する水質、大腸菌
数、藻の発生量に関して結果を以下の(表4)に示す。As a method for producing each catalyst material, 1.2 g of 7.5% TiO 2 sol was applied to 100 g of the base material, kneaded, and then baked at 800 ° C. When the film is made of TiO 2 —Cu system, the photocatalyst prepared in the same manner is used as 3% Cu (C
Was irradiated with BLB lamp for 5 minutes and immersed in H 3 COO) 2. After this, the excess metal was washed by immersing it in a 1% HCl solution for 10 to 30 seconds. The results regarding the water quality, the number of E. coli, and the amount of algae produced for each substrate are shown in (Table 4) below.
【0025】[0025]
【表4】 [Table 4]
【0026】表4からNo1とNo3の比較により、基
材の透光性が光触媒効果(水質、大腸菌数、藻の発生
量)に影響を与えていることがわかる。また、Cuを被
覆している系(No2)の水槽では、循環180日後の
Cu溶出量が循環開始時と略々変化していない。したが
って、TiO2−Cu系水槽で見られる水質汚濁速度の緩
和、大腸菌の減少、防藻効果は単なるCuイオン溶出の
ためではなく、光還元により吸着したCuとTiO2の光
触媒効果が安定して長期間維持されることがわかる。From Table 4, a comparison between No1 and No3 shows that the translucency of the base material affects the photocatalytic effect (water quality, number of E. coli, amount of algae generated). Further, in the water tank of the system (No2) that is coated with Cu, the Cu elution amount after 180 days of circulation is substantially unchanged from that at the start of circulation. Therefore, the mitigation of the water pollution rate, the reduction of Escherichia coli, and the algae-preventing effect seen in the TiO 2 —Cu system water tank are not merely due to elution of Cu ions, but the photocatalytic effect of Cu and TiO 2 adsorbed by photoreduction is stabilized It can be seen that it will be maintained for a long time.
【0027】(実施例3)球状触媒の活性に及ぼす基材
の透光性、光触媒膜の透光性の影響についてAgNO
3(硝酸銀)呈色を用いた場合で説明する。基材の透光
性、TiO2膜の透光性を変えて光触媒ビーズを作成し
た。基材等の種類を以下の(表5)に示す。(Example 3) Effect of translucency of base material and translucency of photocatalyst film on activity of spherical catalyst AgNO
An explanation will be given using the case of using 3 (silver nitrate) coloring. Photocatalyst beads were prepared by changing the translucency of the substrate and the translucency of the TiO 2 film. The types of substrates and the like are shown below (Table 5).
【0028】[0028]
【表5】 [Table 5]
【0029】ここで、硝酸銀呈色による球状光触媒材料
の測定方法は、50mlビーカに50gのサンプルを充
填し、ここにAgNO3の1%溶液を入れ、サンプル(ガ
ラスビーズ)を浸けた後、BLBランプを照射する。こ
の時、サンプルは攪拌しないようにする。Here, the method for measuring the spherical photocatalytic material by silver nitrate coloration is as follows: A 50 ml beaker is filled with 50 g of a sample, a 1% solution of AgNO 3 is put therein, and the sample (glass beads) is dipped, and then BLB is added. Illuminate the lamp. At this time, do not stir the sample.
【0030】Ag呈色前後の色値を測定する(この際、
色値測定では、測定の度にサンプルの攪拌を行い、デー
タのバラツキを少なくする)。色値計算を行い、この値
を硝酸銀呈色値(ΔE)とする。上記方法により測定し
たサンプル1〜4の硝酸銀呈色値(ΔE)を以下の(表
6)に示す。The color value before and after the Ag coloration is measured (at this time,
In color value measurement, the sample is agitated after each measurement to reduce the dispersion of data). A color value is calculated, and this value is defined as a silver nitrate coloration value (ΔE). The silver nitrate coloration values (ΔE) of Samples 1 to 4 measured by the above method are shown in (Table 6) below.
【0031】[0031]
【表6】 [Table 6]
【0032】(表6)から硝酸銀呈色値(ΔE)の大き
さは、基材TiO2の透光性を反映していることが判る。From Table 6, it can be seen that the magnitude of the silver nitrate coloration value (ΔE) reflects the translucency of the substrate TiO 2 .
【0033】(実施例4)光触媒であるTiO2膜の強度
に及ぼすTiO2ゾルと基材との混合比の影響について以
下に示す。先ず、粒径が1mmのガラスビーズ100g
に対し、TiO2ゾルを0.45g,0.6g,0.9
g,1.2g,1.5g,1.8g,3.6g,12g
だけ混合した(ただし、TiO2膜厚を何れも一定とする
ため、TiO2ゾルの濃度を変化させた)(表7参照)。
次いで、攪拌、乾燥後、800℃で40分間の焼成を行
った。各ビーズの膜の強度を下記の水中でのスターラを
用いた方法により評価した。Example 4 The influence of the mixing ratio of the TiO 2 sol and the base material on the strength of the TiO 2 film which is the photocatalyst is shown below. First, 100 g of glass beads with a particle size of 1 mm
In contrast, 0.45 g, 0.6 g, 0.9 of TiO 2 sol
g, 1.2g, 1.5g, 1.8g, 3.6g, 12g
(However, the concentration of TiO 2 sol was changed in order to keep the TiO 2 film thickness constant) (see Table 7).
Then, after stirring and drying, baking was performed at 800 ° C. for 40 minutes. The film strength of each bead was evaluated by the following method using a stirrer in water.
【0034】[0034]
【表7】 [Table 7]
【0035】膜強度の評価方法について説明する。 焼成した光触媒ガラスビーズ5gを水50mlの入っ
たビーカにとる。 マグネチックスターラの攪拌子を入れ、90秒攪拌洗
浄する。 水を取り替え、60秒間攪拌する。 で使用した水を採取し、濁度計で濁度を測定する。 濁度値が0〜9のときを○、10〜15のときを△、
16以上を×とし、水の濁り具合から膜の強度を判定す
る。A method for evaluating the film strength will be described. 5 g of the baked photocatalyst glass beads is placed in a beaker containing 50 ml of water. Insert a magnetic stirrer stirrer and stir for 90 seconds to wash. Replace water and stir for 60 seconds. Collect the water used in step 1 and measure the turbidity with a turbidimeter. When the turbidity value is 0-9, it is ○, when it is 10-15, it is △,
The strength of the film is judged from the degree of turbidity of water by setting 16 or more to x.
【0036】(表7)から、球状光触媒の製造におい
て、TiO2ゾルと基材との混合比は、基材ビーズ(10
0)に対し、TiO2ゾルの混合比が(1.0/100)
〜(3.6/100)のとき高い強度が得られることが
判る。From Table 7, in the production of the spherical photocatalyst, the mixing ratio of the TiO 2 sol and the base material was 10%.
0), the mixing ratio of TiO 2 sol is (1.0 / 100)
It can be seen that a high strength can be obtained in the range of (3.6 / 100).
【0037】ただし、基材ビーズ(100)に対し、T
iO2ゾルの混合比が多い場合(3.6/100以上)、
或いは少ない混合(1.2/100未満)で製膜された
TiO2膜にムラが生じ、極端に厚くなった部分が発生す
るため、膜の強度は低下する。However, with respect to the base material beads (100), T
When the mixing ratio of iO 2 sol is high (3.6 / 100 or more),
Alternatively, since the TiO 2 film formed with a small amount of mixture (less than 1.2 / 100) has unevenness and an extremely thick portion is generated, the strength of the film decreases.
【0038】(実施例5)光触媒ガラスを製造する上
で、TiO2をコートする基材の加熱が膜強度に及ぼす影
響を以下に示す。先ず、粒径が0.5mmであるガラス
ビーズを準備し、それぞれ20,80,110,140
℃で加熱した。その後、基材量に対して、ビーズ1個の
膜厚が0.4μmになるようにTiO2を被覆し、攪拌、
乾燥後、800℃で40分間の焼成を行った。焼成した
光触媒ガラスビーズは、実施例4と同様の方法により膜
強度を調べた結果を以下の(表8)に示す。Example 5 In producing a photocatalytic glass, the effect of heating a substrate coated with TiO 2 on the film strength is shown below. First, glass beads having a particle diameter of 0.5 mm are prepared, and the beads are 20, 80, 110 and 140, respectively.
Heated at ° C. After that, with respect to the amount of the base material, TiO 2 is coated so that the thickness of one bead becomes 0.4 μm, and the mixture is stirred.
After drying, it was baked at 800 ° C. for 40 minutes. The results of examining the film strength of the calcined photocatalyst glass beads in the same manner as in Example 4 are shown in (Table 8) below.
【0039】[0039]
【表8】 [Table 8]
【0040】(表8)から基材を加熱することにより、
膜強度が向上したことが判る。これは、基材を加熱する
ことで膜の均一化が図られたためと考えられる。ただ
し、加熱温度には適正温度範囲が存在する。すなわち、
膜は加熱温度が高すぎると乾燥が早くなり厚さが不均一
となって強度が低下する。その温度範囲は、表8から8
0〜110℃と考えられる。この結果から、膜強度の向
上には、基材加熱が有効であることがわかった。By heating the substrate from (Table 8),
It can be seen that the film strength is improved. It is considered that this is because the film was made uniform by heating the base material. However, the heating temperature has an appropriate temperature range. That is,
If the heating temperature of the film is too high, the film will dry quickly and the thickness will become uneven, resulting in a decrease in strength. The temperature range is shown in Tables 8 to 8
It is considered to be 0 to 110 ° C. From these results, it was found that heating the base material is effective for improving the film strength.
【0041】(実施例6)図5に示すように、基板とし
て陶製タイル30を用い、その表面にSiO2-Al2O3-
Na/KO2を軟化温度480℃に調整したフリットか
らなるバインダ層31を形成し、このバインダ層31の
上に透光性基材32aの表面に光触媒膜32bを形成し
た光触媒材32を載置した後、700℃で焼成する。な
お、タイル素地表面に、直接光触媒材32を載置した
後、700℃で焼成してもよい。陶製タイル素地に限ら
ず、金属等の光触媒材溶化温度より耐火度の高いものを
基板に用いて、光触媒材の一部を加熱溶解させて、基板
表面に保持させることも可能である。又、実施例6では
基板を陶製タイルとしたがこれに限らず、金属、樹脂等
の基板を用いて、接着剤等で保持させてもよい。(Embodiment 6) As shown in FIG. 5, a ceramic tile 30 was used as a substrate, and the surface thereof was SiO 2 --Al 2 O 3-.
A binder layer 31 made of frit having a softening temperature of Na / KO 2 adjusted to 480 ° C. is formed, and a photocatalyst material 32 having a photocatalyst film 32b formed on the surface of a transparent substrate 32a is placed on the binder layer 31. After that, it is fired at 700 ° C. The photocatalyst material 32 may be directly placed on the surface of the tile base material and then baked at 700 ° C. Not limited to the ceramic tile base, it is also possible to use a substrate having a refractory degree higher than the solution temperature of the photocatalyst material, such as a metal, to heat and melt a part of the photocatalyst material and hold it on the substrate surface. Although the substrate is made of ceramic tile in the sixth embodiment, the present invention is not limited to this, and a substrate made of metal, resin or the like may be used and held by an adhesive or the like.
【0042】このように、基板表面を光触媒で被覆した
タイル等を壁や天井に用いることで、抗菌性に加え、半
球形の表面によって特異の意匠性が発揮されるととも
に、タイルを設けた屋内の照度を高め得る多機能材とし
て用いることができる。As described above, by using tiles whose surface is coated with a photocatalyst for walls and ceilings, in addition to antibacterial properties, the hemispherical surface exerts a peculiar design property, and indoors where tiles are provided. It can be used as a multifunctional material capable of increasing the illuminance.
【0043】[0043]
【発明の効果】以上に説明したように本発明に係る光触
媒材によれば、光触媒が均一かつ強固に被覆された球状
光触媒材を得ることができる。また、球状光触媒材に照
射された光が、光源に対して光触媒体の裏面あるいは下
に積層した光触媒体を作用させるのに十分な光量だけ媒
体を通過する。よって、光触媒体の裏面あるいは下層に
ある光触媒が有効に作用し、光触媒としての機能が向上
する。As described above, according to the photocatalyst material of the present invention, it is possible to obtain a spherical photocatalyst material on which the photocatalyst is uniformly and firmly coated. Further, the light applied to the spherical photocatalyst material passes through the medium in an amount sufficient to cause the photocatalyst body laminated on the back surface or below the photocatalyst body to act on the light source. Therefore, the photocatalyst on the back surface or lower layer of the photocatalyst body effectively acts, and the function as the photocatalyst is improved.
【0044】また、本発明に係る光触媒材の製造方法に
よれば、基材表面に均一で強度の高い光触媒膜を融着さ
せることができる。同時に、生態系に悪影響を与える金
属イオンの溶出を防ぐことができ、また金属と光触媒に
よる抗菌、汚物分解、防藻効果を長期間に亘って安定し
て持続させることができる。Further, according to the method for producing a photocatalyst material according to the present invention, a uniform and high-strength photocatalyst film can be fused on the surface of the base material. At the same time, it is possible to prevent the elution of metal ions that have an adverse effect on the ecosystem, and it is possible to stably maintain the antibacterial, filth-decomposing, and algae-proofing effects of the metal and the photocatalyst over a long period of time.
【0045】さらに、本発明に係る光触媒材を用いた多
機能材によれば、基板表面に光触媒材を保持したタイル
等を壁や天井に用いることで、タイル等の表面に半球状
の凹凸が形成された特異の意匠性を発揮するとともに、
タイル等を設けた屋内の照度を高めることができる。Further, according to the multifunctional material using the photocatalyst material according to the present invention, by using a tile or the like having the photocatalyst material held on the substrate surface for a wall or a ceiling, hemispherical irregularities are formed on the surface of the tile or the like. While exhibiting the unique design formed,
It is possible to increase the indoor illuminance provided with tiles and the like.
【図1】防臭機能評価装置(NH3ガス分解率測定装
置)のブロック構成図FIG. 1 Block diagram of deodorant function evaluation device (NH 3 gas decomposition rate measurement device)
【図2】TiO2膜厚(μm)に対するアンモニアガス分
解率(%)を示した図FIG. 2 is a diagram showing the ammonia gas decomposition rate (%) with respect to the TiO 2 film thickness (μm).
【図3】光触媒材の紫外線透過率とガス分解率との関係
を示すグラフFIG. 3 is a graph showing the relationship between the ultraviolet transmittance of the photocatalyst material and the gas decomposition rate.
【図4】循環水槽の説明図[Fig. 4] Illustration of circulating water tank
【図5】光触媒材を用いた多機能材の拡大断面図FIG. 5 is an enlarged cross-sectional view of a multifunctional material using a photocatalytic material.
10…防臭機能評価装置、11…吸引ポンプ、12…活
性炭、13…NH3源、14…評価サンプル、15…反
応容器、16a,16b…コック、17…ガスセンサ、
18…ガス検知管、19…光源、20…循環水槽、21
…水槽、22…ポンプ、23…流路、24…ビーズ(球
状光触媒材)、30…基板としてのタイル、31…バイ
ンダ層、32…光触媒材、32a…透光性基材、32b
…光触媒膜。10 ... Deodorizing function evaluation device, 11 ... Suction pump, 12 ... Activated carbon, 13 ... NH3 source, 14 ... Evaluation sample, 15 ... Reaction container, 16a, 16b ... Cock, 17 ... Gas sensor,
18 ... Gas detector tube, 19 ... Light source, 20 ... Circulating water tank, 21
... water tank, 22 ... pump, 23 ... flow path, 24 ... beads (spherical photocatalyst material), 30 ... tile as substrate, 31 ... binder layer, 32 ... photocatalyst material, 32a ... translucent base material, 32b
… Photocatalytic film.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/32 C02F 1/32 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/32 C02F 1/32
Claims (14)
れる光触媒材であって、前記光触媒材の紫外線透過率が
0.1%以上であることを特徴とする光触媒材。1. A photocatalyst material formed by forming a photocatalyst film on a substrate, wherein the photocatalyst material has an ultraviolet transmittance of 0.1% or more.
れる光触媒材であって、前記光触媒材の紫外線透過率が
1%以上50%以下であることを特徴とする光触媒材。2. A photocatalyst material formed by forming a photocatalyst film on a substrate, wherein the photocatalyst material has an ultraviolet transmittance of 1% or more and 50% or less.
材において、前記基材は略球形状であることを特徴とす
る光触媒材。3. The photocatalyst material according to claim 1, wherein the base material has a substantially spherical shape.
の光触媒材において、前記基材の紫外線透過率は50%
以上であることを特徴とすることを光触媒材。4. The photocatalytic material according to claim 1, wherein the base material has an ultraviolet transmittance of 50%.
The photocatalyst material is characterized by the above.
の光触媒材において、前記光触媒膜の紫外線透過率は3
%以上であることを特徴とする光触媒材。5. The photocatalyst material according to claim 1, wherein the photocatalyst film has an ultraviolet transmittance of 3 or less.
% Or more, the photocatalyst material.
の光触媒材において、前記光触媒膜の紫外線透過率は3
%以上70%未満であることを特徴とする光触媒材。6. The photocatalyst material according to claim 1, wherein the photocatalyst film has an ultraviolet transmittance of 3 or less.
% Or more and less than 70%, a photocatalyst material.
の光触媒材において、前記光触媒膜はTiO2又はTiO2
と金属塩の層からなることを特徴とする光触媒材。7. The photocatalyst material according to claim 1, wherein the photocatalyst film is TiO 2 or TiO 2.
And a metal salt layer.
の光触媒材において、前記基材がガラスであることを特
徴とする光触媒材。8. The photocatalyst material according to claim 1, wherein the base material is glass.
が、直接或いはバインダ層を介して基板表面に保持され
ていることを特徴とする多機能材。9. A multi-functional material, wherein the photocatalytic material according to claim 1 is held on the surface of a substrate directly or via a binder layer.
前記基板がタイル、ホーローまたは陶磁器であり、バイ
ンダー層は釉薬層または印刷層であることを特徴とする
多機能材。10. The multifunctional material according to claim 9, wherein:
The multifunctional material, wherein the substrate is tile, enamel or porcelain, and the binder layer is a glaze layer or a printing layer.
材を製造する方法であって、この方法は、基材と光触媒
分散液とを攪拌して基材表面に光触媒膜を形成した後、
300℃以上900℃以下で焼成することを特徴とする
光触媒材の製造方法。11. A method for producing the photocatalyst material according to claim 1, wherein the method comprises stirring a base material and a photocatalyst dispersion liquid to form a photocatalyst film on the surface of the base material. ,
A method for producing a photocatalyst material, which comprises firing at 300 ° C. or higher and 900 ° C. or lower.
法において、前記基材を光触媒の金属塩水溶液に侵漬し
た後、光還元めっきし、さらに余剰金属塩を洗浄するこ
とを特徴とする光触媒材の製造方法。12. The method for producing a photocatalyst material according to claim 11, wherein the base material is immersed in a photocatalyst aqueous solution of a metal salt of the photocatalyst, followed by photoreduction plating and further washing of excess metal salt. Method for producing photocatalytic material.
触媒材の製造方法において、前記基材と光触媒分散液と
の混合比は、基材100重量部に対し光触媒分散液を
1.0重量部以上3.6重量部以下とすることを特徴と
する光触媒材の製造方法。13. The method for producing a photocatalyst material according to claim 11 or 12, wherein the mixing ratio of the base material and the photocatalyst dispersion liquid is 1.0 part by weight of the photocatalyst dispersion liquid with respect to 100 parts by weight of the base material. Part or more and 3.6 parts by weight or less, and a method for producing a photocatalyst material.
に記載の光触媒材の製造方法において、前記基材を予め
80℃以上110℃以下に加熱することを特徴とする光
触媒材の製造方法。14. The method for producing a photocatalyst material according to claim 11, wherein the base material is heated in advance to 80 ° C. or higher and 110 ° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8060419A JPH09248468A (en) | 1996-03-18 | 1996-03-18 | Photocatalyst material, polyfunctional material using the same and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8060419A JPH09248468A (en) | 1996-03-18 | 1996-03-18 | Photocatalyst material, polyfunctional material using the same and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09248468A true JPH09248468A (en) | 1997-09-22 |
Family
ID=13141676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8060419A Pending JPH09248468A (en) | 1996-03-18 | 1996-03-18 | Photocatalyst material, polyfunctional material using the same and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09248468A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6368668B1 (en) * | 1998-07-30 | 2002-04-09 | Toto Ltd. | Method and apparatus for producing a photocatalytic material |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6397234A (en) * | 1986-10-14 | 1988-04-27 | Nippon Sheet Glass Co Ltd | Fixation photocatalyst |
JPH07232080A (en) * | 1993-12-28 | 1995-09-05 | Toto Ltd | Multifunctional material with photocatalyst function and its preparation |
JPH0847687A (en) * | 1994-08-04 | 1996-02-20 | Ishihara Sangyo Kaisha Ltd | Water purifier |
JPH0866635A (en) * | 1993-12-14 | 1996-03-12 | Toto Ltd | Photocatalytic thin film and its formation |
JPH08273631A (en) * | 1995-03-30 | 1996-10-18 | Toshiba Lighting & Technol Corp | Incandescent electric bulb, bi-tubular electric bulb for office machine, lighting system, and copying machine |
JPH09921A (en) * | 1995-06-14 | 1997-01-07 | Kawai Musical Instr Mfg Co Ltd | Highly light transparent oxide photocatalyst element |
-
1996
- 1996-03-18 JP JP8060419A patent/JPH09248468A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6397234A (en) * | 1986-10-14 | 1988-04-27 | Nippon Sheet Glass Co Ltd | Fixation photocatalyst |
JPH0866635A (en) * | 1993-12-14 | 1996-03-12 | Toto Ltd | Photocatalytic thin film and its formation |
JPH07232080A (en) * | 1993-12-28 | 1995-09-05 | Toto Ltd | Multifunctional material with photocatalyst function and its preparation |
JPH0847687A (en) * | 1994-08-04 | 1996-02-20 | Ishihara Sangyo Kaisha Ltd | Water purifier |
JPH08273631A (en) * | 1995-03-30 | 1996-10-18 | Toshiba Lighting & Technol Corp | Incandescent electric bulb, bi-tubular electric bulb for office machine, lighting system, and copying machine |
JPH09921A (en) * | 1995-06-14 | 1997-01-07 | Kawai Musical Instr Mfg Co Ltd | Highly light transparent oxide photocatalyst element |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6368668B1 (en) * | 1998-07-30 | 2002-04-09 | Toto Ltd. | Method and apparatus for producing a photocatalytic material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3356437B2 (en) | Photocatalyst, method for producing the same, and multifunctional member | |
JP5845385B2 (en) | Air purifier | |
US20010036897A1 (en) | Photocatalytic hydrophilifiable material | |
JP4787253B2 (en) | Alumina coating forming method, alumina fiber, and gas treatment apparatus equipped with the same | |
JPH08133919A (en) | Solid substance having antimicrobial action, its production and antimicrobial action on liquid and its flow channel | |
WO2001068786A1 (en) | Hydrophilic member and method for manufacture thereof | |
KR100347617B1 (en) | The making method of photo-catalystic material | |
JP3261959B2 (en) | Photocatalytic material | |
JP2002239395A (en) | Photocatalyst, method for manufacturing the same and photocatalyst body using the same | |
JP2011058766A (en) | Humidifier | |
JPH11169727A (en) | Photocatalyst body and application thereof | |
JPH09248468A (en) | Photocatalyst material, polyfunctional material using the same and its production | |
JP3987395B2 (en) | Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same | |
JPH10212809A (en) | Building material for external wall | |
JP4680064B2 (en) | Method for producing titanium oxide, photocatalytically active mixture, method for forming titanium oxide film using them, method for producing titanium oxide coated body, titanium oxide coated body obtained therefrom, and titanium oxide film forming solution used therefor | |
JP2002071298A (en) | Photocatalytic heat exchanger | |
JPH08252305A (en) | Air purifying sheet and its manufacture | |
RU2482912C1 (en) | Method of producing filtering-sorbing material with photo catalytic properties | |
JP2000237597A (en) | Photocatalyst composite material | |
JPH08131834A (en) | Titanium oxide sol for photocatalyst and multifunctional member having photocatalytic action | |
JP4570637B2 (en) | Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same | |
JP2005274477A (en) | Method of measuring chemical substance decomposition ability of photocatalyst, and measuring instrument therefor | |
JP2008183522A (en) | Photocatalytic air cleaner | |
JPH10180044A (en) | Fluid purifier utilizing photocatalyst | |
JP2001079978A (en) | Hydrophilic member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040907 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050125 |