JPH09214140A - Multilayered printed wiring board and its manufacture - Google Patents
Multilayered printed wiring board and its manufactureInfo
- Publication number
- JPH09214140A JPH09214140A JP8268344A JP26834496A JPH09214140A JP H09214140 A JPH09214140 A JP H09214140A JP 8268344 A JP8268344 A JP 8268344A JP 26834496 A JP26834496 A JP 26834496A JP H09214140 A JPH09214140 A JP H09214140A
- Authority
- JP
- Japan
- Prior art keywords
- insulating resin
- resin layer
- layer
- printed wiring
- wiring board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Production Of Multi-Layered Print Wiring Board (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は絶縁樹脂層と導体配
線層を交互に積層して形成される、いわゆる、ビルドア
ップ法による多層プリント配線板とその製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called build-up multilayer printed wiring board formed by alternately laminating insulating resin layers and conductor wiring layers, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】電子機器への高機能化、小型化、軽量化
等の要求に対し、それに組み込まれるプリント配線板に
対しても高配線密度化、薄型化の要求が高まっている。
これらの要求に対応する一つのプリント配線板の構成と
して、ビルドアップ工法プリント配線板があげられる。2. Description of the Related Art As electronic devices are required to have higher functionality, smaller size and lighter weight, printed wiring boards incorporated therein are also required to have higher wiring density and thinner thickness.
A build-up method printed wiring board can be cited as one printed wiring board configuration that meets these requirements.
【0003】ビルドアップ工法とは、基板上に絶縁樹脂
層と導体配線層とを交互に積み上げていく方式であり、
たとえば、特開平4−148590に記載されている。
この工法にて作製されたプリント配線板の絶縁層は、従
来のプリント配線板の絶縁層のように、ガラスクロスな
どの芯材に絶縁樹脂を含浸させて形成させたものではな
く、芯材を使用せず、感光性樹脂組成物を絶縁性基板上
に塗布し、硬化させることにより形成される。このた
め、従来のプリント配線板に比べ、薄膜化、軽量化を図
ることができる。The build-up method is a method in which insulating resin layers and conductor wiring layers are alternately stacked on a substrate.
For example, it is described in JP-A-4-148590.
The insulating layer of a printed wiring board manufactured by this method is not formed by impregnating a core material such as glass cloth with an insulating resin like an insulating layer of a conventional printed wiring board, and is formed by a core material. It is formed by applying a photosensitive resin composition onto an insulating substrate and curing it without using it. Therefore, it is possible to reduce the thickness and weight of the printed wiring board as compared with the conventional printed wiring board.
【0004】また、上下の導体配線層の導通は、樹脂組
成物の感光性を利用してフォトリソグラフィーによる微
細な貫通孔を形成し、めっきにて導通をとることができ
る。この孔をフォトバイアホールと呼ぶ。このため、従
来のプリント配線板の導通方法であるドリルによるスル
ーホールにおいて、その径は、0.3mmが限界である
のに対し、ビルドアップ工法のフォトリソグラフィーに
よるフォトバイアホール径は0.1mm以下も可能とな
る。このことは、配線面上のランド径を小さくすること
が可能であることを意味し、配線の高密度化を図ること
ができる。The upper and lower conductor wiring layers can be electrically connected by plating by forming fine through holes by photolithography utilizing the photosensitivity of the resin composition. This hole is called a photo via hole. For this reason, the diameter of a through hole formed by a drill, which is a conventional printed wiring board conduction method, is limited to 0.3 mm, while the diameter of a photo via hole formed by photolithography of a build-up method is 0.1 mm or less. Will also be possible. This means that the land diameter on the wiring surface can be reduced, and the wiring density can be increased.
【0005】[0005]
【発明が解決しようとする課題】ところで、ビルドアッ
プ工法における導体配線層は、上記感光性樹脂組成物の
硬化樹脂層上に無電解めっきによって形成される。一般
的に、絶縁樹脂層上の無電解めっき層の接着力は低い。
特に、高密度配線の要求により、その幅は0.1mm以
下になり、ますます接着力は低くなる傾向にある。接着
力の低下は製品の信頼性に大きく影響を与える。By the way, the conductor wiring layer in the build-up method is formed by electroless plating on the cured resin layer of the above-mentioned photosensitive resin composition. Generally, the adhesive force of the electroless plating layer on the insulating resin layer is low.
In particular, due to the demand for high-density wiring, the width thereof becomes 0.1 mm or less, and the adhesive force tends to become even lower. The decrease in adhesive strength greatly affects the reliability of the product.
【0006】絶縁樹脂層上の無電解めっき膜の接着力向
上のためのめっき前処理の常法として、過マンガン酸塩
や重クロム酸塩などの酸化剤処理があげられる。この方
法は、酸化分解による表面の粗面化、めっき液の濡れ性
向上、めっき金属との結合性付与等により接着力が上が
ると思われる。[0006] As a conventional method of pretreatment for plating for improving the adhesive strength of the electroless plated film on the insulating resin layer, treatment with an oxidizing agent such as permanganate or dichromate can be mentioned. This method is thought to increase the adhesive strength by roughening the surface by oxidative decomposition, improving the wettability of the plating solution, imparting a bondability with the plating metal, and the like.
【0007】信頼性のあるめっき接着強度の目安とし
て、90°引き剥がし強度が1000g/cmであると
言われている。絶縁樹脂層として一般的なエポキシ樹脂
系を使用した場合、上記酸化処理を施しても、めっき接
着強度は500g/cmである。したがって、接着強度
のさらなる向上が必要となる。It is said that the 90 ° peeling strength is 1000 g / cm as a measure of reliable plating adhesion strength. When a general epoxy resin system is used as the insulating resin layer, the plating adhesion strength is 500 g / cm even when the above-mentioned oxidation treatment is performed. Therefore, it is necessary to further improve the adhesive strength.
【0008】絶縁樹脂層上の無電解めっき膜のさらなる
接着力向上についてはさまざま提案がされているが、そ
の多くは、より大きなアンカー形成用凹部を設けること
について述べられている。たとえば、特開平2−188
992の公報では、酸化剤に対して難溶性の耐熱性樹脂
中に、酸化剤に可溶な平均粒径2〜10μmの耐熱性樹
脂粒子と平均粒径2μmの耐熱性樹脂粒子の混合物を、
あるいは、平均粒径2〜10μmの耐熱性樹脂粒子と平
均粒径2μmの耐熱性樹脂粒子の疑似粒子を混合するこ
とにより、酸化剤処理後の絶縁樹脂層にアンカー形成用
の凹部を設け、めっき膜の接着強度向上が図られてい
る。Various proposals have been made for further improving the adhesive strength of the electroless plated film on the insulating resin layer, but most of them have been described for providing a larger recess for forming an anchor. For example, Japanese Patent Laid-Open No. 2-188
In the publication of 992, a mixture of heat-resistant resin particles having an average particle diameter of 2 to 10 μm and heat-resistant resin particles having an average particle diameter of 2 μm, which is soluble in the oxidant, is added to a heat-resistant resin which is hardly soluble in the oxidant.
Alternatively, by mixing heat-resistant resin particles having an average particle diameter of 2 to 10 μm and pseudo particles of heat-resistant resin particles having an average particle diameter of 2 μm, a recess for anchor formation is provided in the insulating resin layer after the oxidant treatment, and plating is performed. The adhesive strength of the film is improved.
【0009】しかしながら、この提案では、アンカーと
なるべき凹部が大きすぎ、凹部に配線の端部がかかって
しまう場合、配線の直線性が失われるという問題が起こ
る。すなわち、エッチングによる導体配線層形成方法で
あるサブトラクティブ法においては、めっきによって析
出した凹部内部金属のエッチング残りが発生する。ま
た、めっきにて導体配線層を形成するアディティブ法に
おいては、凹部へのめっきレジストの被覆が不完全にな
り、凹部内部にめっき金属が析出してしまう。このた
め、導体配線層の直線性が失われる。特に、50μm程
度、あるいは、それ以下の線幅の要求に対し、線幅のば
らつきは無視できなくなり、高速信号波形の歪みを引き
起こす原因となる。[0009] However, in this proposal, when the recess to be the anchor is too large and the end of the wiring is caught in the recess, there is a problem that the linearity of the wiring is lost. That is, in the subtractive method, which is a method of forming a conductor wiring layer by etching, an etching residue of the metal inside the recesses deposited by plating occurs. In addition, in the additive method of forming the conductor wiring layer by plating, the coating of the plating resist on the recess is incomplete, and the plating metal is deposited inside the recess. Therefore, the linearity of the conductor wiring layer is lost. Particularly, when the line width is required to be about 50 μm or less, the variation in the line width cannot be ignored, which causes the distortion of the high-speed signal waveform.
【0010】また、上記の凹部の形状が複雑であるた
め、めっき金属と絶縁樹脂間に空気層を形成し易く、め
っき膜の接着強度が高いにもかかわらず、後プロセスの
熱履歴により空気層の膨張が起こり、局所的に導体配線
層が剥離を起こすといった問題があった。Further, since the shape of the above-mentioned recess is complicated, it is easy to form an air layer between the plating metal and the insulating resin. However, there is a problem that the conductor wiring layer locally peels off.
【0011】本発明では、上記問題を解決すべく、導体
配線層線幅のばらつきを最小限にし、且つ、絶縁樹脂層
との高い接着強度を有し、局所的に導体配線層の剥離の
起こらない、信頼性の高い多層プリント配線板とその製
造方法を提供するものである。In order to solve the above problems, the present invention minimizes the variation in the line width of the conductor wiring layer, has a high adhesive strength with the insulating resin layer, and locally peels the conductor wiring layer. The present invention provides a highly reliable multilayer printed wiring board and a manufacturing method thereof.
【0012】[0012]
【課題を解決するための手段】本発明において上記課題
を達成するために、まず請求項1においては、絶縁性基
板上に導体配線層と絶縁樹脂層とが交互に形成されてい
る多層プリント配線板において、前記絶縁樹脂層の表面
に、該絶縁樹脂層と化学的共有結合を有する接着層が形
成されていることを特徴とする多層プリント配線板とし
たものである。In order to achieve the above object in the present invention, first, in claim 1, a multilayer printed wiring in which conductive wiring layers and insulating resin layers are alternately formed on an insulating substrate. The board is a multilayer printed wiring board characterized in that an adhesive layer having a chemical covalent bond with the insulating resin layer is formed on the surface of the insulating resin layer.
【0013】また、請求項2においては、前記接着層が
極性基を有する樹脂層からなるようにしたものである。According to a second aspect of the present invention, the adhesive layer is made of a resin layer having a polar group.
【0014】また、請求項3においては、前記絶縁樹脂
層の表面に加熱処理を行い、該絶縁樹脂層上にラジカル
活性点を設け、そのラジカル活性点を開始点として、モ
ノマーを重合することにより前記接着層を形成するよう
にした多層プリント配線板の製造方法としたものであ
る。Further, in the present invention, the surface of the insulating resin layer is subjected to heat treatment, radical active points are provided on the insulating resin layer, and the monomer is polymerized with the radical active points as starting points. This is a method for manufacturing a multilayer printed wiring board in which the adhesive layer is formed.
【0015】また、請求項4においては、前記絶縁樹脂
層の表面に光照射を行い、該絶縁樹脂層上にラジカル活
性点を設け、そのラジカル活性点を開始点として、モノ
マーを重合することにより前記接着層を形成するように
した多層プリント配線板の製造方法としたものである。According to a fourth aspect of the present invention, the surface of the insulating resin layer is irradiated with light to provide radical active points on the insulating resin layer, and the monomers are polymerized with the radical active points as starting points. This is a method for manufacturing a multilayer printed wiring board in which the adhesive layer is formed.
【0016】また、請求項5においては、前記絶縁樹脂
層の表面にγ線照射を行い、該絶縁樹脂層上にラジカル
活性点を設け、そのラジカル活性点を開始点として、モ
ノマーを重合することにより前記接着層を形成するよう
にした多層プリント配線板の製造方法としたものであ
る。Further, in claim 5, the surface of the insulating resin layer is irradiated with γ-rays to provide radical active points on the insulating resin layer, and the monomer is polymerized with the radical active points as starting points. The method for producing a multi-layer printed wiring board in which the adhesive layer is formed by
【0017】また、請求項6においては、前記絶縁樹脂
層の表面に電子線照射を行い、該絶縁樹脂層上にラジカ
ル活性点を設け、そのラジカル活性点を開始点として、
モノマーを重合することにより前記接着層を形成するよ
うにした多層プリント配線板の製造方法としたものであ
る。In the present invention, the surface of the insulating resin layer is irradiated with an electron beam to provide radical active points on the insulating resin layer, and the radical active points are used as starting points.
This is a method for producing a multilayer printed wiring board in which the adhesive layer is formed by polymerizing a monomer.
【0018】また、請求項7においては、前記絶縁樹脂
層の表面にプラズマ処理を行い、該絶縁樹脂層上にラジ
カル活性点を設け、そのラジカル活性点を開始点とし
て、モノマーを重合することにより前記接着層を形成す
るようにした多層プリント配線板の製造方法としたもの
である。Further, in the present invention, the surface of the insulating resin layer is subjected to plasma treatment, radical active points are provided on the insulating resin layer, and the monomer is polymerized with the radical active points as starting points. This is a method for manufacturing a multilayer printed wiring board in which the adhesive layer is formed.
【0019】[0019]
【発明の実施の形態】以下、本発明を詳細に説明する。
絶縁樹脂層の表面に、その絶縁樹脂層と化学的共有結合
を有する接着層を形成させる。さらに、その接着層は極
性基を有する樹脂層からなる。めっき金属層との接着強
度は、この接着層中の極性基との結合により高められ
る。極性基を有する樹脂は、吸水性が高く、さらに、誘
電率も高い傾向にあるので、バルクの絶縁層構成樹脂と
しては適用が難しい。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
An adhesive layer having a chemical covalent bond with the insulating resin layer is formed on the surface of the insulating resin layer. Further, the adhesive layer is composed of a resin layer having a polar group. The adhesive strength with the plated metal layer is enhanced by bonding with the polar group in the adhesive layer. Since a resin having a polar group tends to have high water absorption and a high dielectric constant, it is difficult to apply it as a bulk insulating layer constituent resin.
【0020】また、感光性を付与した接着樹脂を、絶縁
樹脂層に塗布することも考えられるが、絶縁樹脂層と接
着層との極性の差による塗布むら、あるいは、両者の間
の結合力が弱いために、層間剥離等が起こる。このた
め、接着樹脂を塗布する形態を取ることも難しい。It is also possible to apply an adhesive resin having photosensitivity to the insulating resin layer. However, uneven application due to a difference in polarity between the insulating resin layer and the adhesive layer, or a bonding force between the two may be applied. Since it is weak, delamination or the like occurs. Therefore, it is difficult to apply the adhesive resin.
【0021】常法として用いられる過マンガン酸塩や重
クロム酸塩は、その酸化剤としての働きにより、絶縁樹
脂表面に酸素原子が導入され、極性基が形成される。し
かし、このような酸化反応は、たとえば、グリシジル基
とか炭素・炭素二重結合部など限られた部位でしか起こ
らず、極性基の形成が絶縁樹脂の構造によって左右され
る。エポキシ樹脂系では、上記酸化反応が起こり易いと
推測されるが、信頼性のあるめっき膜の接着強度100
0g/cmまでは到達されず、500g/cm前後であ
る。The permanganate or dichromate used as a conventional method acts as an oxidant to introduce an oxygen atom into the surface of the insulating resin to form a polar group. However, such an oxidation reaction occurs only at a limited site such as a glycidyl group or a carbon-carbon double bond portion, and the formation of the polar group depends on the structure of the insulating resin. It is presumed that the above-mentioned oxidation reaction is likely to occur in the epoxy resin system, but the adhesive strength of the plated film is 100, which is reliable.
It does not reach 0 g / cm and is around 500 g / cm.
【0022】本発明によれば、接着層を形成する樹脂
が、下層の絶縁樹脂層と化学的共有結合により強固に結
合されているため、絶縁樹脂層と接着層の層間剥離が発
生しない。接着層厚は1μm以下であり、接着層を含め
た絶縁樹脂層全体の、ガラス転移温度や誘電率等の絶縁
樹脂特性にほとんど影響を与えない。また、絶縁樹脂層
の構成樹脂のみと化学的共有結合をするため、バイアホ
ール形成孔を形成した後に接着層を形成することがで
き、バイアホール形成孔側面のめっき強度の向上も図れ
る。According to the present invention, since the resin forming the adhesive layer is firmly bonded to the lower insulating resin layer by a chemical covalent bond, delamination between the insulating resin layer and the adhesive layer does not occur. The thickness of the adhesive layer is 1 μm or less, and has almost no effect on the insulating resin properties such as the glass transition temperature and the dielectric constant of the entire insulating resin layer including the adhesive layer. Further, since the chemical covalent bond is formed only with the constituent resin of the insulating resin layer, the adhesive layer can be formed after the via hole forming hole is formed, and the plating strength on the side surface of the via hole forming hole can be improved.
【0023】次に、請求項3に記載の接着層形成方法に
ついて説明する。あらかじめ、絶縁樹脂上に過酸化化合
物を吸着させた基板を100℃にて加熱処理し、絶縁樹
脂上にラジカル活性点を形成する。さらに、極性基を有
するモノマー溶液中に基板を浸漬することにより、上記
ラジカル活性点からモノマーの重合が開始される。得ら
れた重合体は絶縁樹脂と強固に結合した接着層を形成す
る。Next, a method for forming an adhesive layer according to claim 3 will be described. A substrate in which a peroxide compound is adsorbed on an insulating resin is heat-treated at 100 ° C. in advance to form radical active points on the insulating resin. Further, by immersing the substrate in the polar group-containing monomer solution, the polymerization of the monomer is initiated from the radical active point. The resulting polymer forms an adhesive layer that is firmly bonded to the insulating resin.
【0024】過酸化化合物としては、過酸化ベンゾイ
ル、過酸化アンモニウム、過酸化カリウム、過酸化ラウ
ロイルなどがあげられる。また、この他に、アゾビスイ
ソブチロニトリルも用いることができる。Examples of the peroxide compound include benzoyl peroxide, ammonium peroxide, potassium peroxide and lauroyl peroxide. In addition to this, azobisisobutyronitrile can also be used.
【0025】また、極性基を有するモノマーとしては、
酸素原子、窒素原子、硫黄原子等を含むイオン化されて
いないモノマーであれば良く、好ましくは、アクリルア
ミド、N,N−ジメチルアクリルアミド、N,N−ジメ
チルアミノエチル(メタ)アクリレート、2−ヒドロキ
シエチル(メタ)アクリレート、メトキシテトラエチレ
ングリコール(メタ)アクリレートなどがあげられる。Further, as the monomer having a polar group,
Any non-ionized monomer containing an oxygen atom, a nitrogen atom, a sulfur atom, etc. may be used, and preferably acrylamide, N, N-dimethylacrylamide, N, N-dimethylaminoethyl (meth) acrylate, 2-hydroxyethyl ( Examples thereof include (meth) acrylate and methoxytetraethylene glycol (meth) acrylate.
【0026】次に、請求項4に記載の接着層形成方法に
ついて説明する。あらかじめ、絶縁樹脂層上に増感剤を
コーティングした基板を、極性基を有するモノマー溶液
中に浸漬し、光照射を行う。絶縁樹脂層上に発生したラ
ジカル活性点からモノマーの重合が開始される。得られ
た重合体は絶縁樹脂と強固に結合した接着剤層を形成す
る。Next, a method for forming an adhesive layer according to claim 4 will be described. A substrate in which an insulating resin layer is coated with a sensitizer in advance is immersed in a monomer solution having a polar group, and light irradiation is performed. Polymerization of the monomer is started from radical active points generated on the insulating resin layer. The resulting polymer forms an adhesive layer that is firmly bonded to the insulating resin.
【0027】増感剤としては、水素引き抜き型であるベ
ンゾフェノン類、アセトフェノン類、アントラキノン類
を使用することができる。たとえば、ベンゾフェノン、
4−N,N−ジメチルアミノ−4’−メトキシ−ベンゾ
フェノン、2,2−ジエトキシアセトフェノン、2,2
−ジメトキシ−2−フェニルアセトフェノン、2−メチ
ルアントラキノン、2−エチルアントラキノンなどがあ
げられる。As the sensitizer, benzophenones, acetophenones and anthraquinones, which are hydrogen abstraction type, can be used. For example, benzophenone,
4-N, N-dimethylamino-4′-methoxy-benzophenone, 2,2-diethoxyacetophenone, 2,2
-Dimethoxy-2-phenylacetophenone, 2-methylanthraquinone, 2-ethylanthraquinone and the like can be mentioned.
【0028】次に、請求項5に記載の接着層形成方法に
ついて説明する。あらかじめ脱気した、極性基を有する
モノマー溶液中に基板を浸漬する。絶縁樹脂層に、線源
としてCo−60のγ線を照射してその表面にラジカル
活性点を形成し、このラジカル活性点からモノマーの重
合が開始される。得られた重合体は絶縁樹脂と強固に結
合した接着層を形成する。Next, a method for forming an adhesive layer according to claim 5 will be described. The substrate is immersed in a previously degassed monomer solution having a polar group. The insulating resin layer is irradiated with γ-rays of Co-60 as a radiation source to form radical active points on the surface, and the polymerization of the monomer is started from the radical active points. The resulting polymer forms an adhesive layer that is firmly bonded to the insulating resin.
【0029】次に、請求項6に記載の接着層形成方法に
ついて説明する。絶縁樹脂層に、電子線を照射してその
表面にラジカル活性点を形成する。さらに、極性基を有
するモノマー溶液中に基板を浸漬することにより、上記
ラジカル活性点からモノマーの重合が開始される。得ら
れた重合体は絶縁樹脂と強固に結合した接着層を形成す
る。Next, a method for forming an adhesive layer according to claim 6 will be described. The insulating resin layer is irradiated with an electron beam to form radical active points on its surface. Further, by immersing the substrate in the polar group-containing monomer solution, the polymerization of the monomer is initiated from the radical active point. The resulting polymer forms an adhesive layer that is firmly bonded to the insulating resin.
【0030】次に、請求項7に記載の接着層形成方法に
ついて説明する。絶縁樹脂層に、プラズマ処理を行いそ
の表面にラジカル活性点を形成する。さらに、極性基を
有するモノマー溶液中に基板を浸漬することにより、上
記ラジカル活性点からモノマーの重合が開始される。得
られた重合体は絶縁樹脂と強固に結合した接着層を形成
する。Next, a method for forming an adhesive layer according to claim 7 will be described. Plasma treatment is applied to the insulating resin layer to form radical active points on the surface thereof. Further, by immersing the substrate in the polar group-containing monomer solution, the polymerization of the monomer is initiated from the radical active point. The resulting polymer forms an adhesive layer that is firmly bonded to the insulating resin.
【0031】このようにして絶縁樹脂層上に形成された
接着層は、めっき金属と配位結合を形成し、信頼性の高
い導体配線層を形成することが可能となる。The adhesive layer thus formed on the insulating resin layer forms a coordinate bond with the plating metal to form a highly reliable conductor wiring layer.
【0032】[0032]
【実施例】以下、本発明を実施例により具体的に説明す
る。 <実施例1> (接着層の形成例1)導体配線層を設けたガラス−エポ
キシ絶縁性基板上に、感光性樹脂(プロビマー52(チ
バガイギ社製))をロールコータにて塗布し、80℃、
30分にてプリベークを行い、感光性絶縁樹脂層を形成
した。このときの膜厚は約50μmであった。この感光
性絶縁樹脂層に所定のバイアパターンを有するマスクを
介して、1kWの超高圧水銀灯にて、3000mJ/c
m2 で露光を行い、専用現像液にてスプレー現像を行
い、130℃、1時間でポストベークを行い、絶縁樹脂
層を形成した。The present invention will be described below in more detail with reference to examples. <Example 1> (Formation example 1 of adhesive layer) A glass-epoxy insulating substrate provided with a conductor wiring layer was coated with a photosensitive resin (Provimer 52 (manufactured by Ciba-Geigy Co., Ltd.)) by a roll coater, and then at 80 ° C. ,
Prebaking was performed for 30 minutes to form a photosensitive insulating resin layer. The film thickness at this time was about 50 μm. 3000 mJ / c with an ultrahigh pressure mercury lamp of 1 kW through a mask having a predetermined via pattern on this photosensitive insulating resin layer.
Exposure was performed at m 2 , spray development was performed with a dedicated developing solution, and post baking was performed at 130 ° C. for 1 hour to form an insulating resin layer.
【0033】上記絶縁樹脂層に、100mlのベンゼン
に溶解した0.5gの過酸化ベンゾイル溶液を塗布し、
溶媒を除去した。さらにこの基板を100℃に加熱した
後、アクリルアミドモノマー水溶液中に浸漬し、60
℃、窒素バブリングを行いながら1時間放置した。反応
後、70℃の温水にて洗浄し、下地の絶縁樹脂層と結合
していないポリアクリルアミドを除去し、接着層を形成
した。この接着層上に無電解銅めっき、電解銅めっきに
て20μm厚の導体層を形成した。On the insulating resin layer, 0.5 g of benzoyl peroxide solution dissolved in 100 ml of benzene was applied,
The solvent was removed. Furthermore, after heating this substrate to 100 ° C., it is immersed in an aqueous solution of acrylamide monomer,
The mixture was allowed to stand for 1 hour while carrying out nitrogen bubbling at ℃. After the reaction, it was washed with hot water at 70 ° C. to remove polyacrylamide that was not bonded to the underlying insulating resin layer, to form an adhesive layer. A conductor layer having a thickness of 20 μm was formed on the adhesive layer by electroless copper plating and electrolytic copper plating.
【0034】<実施例2> (接着層の形成例2)導体配線層を設けたガラス−エポ
キシ絶縁性基板上に、実施例1と同様な工程で形成した
絶縁樹脂層に、100mlのアセトンに溶解した0.5
gのベンゾフェノン溶液を塗布し、溶媒を除去した。こ
の基板を60℃に加熱したアクリルアミドモノマー水溶
液中に浸漬し、窒素バブリングを行いながら絶縁樹脂層
表面を1kW超高圧水銀灯により1時間照射した。反応
後、70℃の温水にて洗浄し、下地の絶縁樹脂層と結合
していないポリアクリルアミドを除去し、接着層を形成
した。この接着層上に無電解銅めっき、電解銅めっきに
て20μm厚の導体層を形成した。Example 2 (Formation Example 2 of Adhesive Layer) An insulating resin layer formed in the same process as in Example 1 was coated with 100 ml of acetone on a glass-epoxy insulating substrate provided with a conductor wiring layer. Melted 0.5
g of benzophenone solution was applied and the solvent was removed. This substrate was immersed in an acrylamide monomer aqueous solution heated to 60 ° C., and the surface of the insulating resin layer was irradiated with a 1 kW ultra-high pressure mercury lamp for 1 hour while performing nitrogen bubbling. After the reaction, it was washed with hot water at 70 ° C. to remove polyacrylamide that was not bonded to the underlying insulating resin layer, to form an adhesive layer. A conductor layer having a thickness of 20 μm was formed on the adhesive layer by electroless copper plating and electrolytic copper plating.
【0035】<実施例3> (接着層の形成例3)あらかじめ絶縁処理を加えたシリ
コン基板上に、感光性樹脂(フォトニース(東レ社
製))をスピンコータにて1000rpmで塗布し、8
0℃、60分にてプリベークを行い、感光性絶縁樹脂層
を形成した。このときの膜厚は約20μmであった。こ
の感光性絶縁樹脂層に所定のバイアパターンを有するマ
スクを介して、1kWの超高圧水銀灯にて、200mJ
/cm2 の露光量で露光を行い、専用現像液にて、スプ
レー現像を行い、さらに、180℃(30分)、250
℃(30分)、400℃(1時間)のポストベークを行
い、絶縁樹脂層を形成した。Example 3 (Formation Example 3 of Adhesive Layer) A photosensitive resin (Photo Nice (manufactured by Toray Industries, Inc.)) was applied on a silicon substrate which had been previously subjected to an insulation treatment at 1000 rpm by a spin coater, and 8
Prebaking was performed at 0 ° C. for 60 minutes to form a photosensitive insulating resin layer. The film thickness at this time was about 20 μm. 200 mJ with an ultrahigh pressure mercury lamp of 1 kW through a mask having a predetermined via pattern on this photosensitive insulating resin layer.
Exposure with an exposure amount of / cm 2 , spray development with a dedicated developer, and 180 ° C (30 minutes), 250
The insulating resin layer was formed by post-baking at ℃ (30 minutes) and 400 ℃ (1 hour).
【0036】上記絶縁樹脂層に、100mlのアセトン
に溶解した0.5gのベンゾフェノン溶液を塗布し、溶
媒を除去した。この基板を60℃に加熱したN,N−ジ
メチルアクリルアミドモノマー水溶液中に浸漬し、窒素
バブリングを行いながら絶縁樹脂層表面を1kW超高圧
水銀灯により1時間照射した。反応後、70℃の温水に
て洗浄し、下地の絶縁樹脂と結合していないポリ(N,
N−ジメチルアクリルアミド)を除去し、接着層を形成
した。この接着層上に無電解銅めっき、電解銅めっきに
て20μm厚の導体層を形成した。The above insulating resin layer was coated with 0.5 g of a benzophenone solution dissolved in 100 ml of acetone to remove the solvent. This substrate was immersed in an aqueous solution of N, N-dimethylacrylamide monomer heated to 60 ° C., and the surface of the insulating resin layer was irradiated with a 1 kW ultra-high pressure mercury lamp for 1 hour while performing nitrogen bubbling. After the reaction, washing with warm water at 70 ° C. was performed to remove poly (N,
(N-dimethylacrylamide) was removed to form an adhesive layer. A conductor layer having a thickness of 20 μm was formed on the adhesive layer by electroless copper plating and electrolytic copper plating.
【0037】<実施例4> (接着層の形成例4)あらかじめ、脱気しておいたアク
リルアミドモノマー水溶液中に、導体配線層を設けたガ
ラス−エポキシ絶縁性基板上に、実施例1と同様な工程
で形成した絶縁樹脂層を含む基板を浸漬し、この絶縁樹
脂層表面に、60Coのγ線を104 r照射した。反応
後、70℃の温水にて洗浄し、下地の絶縁樹脂層と結合
していないポリアクリルアミドを除去し、接着層を形成
した。この接着層上に無電解銅めっき、電解銅めっきに
て20μm厚の導体層を形成した。Example 4 (Formation Example 4 of Adhesive Layer) Same as Example 1 on a glass-epoxy insulating substrate provided with a conductor wiring layer in an aqueous solution of acrylamide monomer which has been degassed in advance. The substrate including the insulating resin layer formed in the other steps was dipped, and the surface of the insulating resin layer was irradiated with 10 4 r of 60 Co γ rays. After the reaction, it was washed with hot water at 70 ° C. to remove polyacrylamide that was not bonded to the underlying insulating resin layer, to form an adhesive layer. A conductor layer having a thickness of 20 μm was formed on the adhesive layer by electroless copper plating and electrolytic copper plating.
【0038】<実施例5> (接着層の形成例5)導体配線層を設けたガラス−エポ
キシ絶縁性基板上に、実施例1と同様な工程で形成した
絶縁樹脂層表面に、エリア型電子線照射装置にて、加速
電圧200kV、10Mrad(電流値37.5mA、
ラインスピード20m/分)の条件で電子線照射を行っ
た。その後、この基板をアクリルアミドモノマー水溶液
中に浸漬し、60℃、窒素バブリングを行いながら1時
間放置した。反応後、70℃の温水にて洗浄し、下地の
絶縁樹脂層と結合していないポリアクリルアミドを除去
し、接着層を形成した。この接着層上に無電解銅めっ
き、電解銅めっきにて20μm厚の導体層を形成した。Example 5 (Formation Example 5 of Adhesive Layer) An area-type electron was formed on the surface of an insulating resin layer formed in the same process as in Example 1 on a glass-epoxy insulating substrate provided with a conductor wiring layer. With a beam irradiation device, an acceleration voltage of 200 kV, 10 Mrad (current value of 37.5 mA,
The electron beam irradiation was performed under the conditions of a line speed of 20 m / min). Then, this substrate was immersed in an aqueous solution of acrylamide monomer and left at 60 ° C. for 1 hour while bubbling nitrogen. After the reaction, it was washed with hot water at 70 ° C. to remove polyacrylamide that was not bonded to the underlying insulating resin layer, to form an adhesive layer. A conductor layer having a thickness of 20 μm was formed on the adhesive layer by electroless copper plating and electrolytic copper plating.
【0039】<実施例6> (接着層の形成例6)導体配線層を設けたガラス−エポ
キシ絶縁性基板上に、実施例1と同様な工程で形成した
絶縁樹脂層に、0.4Torr、Ar雰囲気下200W
のパワーをかけ、1時間プラズマ処理を行った。その
後、この基板をアクリルアミドモノマー水溶液中に浸漬
し、60℃、窒素バブリングを行いながら1時間放置し
た。反応後、70℃の温水にて洗浄し、下地の絶縁樹脂
層と結合していないポリアクリルアミドを除去し、接着
層を形成した。この接着層上に無電解銅めっき、電解銅
めっきにて20μm厚の導体層を形成した。Example 6 (Formation Example 6 of Adhesive Layer) On a glass-epoxy insulating substrate provided with a conductor wiring layer, an insulating resin layer formed by the same process as in Example 1 was coated with 0.4 Torr, 200 W under Ar atmosphere
Was applied and plasma treatment was performed for 1 hour. Then, this substrate was immersed in an aqueous solution of acrylamide monomer and left at 60 ° C. for 1 hour while bubbling nitrogen. After the reaction, it was washed with hot water at 70 ° C. to remove polyacrylamide that was not bonded to the underlying insulating resin layer, to form an adhesive layer. A conductor layer having a thickness of 20 μm was formed on the adhesive layer by electroless copper plating and electrolytic copper plating.
【0040】<比較例1>導体配線層を設けたガラス−
エポキシ絶縁性基板上に、感光性樹脂(プロビマー52
(チバガイギ社製))をロールコータにて塗布し、80
℃、30分にてプリベークを行い、感光性絶縁樹脂層を
形成した。このときの膜厚は約50μmであった。この
感光性絶縁樹脂層に所定のバイアパターンを有するマス
クを介して、1kWの超高圧水銀灯にて、3000mJ
/cm2 の露光量で露光を行い、専用現像液にてスプレ
ー現像を行い、130℃、1時間でポストベークを行
い、絶縁樹脂層を形成した。<Comparative Example 1> Glass provided with a conductor wiring layer
Photosensitive resin (Provimer 52
(Made by Ciba-Gaigi Co., Ltd.) is applied by a roll coater,
Prebaking was performed at 30 ° C. for 30 minutes to form a photosensitive insulating resin layer. The film thickness at this time was about 50 μm. 3000 mJ with an ultrahigh pressure mercury lamp of 1 kW through a mask having a predetermined via pattern on this photosensitive insulating resin layer.
Exposure was performed with an exposure amount of / cm 2 , spray development was performed with a dedicated developer, and post-baking was performed at 130 ° C. for 1 hour to form an insulating resin layer.
【0041】上記絶縁樹脂層表面を、50℃に加熱した
過マンガン酸カリウム(50g/l)、水酸化ナトリウ
ム(20g/l)水溶液中にて酸化処理した。この上
に、無電解銅めっき、電解銅めっきにて20μm厚の導
体層を形成した。The surface of the insulating resin layer was subjected to oxidation treatment in an aqueous solution of potassium permanganate (50 g / l) and sodium hydroxide (20 g / l) heated to 50 ° C. On this, a conductor layer having a thickness of 20 μm was formed by electroless copper plating and electrolytic copper plating.
【0042】<比較例2>あらかじめ絶縁処理を加えた
シリコン基板上に、感光性樹脂(フォトニース(東レ社
製))をスピンコータにて1000rpmで塗布し、8
0℃、60分にてプリベークを行い、感光性絶縁樹脂層
を形成した。このときの膜厚は約20μmであった。こ
の感光性絶縁樹脂層に所定のバイアパターンを有するマ
スクを介して、1kWの超高圧水銀灯にて、200mJ
/cm2 の露光量で露光を行い、専用現像液にて、スプ
レー現像を行い、さらに、180℃(30分)、250
℃(30分)、400℃(1時間)のポストベークを行
い、絶縁樹脂層を形成した。<Comparative Example 2> A photosensitive resin (Photo Nice (manufactured by Toray Industries, Inc.)) was applied at 1000 rpm by a spin coater on a silicon substrate which had been previously subjected to an insulation treatment.
Prebaking was performed at 0 ° C. for 60 minutes to form a photosensitive insulating resin layer. The film thickness at this time was about 20 μm. 200 mJ with an ultrahigh pressure mercury lamp of 1 kW through a mask having a predetermined via pattern on this photosensitive insulating resin layer.
Exposure with an exposure amount of / cm 2 , spray development with a dedicated developer, and 180 ° C (30 minutes), 250
The insulating resin layer was formed by post-baking at ℃ (30 minutes) and 400 ℃ (1 hour).
【0043】上記絶縁樹脂層表面を、50℃に加熱した
過マンガン酸カリウム(50g/l)、水酸化ナトリウ
ム(20g/l)水溶液中にて酸化処理した。この上
に、無電解銅めっき、電解銅めっきにて20μm厚の導
体層を形成した。The surface of the insulating resin layer was subjected to oxidation treatment in an aqueous solution of potassium permanganate (50 g / l) and sodium hydroxide (20 g / l) heated to 50 ° C. On this, a conductor layer having a thickness of 20 μm was formed by electroless copper plating and electrolytic copper plating.
【0044】<めっき接着強度評価>実施例1から実施
例6、比較例1、比較例2で得られた各めっき導体層を
フォトエッチングプロセスにより幅10mm、長さ70
mmにパターン加工し、めっき接着強度測定用サンプル
を作製した。めっき接着強度の測定は、JIS−C64
81に基づいて行った。すなわち、基板を固定し、引き
剥がしためっき金属の一端を引張試験機のチャックに固
定し、基板に対して90°方向の引き剥がし強度を測定
した。<Evaluation of Plating Adhesive Strength> Each of the plated conductor layers obtained in Examples 1 to 6, Comparative Example 1 and Comparative Example 2 was subjected to a photoetching process to have a width of 10 mm and a length of 70.
A pattern was processed to have a size of mm to prepare a sample for measuring plating adhesion strength. The plating adhesion strength is measured according to JIS-C64
81. That is, the substrate was fixed, one end of the peeled-off plated metal was fixed to a chuck of a tensile tester, and the peeling strength in the 90 ° direction with respect to the substrate was measured.
【0045】[0045]
【表1】 [Table 1]
【0046】表1の測定結果からも分かるように、実施
例1から実施例6の基板については安定的な接着強度を
示した。As can be seen from the measurement results in Table 1, the substrates of Examples 1 to 6 showed stable adhesive strength.
【0047】<実施例7> (多層プリント配線板の製造方法1)1mm厚のガラス
−エポキシ基板からなる絶縁性基板1の両面に貼着され
た18μm厚の銅箔からなる両面銅張積層板の銅箔を、
フォトエッチング法によりパターン加工し、配線パター
ン2を形成した(図1(a)参照)。Example 7 (Manufacturing Method 1 of Multilayer Printed Wiring Board) Double-sided copper clad laminate made of 18 μm thick copper foil attached to both sides of an insulating substrate 1 made of 1 mm thick glass-epoxy substrate Of copper foil,
The wiring pattern 2 was formed by patterning by the photo etching method (see FIG. 1A).
【0048】次に、感光性樹脂(プロビマー52(チバ
ガイギ社製))をロールコータにて塗布し、80℃、3
0分にてプリベークを行い、感光性樹脂層3を形成した
(図1(b)参照)。このときの膜厚は約50μmであ
った。Next, a photosensitive resin (Provimer 52 (manufactured by Ciba-Geigy)) was applied by a roll coater, and the temperature was kept at 80.degree.
Prebaking was performed for 0 minutes to form the photosensitive resin layer 3 (see FIG. 1B). The film thickness at this time was about 50 μm.
【0049】次に、感光性樹脂層3に所定のバイアパタ
ーンを有するマスクを介して、1kWの超高圧水銀灯に
て、3000mJ/cm2 の露光量で露光を行い、専用
現像液にて、スプレー現像を行い、130℃、1時間の
条件でポストベークを行って、絶縁樹脂層4及び150
μm径のバイアホール形成孔5を形成した(図1(c)
参照)。Next, the photosensitive resin layer 3 is exposed through a mask having a predetermined via pattern with an ultrahigh pressure mercury lamp of 1 kW at an exposure dose of 3000 mJ / cm 2 , and sprayed with a dedicated developer. After development, post-baking is performed under the condition of 130 ° C. for 1 hour to obtain insulating resin layers 4 and 150.
A via hole forming hole 5 having a diameter of μm was formed (FIG. 1C).
reference).
【0050】次に、絶縁樹脂層4の表面に、100ml
のベンゼンに溶解した0.5gの過酸化ベンゾイル溶液
を塗布し、溶媒を除去した。さらに、この基板を100
℃に加熱した後、アクリルアミドモノマー水溶液中に浸
漬し、60℃、窒素バブリングを行いながら1時間放置
した。反応後、70℃の温水にて洗浄し、下地の絶縁樹
脂層4と結合していないポリアクリルアミドを除去し、
絶縁樹脂層4の表面に接着層6を形成した(図1(c)
参照)。Next, 100 ml is applied to the surface of the insulating resin layer 4.
0.5 g of benzoyl peroxide solution dissolved in benzene was applied and the solvent was removed. In addition, 100
After heating to ℃, it was immersed in an acrylamide monomer aqueous solution, and left at 60 ℃ for 1 hour while bubbling nitrogen. After the reaction, washing with warm water at 70 ° C. is performed to remove polyacrylamide that is not bonded to the underlying insulating resin layer 4.
The adhesive layer 6 was formed on the surface of the insulating resin layer 4 (FIG. 1C).
reference).
【0051】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層7及びバイアホール8を形成し
た(図1(d)参照)。Next, electroless copper plating and electrolytic copper plating were performed to form conductor layers 7 and via holes 8 having a thickness of 20 μm (see FIG. 1 (d)).
【0052】次に、導体層7をフォトエッチング法によ
りパターン加工し、導体配線層9を形成した(図1
(e)参照)。導体幅精度は50μm±5μmにおさま
り、直線性も良好であった。Next, the conductor layer 7 was patterned by a photoetching method to form a conductor wiring layer 9 (FIG. 1).
(E)). The conductor width accuracy was within 50 μm ± 5 μm, and the linearity was good.
【0053】次に、導体配線層9の配線間に露出してい
る接着層を除去するために、50℃に加熱した過マンガ
ン酸カリウム(50g/l)、水酸化ナトリウム(20
g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 9, potassium permanganate (50 g / l) and sodium hydroxide (20
(g / l) Oxidation treatment was performed for 30 seconds in an aqueous solution.
【0054】さらに、上記の操作を繰り返すことによ
り、複数の絶縁樹脂層と導体配線層とが交互に積層され
た多層プリント配線板10が得られた(図1(f)参
照)。Further, by repeating the above operation, a multilayer printed wiring board 10 in which a plurality of insulating resin layers and conductor wiring layers were alternately laminated was obtained (see FIG. 1 (f)).
【0055】<実施例8> (多層プリント配線板の製造方法2)実施例7と同様な
工程で1mm厚のガラス−エポキシ基板からなる絶縁性
基板1に配線パターン2、感光性樹脂層3、絶縁樹脂層
4及びバイアホール形成孔5を形成した(図1(a)〜
(c)参照)。<Example 8> (Manufacturing method 2 of multilayer printed wiring board) In the same steps as in Example 7, the wiring pattern 2, the photosensitive resin layer 3, and the wiring pattern 2 were formed on the insulating substrate 1 made of a glass-epoxy substrate having a thickness of 1 mm. The insulating resin layer 4 and the via hole forming hole 5 are formed (FIG. 1A).
(C)).
【0056】次に、絶縁樹脂層4の表面に、100ml
のアセトンに溶解した0.5gのベンゾフェノン溶液を
塗布し、溶媒を除去した。この基板を60℃に加熱した
アクリルアミドモノマー水溶液中に浸漬し、窒素バブリ
ングを行いながら絶縁樹脂層4の表面を1kW超高圧水
銀灯により1時間照射した。反応後、70℃の温水にて
洗浄し、下地の絶縁樹脂層4と結合していないポリアク
リルアミドを除去し、絶縁樹脂層4の表面に接着層6を
形成した(図1(c)参照)。Next, 100 ml is applied to the surface of the insulating resin layer 4.
0.5 g of a benzophenone solution dissolved in acetone was applied to remove the solvent. This substrate was immersed in an acrylamide monomer aqueous solution heated to 60 ° C., and the surface of the insulating resin layer 4 was irradiated with a 1 kW ultra-high pressure mercury lamp for 1 hour while nitrogen bubbling was performed. After the reaction, the polyacrylamide that was not bonded to the underlying insulating resin layer 4 was removed by washing with warm water at 70 ° C., and the adhesive layer 6 was formed on the surface of the insulating resin layer 4 (see FIG. 1C). .
【0057】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層7及びバイアホール8を形成し
た(図1(d)参照)。Next, electroless copper plating and electrolytic copper plating were performed to form a conductor layer 7 and via holes 8 having a thickness of 20 μm (see FIG. 1 (d)).
【0058】次に、導体層7をフォトエッチング法によ
りパターン加工し、導体配線層9を形成した(図1
(e)参照)。導体幅精度は50μm±5μmにおさま
り、直線性も良好であった。Next, the conductor layer 7 was patterned by a photoetching method to form a conductor wiring layer 9 (FIG. 1).
(E)). The conductor width accuracy was within 50 μm ± 5 μm, and the linearity was good.
【0059】次に、導体配線層9の配線間に露出してい
る接着層を除去するために、50℃に加熱した過マンガ
ン酸カリウム(50g/l)、水酸化ナトリウム(20
g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 9, potassium permanganate (50 g / l) and sodium hydroxide (20
(g / l) Oxidation treatment was performed for 30 seconds in an aqueous solution.
【0060】さらに、上記の操作を繰り返すことによ
り、複数の絶縁樹脂層と導体配線層とが交互に積層され
た多層プリント配線板10が得られた(図1(f)参
照)。Further, by repeating the above operation, a multilayer printed wiring board 10 in which a plurality of insulating resin layers and conductor wiring layers were alternately laminated was obtained (see FIG. 1 (f)).
【0061】<実施例9> (多層プリント配線板の製造方法3)実施例7と同様な
工程で1mm厚のガラス−エポキシ基板からなる絶縁性
基板1に配線パターン2、感光性樹脂層3、絶縁樹脂層
4及びバイアホール形成孔5を形成した(図1(a)〜
(c)参照)。<Example 9> (Manufacturing method 3 of multilayer printed wiring board) In the same steps as in Example 7, the wiring pattern 2, the photosensitive resin layer 3, and the wiring pattern 2 were formed on the insulating substrate 1 made of a glass-epoxy substrate having a thickness of 1 mm. The insulating resin layer 4 and the via hole forming hole 5 are formed (FIG. 1A).
(C)).
【0062】次に、あらかじめ、脱気しておいたアクリ
ルアミドモノマー水溶液中に、絶縁樹脂層4を含む基板
を浸漬し、絶縁樹脂層4に、60Coのγ線を104 r照
射した。反応後、70℃の温水にて洗浄し、下地の絶縁
樹脂層4と結合していないポリアクリルアミドを除去
し、絶縁樹脂層4の表面に接着層6を形成した(図1
(c)参照)。Next, the substrate containing the insulating resin layer 4 was immersed in a previously degassed acrylamide monomer aqueous solution, and the insulating resin layer 4 was irradiated with 10 4 r of 60 Co γ rays. After the reaction, the polyacrylamide that was not bonded to the underlying insulating resin layer 4 was removed by washing with warm water at 70 ° C., and the adhesive layer 6 was formed on the surface of the insulating resin layer 4 (FIG. 1).
(C)).
【0063】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層7及びバイアホール8を形成し
た(図1(d)参照)。Next, electroless copper plating and electrolytic copper plating were performed to form conductor layers 7 and via holes 8 having a thickness of 20 μm (see FIG. 1 (d)).
【0064】次に、導体層7をフォトエッチング法によ
りパターン加工し、導体配線層9を形成した(図1
(e)参照)。導体幅精度は50μm±5μmにおさま
り、直線性も良好であった。Next, the conductor layer 7 was patterned by a photo-etching method to form a conductor wiring layer 9 (FIG. 1).
(E)). The conductor width accuracy was within 50 μm ± 5 μm, and the linearity was good.
【0065】次に、導体配線層9の配線間に露出してい
る接着層を除去するために、50℃に加熱した過マンガ
ン酸カリウム(50g/l)、水酸化ナトリウム(20
g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 9, potassium permanganate (50 g / l) and sodium hydroxide (20
(g / l) Oxidation treatment was performed for 30 seconds in an aqueous solution.
【0066】さらに、上記の操作を繰り返すことによ
り、複数の絶縁樹脂層と導体配線層とが交互に積層され
た多層プリント配線板10が得られた。Further, by repeating the above operation, a multilayer printed wiring board 10 in which a plurality of insulating resin layers and conductor wiring layers were alternately laminated was obtained.
【0067】<実施例10> (多層プリント配線板の製造方法4)実施例7と同様な
工程で1mm厚のガラス−エポキシ基板からなる絶縁性
基板1に配線パターン2、感光性樹脂層3、絶縁樹脂層
4及びバイアホール形成孔5を形成した(図1(a)〜
(c)参照)。<Example 10> (Manufacturing method 4 of multilayer printed wiring board) In the same process as in Example 7, a wiring pattern 2, a photosensitive resin layer 3, and a wiring pattern 2 were formed on an insulating substrate 1 made of a glass-epoxy substrate having a thickness of 1 mm. The insulating resin layer 4 and the via hole forming hole 5 are formed (FIG. 1A).
(C)).
【0068】次に、絶縁樹脂層4の表面に、エリア型電
子線照射装置にて、加速電圧200kV、10Mrad
(電流値37.5mA、ラインスピード20m/分)の
条件で電子線照射を行った。その後、この基板をアクリ
ルアミドモノマー水溶液中に浸漬し、60℃、窒素バブ
リングを行いながら1時間放置した。反応後、70℃の
温水にて洗浄し、下地の絶縁樹脂と結合していないポリ
アクリルアミドを除去し、絶縁樹脂層4の表面に接着層
6を形成した(図1(c)参照)。Next, an acceleration voltage of 200 kV and 10 Mrad was applied to the surface of the insulating resin layer 4 by using an area type electron beam irradiation device.
The electron beam irradiation was performed under the conditions of (current value 37.5 mA, line speed 20 m / min). Then, this substrate was immersed in an aqueous solution of acrylamide monomer and left at 60 ° C. for 1 hour while bubbling nitrogen. After the reaction, the polyacrylamide that was not bonded to the underlying insulating resin was removed by washing with warm water at 70 ° C., and the adhesive layer 6 was formed on the surface of the insulating resin layer 4 (see FIG. 1C).
【0069】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層7及びバイアホール8を形成し
た(図1(d)参照)。Next, electroless copper plating and electrolytic copper plating were performed to form conductor layers 7 and via holes 8 having a thickness of 20 μm (see FIG. 1 (d)).
【0070】次に、導体層7をフォトエッチング法によ
りパターン加工し、導体配線層9を形成した(図1
(e)参照)。導体幅精度は50μm±5μmにおさま
り、直線性も良好であった。Next, the conductor layer 7 was patterned by a photoetching method to form a conductor wiring layer 9 (FIG. 1).
(E)). The conductor width accuracy was within 50 μm ± 5 μm, and the linearity was good.
【0071】次に、導体配線層9の配線間に露出してい
る接着層を除去するために、50℃に加熱した過マンガ
ン酸カリウム(50g/l)、水酸化ナトリウム(20
g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 9, potassium permanganate (50 g / l) and sodium hydroxide (20
(g / l) Oxidation treatment was performed for 30 seconds in an aqueous solution.
【0072】さらに、上記の操作を繰り返すことによ
り、複数の絶縁樹脂層と導体配線層とが交互に積層され
た多層プリント配線板10が得られた。Further, by repeating the above operation, a multilayer printed wiring board 10 in which a plurality of insulating resin layers and conductor wiring layers were alternately laminated was obtained.
【0073】<実施例11> (多層プリント配線板の製造方法5)実施例7と同様な
工程で1mm厚のガラス−エポキシ基板からなる絶縁性
基板1に配線パターン2、感光性樹脂層3、絶縁樹脂層
4及びバイアホール形成孔5を形成した(図1(a)〜
(c)参照)。Example 11 (Manufacturing Method 5 of Multilayer Printed Wiring Board) In the same process as in Example 7, a wiring pattern 2, a photosensitive resin layer 3, and an insulating substrate 1 made of a glass-epoxy substrate having a thickness of 1 mm were used. The insulating resin layer 4 and the via hole forming hole 5 are formed (FIG. 1A).
(C)).
【0074】次に、絶縁樹脂層4の表面に、0.4To
rr、Ar雰囲気下にて、200Wのパワーをかけ、1
時間プラズマ処理を行った。その後、この基板をアクリ
ルアミドモノマー水溶液中に浸漬し、60℃、窒素バブ
リングを行いながら1時間放置した。反応後、70℃の
温水にて洗浄し、下地の絶縁樹脂と結合していないポリ
アクリルアミドを除去し、絶縁樹脂層4の表面に接着層
6を形成した(図1(c)参照)。Next, 0.4 To is formed on the surface of the insulating resin layer 4.
Apply 200W power in rr, Ar atmosphere, 1
Plasma treatment was performed for an hour. Then, this substrate was immersed in an aqueous solution of acrylamide monomer and left at 60 ° C. for 1 hour while bubbling nitrogen. After the reaction, the polyacrylamide that was not bonded to the underlying insulating resin was removed by washing with warm water at 70 ° C., and the adhesive layer 6 was formed on the surface of the insulating resin layer 4 (see FIG. 1C).
【0075】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層7及びバイアホール8を形成し
た(図1(d)参照)。Next, electroless copper plating and electrolytic copper plating were performed to form conductor layers 7 and via holes 8 having a thickness of 20 μm (see FIG. 1 (d)).
【0076】次に、導体層7をフォトエッチング法によ
りパターン加工し、導体配線層9を形成した(図1
(e)参照)。導体幅精度は50μm±5μmにおさま
り、直線性も良好であった。Next, the conductor layer 7 was patterned by a photoetching method to form a conductor wiring layer 9 (FIG. 1).
(E)). The conductor width accuracy was within 50 μm ± 5 μm, and the linearity was good.
【0077】次に、導体配線層9の配線間に露出してい
る接着層を除去するために、50℃に加熱した過マンガ
ン酸カリウム(50g/l)、水酸化ナトリウム(20
g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 9, potassium permanganate (50 g / l) and sodium hydroxide (20
(g / l) Oxidation treatment was performed for 30 seconds in an aqueous solution.
【0078】さらに、上記の操作を繰り返すことによ
り、複数の絶縁樹脂層と導体配線層とが交互に積層され
た多層プリント配線板10が得られた。Further, by repeating the above operation, a multilayer printed wiring board 10 in which a plurality of insulating resin layers and conductor wiring layers were alternately laminated was obtained.
【0079】<実施例12> (多層プリント配線板の製造方法6)基板表面を酸化処
理した0.5mm厚のシリコンウエハ基板11に、感光
性樹脂(フォトニース(東レ社製))をスピンコータに
て1000rpmで塗布し、80℃、60分にてプリベ
ークを行い、感光性樹脂層を形成し、1kWの超高圧水
銀灯にて、200mJ/cm2 の露光量で全面露光を行
い、さらに、180℃(30分)、250℃(30
分)、400℃(1時間)のポストベークを行って約2
0μm厚の絶縁樹脂層12を形成した(図2(a)参
照)。Example 12 (Manufacturing Method 6 of Multilayer Printed Wiring Board) A 0.5 mm thick silicon wafer substrate 11 whose substrate surface was subjected to an oxidation treatment was coated with a photosensitive resin (Photo Nice (manufactured by Toray)) on a spin coater. Coating at 1000 rpm, prebaking at 80 ° C. for 60 minutes to form a photosensitive resin layer, and overall exposure with an exposure amount of 200 mJ / cm 2 with a 1 kW ultra-high pressure mercury lamp, and 180 ° C. (30 minutes), 250 ° C (30
Min) and post bake at 400 ° C (1 hour) for about 2
An insulating resin layer 12 having a thickness of 0 μm was formed (see FIG. 2A).
【0080】次に、絶縁樹脂層12の表面に、100m
lのアセトンに溶解した0.5gのベンゾフェノン溶液
を塗布し、溶媒を除去した。この基板を60℃に加熱し
たN,N−ジメチルアクリルアミドモノマー水溶液中に
浸漬し、窒素バブリングを行いながら絶縁樹脂層12の
表面を1kW超高圧水銀灯により1時間照射した。反応
後、70℃の温水にて洗浄し、下地の絶縁樹脂と結合し
ていないポリ(N,N−ジメチルアクリルアミド)を除
去し、絶縁樹脂層12の表面に接着層13を形成した
(図2(a)参照)。Next, on the surface of the insulating resin layer 12, 100 m
0.5 g of a benzophenone solution dissolved in 1 l of acetone was applied, and the solvent was removed. This substrate was immersed in an aqueous solution of N, N-dimethylacrylamide monomer heated to 60 ° C., and the surface of the insulating resin layer 12 was irradiated with a 1 kW ultra-high pressure mercury lamp for 1 hour while performing nitrogen bubbling. After the reaction, the poly (N, N-dimethylacrylamide) not bonded to the underlying insulating resin was removed by washing with warm water at 70 ° C., and the adhesive layer 13 was formed on the surface of the insulating resin layer 12 (FIG. 2). (See (a)).
【0081】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層14を形成した(図2(b)参
照)。Next, electroless copper plating and electrolytic copper plating were performed to form a conductor layer 14 having a thickness of 20 μm (see FIG. 2B).
【0082】次に、導体層14をフォトエッチング法に
よりパターン加工し、導体配線層15を形成した(図2
(c)参照)。導体幅精度は50μm±5μmにおさま
り、直線性も良好であった。Next, the conductor layer 14 was patterned by a photoetching method to form a conductor wiring layer 15 (FIG. 2).
(C)). The conductor width accuracy was within 50 μm ± 5 μm, and the linearity was good.
【0083】次に、導体配線層15の配線間に露出して
いる接着層を除去するために、50℃に加熱した過マン
ガン酸カリウム(50g/l)、水酸化ナトリウム(2
0g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 15, potassium permanganate (50 g / l) and sodium hydroxide (2
Oxidation treatment was performed for 30 seconds in a 0 g / l) aqueous solution.
【0084】次に、感光性樹脂(フォトニース(東レ社
製))をスピンコータにて1000rpmで塗布し、8
0℃、60分にてプリベークを行い、20μm厚の感光
性樹脂層16を形成した(図2(d)参照)。Next, a photosensitive resin (Photo Nice (manufactured by Toray)) was applied by a spin coater at 1000 rpm, and 8
Prebaking was performed at 0 ° C. for 60 minutes to form a photosensitive resin layer 16 having a thickness of 20 μm (see FIG. 2D).
【0085】次に、感光性樹脂層16に所定のバイアパ
ターンを有するマスクを介して、1kWの超高圧水銀灯
にて、200mJ/cm2 の露光量で露光を行い、専用
現像液にて、スプレー現像を行い、さらに、180℃
(30分)、250℃(30分)、400℃(1時間)
のポストベークを行い、50μm径のバイアホール形成
孔18及び絶縁樹脂層17を形成した(図2(e)参
照)。Next, the photosensitive resin layer 16 is exposed through a mask having a predetermined via pattern with an ultrahigh pressure mercury lamp of 1 kW at an exposure dose of 200 mJ / cm 2 , and sprayed with a dedicated developer. Develop and then 180 ℃
(30 minutes), 250 ° C (30 minutes), 400 ° C (1 hour)
Post-baking was performed to form a via hole forming hole 18 and an insulating resin layer 17 having a diameter of 50 μm (see FIG. 2E).
【0086】次に、絶縁樹脂層17の表面に、100m
lのアセトンに溶解した0.5gのベンゾフェノン溶液
を塗布し、溶媒を除去した。この基板を60℃に加熱し
たN,N−ジメチルアクリルアミドモノマー水溶液中に
浸漬し、窒素バブリングを行いながら絶縁樹脂層17の
表面を1kW超高圧水銀灯により1時間照射した。反応
後、70℃の温水にて洗浄し、下地の絶縁樹脂と結合し
ていないポリ(N,N−ジメチルアクリルアミド)を除
去し、絶縁樹脂層17の表面に接着層19を形成した
(図2(e)参照)。Next, 100 m is applied to the surface of the insulating resin layer 17.
0.5 g of a benzophenone solution dissolved in 1 l of acetone was applied, and the solvent was removed. This substrate was immersed in an aqueous solution of N, N-dimethylacrylamide monomer heated to 60 ° C., and the surface of the insulating resin layer 17 was irradiated with a 1 kW ultra-high pressure mercury lamp for 1 hour while performing nitrogen bubbling. After the reaction, the poly (N, N-dimethylacrylamide) not bonded to the underlying insulating resin was removed by washing with warm water of 70 ° C., and the adhesive layer 19 was formed on the surface of the insulating resin layer 17 (FIG. 2). (See (e)).
【0087】次に、無電解銅めっき、電解銅めっきを行
い、20μm厚の導体層20及びバイアホール21を形
成した(図2(f)参照)。Next, electroless copper plating and electrolytic copper plating were performed to form a conductor layer 20 and a via hole 21 having a thickness of 20 μm (see FIG. 2 (f)).
【0088】次に、導体層20をフォトエッチング法に
よりパターン加工し、導体配線層22を形成した(図2
(g)参照)。導体幅精度は25μm±3μmにおさま
り、直線性も良好であった。Next, the conductor layer 20 was patterned by a photoetching method to form a conductor wiring layer 22 (FIG. 2).
(G)). The conductor width accuracy was within 25 μm ± 3 μm, and the linearity was good.
【0089】次に、導体配線層22の配線間に露出して
いる接着層を除去するために、50℃に加熱した過マン
ガン酸カリウム(50g/l)、水酸化ナトリウム(2
0g/l)水溶液中にて30秒間酸化処理を行った。Next, in order to remove the adhesive layer exposed between the wirings of the conductor wiring layer 22, potassium permanganate (50 g / l) heated to 50 ° C. and sodium hydroxide (2
Oxidation treatment was performed for 30 seconds in a 0 g / l) aqueous solution.
【0090】さらに、上記の操作を繰り返すことによ
り、複数の絶縁樹脂層と導体配線層とが交互に積層され
た多層プリント配線板23が得られた。Further, by repeating the above operation, a multilayer printed wiring board 23 in which a plurality of insulating resin layers and conductor wiring layers were alternately laminated was obtained.
【0091】[0091]
【発明の効果】本発明によれば、接着層を形成する樹脂
が下地の絶縁樹脂層と化学的共有結合により強固に結合
されているため、絶縁樹脂層と接着層の層間剥離が発生
しない。さらに、接着層は極性基を有する樹脂で形成さ
れているため、接着層上に形成された導体層は配位結合
を形成し、接着強度の優れた導体配線層が形成でき、導
体配線層の配線幅のばらつきが小さく、導体配線層との
接着強度の良好な、信頼性の高い多層プリント配線板が
得られる。According to the present invention, since the resin forming the adhesive layer is firmly bonded to the underlying insulating resin layer by chemical covalent bonding, delamination between the insulating resin layer and the adhesive layer does not occur. Furthermore, since the adhesive layer is formed of a resin having a polar group, the conductor layer formed on the adhesive layer forms a coordination bond, and a conductor wiring layer having excellent adhesive strength can be formed. It is possible to obtain a highly reliable multilayer printed wiring board having a small variation in wiring width, a good adhesive strength with a conductor wiring layer, and a high reliability.
【図1】(a)〜(f)は、本発明の実施例7から実施
例11を示す多層プリント配線板の構成及び製造工程を
部分断面図で表した説明図である。1 (a) to 1 (f) are explanatory views showing the configuration and manufacturing process of a multilayer printed wiring board showing Embodiments 7 to 11 of the present invention in partial cross-sectional views.
【図2】(a)〜(h)は、本発明の実施例12を示す
多層プリント配線板の構成及び製造工程を部分断面図で
表した説明図である。2 (a) to (h) are explanatory views showing a configuration and a manufacturing process of a multilayer printed wiring board showing a twelfth embodiment of the present invention with partial cross-sectional views.
1……絶縁性基板 2……配線パターン 3、16……感光性樹脂層 4、12、17……絶縁樹脂層 5、18……バイアホール形成孔 6、13、19……接着層 7、14、20……導体層 8、21……バイアホール 9、15、22……導体配線層 10、23……多層プリント配線板 11……シリコンウエハ基板 1 ... Insulating substrate 2 ... Wiring pattern 3, 16 ... Photosensitive resin layer 4, 12, 17 ... Insulating resin layer 5, 18 ... Via hole forming hole 6, 13, 19 ... Adhesive layer 7, 14, 20 ... Conductor layer 8, 21 ... Via hole 9, 15, 22 ... Conductor wiring layer 10, 23 ... Multilayer printed wiring board 11 ... Silicon wafer substrate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 名取 恵子 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 (72)発明者 小久保 和浩 東京都台東区台東1丁目5番1号 凸版印 刷株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Keiko Natori 1-5-1, Taito, Taito-ku, Tokyo Toppan Printing Co., Ltd. (72) Inventor Kazuhiro Kokubo 1-5-1, Taito, Taito-ku, Tokyo Toppan Imprint Co., Ltd.
Claims (7)
とが交互に形成されている多層プリント配線板におい
て、前記絶縁樹脂層の表面に、該絶縁樹脂層と化学的共
有結合を有する接着層が形成されていることを特徴とす
る多層プリント配線板。1. In a multilayer printed wiring board in which conductor wiring layers and insulating resin layers are alternately formed on an insulating substrate, a chemical covalent bond with the insulating resin layers is formed on the surface of the insulating resin layers. A multilayer printed wiring board having an adhesive layer formed thereon.
ることを特徴とする請求項1に記載の多層プリント配線
板。2. The multilayer printed wiring board according to claim 1, wherein the adhesive layer comprises a resin layer having a polar group.
絶縁樹脂層上にラジカル活性点を設け、そのラジカル活
性点を開始点として、モノマーを重合することにより前
記接着層を形成することを特徴とする請求項1または2
記載の多層プリント配線板の製造方法。3. A heat treatment is performed on the surface of the insulating resin layer to provide radical active points on the insulating resin layer, and the adhesive layer is formed by polymerizing monomers starting from the radical active points. Claim 1 or 2 characterized by
A method for producing the multilayer printed wiring board according to the above.
縁樹脂層上にラジカル活性点を設け、そのラジカル活性
点を開始点として、モノマーを重合することにより前記
接着層を形成することを特徴とする請求項1または2記
載の多層プリント配線板の製造方法。4. The surface of the insulating resin layer is irradiated with light to provide radical active points on the insulating resin layer, and the adhesive layer is formed by polymerizing monomers with the radical active points as starting points. The method for manufacturing a multilayer printed wiring board according to claim 1 or 2,
絶縁樹脂層上にラジカル活性点を設け、そのラジカル活
性点を開始点として、モノマーを重合することにより前
記接着層を形成することを特徴とする請求項1または2
記載の多層プリント配線板の製造方法。5. The surface of the insulating resin layer is irradiated with γ-rays to provide radical active points on the insulating resin layer, and the radical active points are used as starting points to polymerize monomers to form the adhesive layer. Claim 1 or 2 characterized by the above.
A method for producing the multilayer printed wiring board according to the above.
該絶縁樹脂層上にラジカル活性点を設け、そのラジカル
活性点を開始点として、モノマーを重合することにより
前記接着層を形成することを特徴とする請求項1または
2記載の多層プリント配線板の製造方法。6. The surface of the insulating resin layer is irradiated with an electron beam,
3. The multilayer printed wiring board according to claim 1, wherein a radical active point is provided on the insulating resin layer, and the adhesive layer is formed by polymerizing a monomer using the radical active point as a starting point. Production method.
い、該絶縁樹脂層上にラジカル活性点を設け、そのラジ
カル活性点を開始点として、モノマーを重合することに
より前記接着層を形成することを特徴とする請求項1ま
たは2記載の多層プリント配線板の製造方法。7. A plasma treatment is applied to a surface of the insulating resin layer to provide radical active points on the insulating resin layer, and the adhesive layer is formed by polymerizing monomers with the radical active points as starting points. The method for manufacturing a multilayer printed wiring board according to claim 1 or 2,
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8268344A JPH09214140A (en) | 1995-11-29 | 1996-10-09 | Multilayered printed wiring board and its manufacture |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7-310556 | 1995-11-29 | ||
JP31055695 | 1995-11-29 | ||
JP8268344A JPH09214140A (en) | 1995-11-29 | 1996-10-09 | Multilayered printed wiring board and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09214140A true JPH09214140A (en) | 1997-08-15 |
Family
ID=26548279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8268344A Pending JPH09214140A (en) | 1995-11-29 | 1996-10-09 | Multilayered printed wiring board and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09214140A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11200063A (en) * | 1997-10-21 | 1999-07-27 | Boehringer Mannheim Gmbh | Surface coating method |
WO2001072463A1 (en) * | 2000-03-30 | 2001-10-04 | Institut Fiziki Prochnosti I Materialovedeniya Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk | Method for cathode-ray surfacing |
JP2001345554A (en) * | 2000-03-29 | 2001-12-14 | Toppan Printing Co Ltd | Multilayered wiring board and its manufacturing method |
WO2003005786A1 (en) * | 2001-07-05 | 2003-01-16 | Mejiro Precision, Inc. | Method for manufacturing printed wiring board |
WO2003024174A1 (en) * | 2001-09-05 | 2003-03-20 | Zeon Corporation | Mulitilayer circuit board, resin base material, and its production method |
US6793759B2 (en) | 2001-10-09 | 2004-09-21 | Dow Corning Corporation | Method for creating adhesion during fabrication of electronic devices |
JP2005347424A (en) * | 2004-06-01 | 2005-12-15 | Fuji Photo Film Co Ltd | Multi-layer printed wiring board and manufacturing method thereof |
WO2007052660A1 (en) * | 2005-11-07 | 2007-05-10 | Fujifilm Corporation | Laminate for printed wiring board, printed wiring board using same, method for manufacturing printed wiring board, electrical component, electronic component, and electrical device |
US7390974B2 (en) | 1998-02-26 | 2008-06-24 | Ibiden Co., Ltd. | Multilayer printed wiring board with filled viahole structure |
JP2009055059A (en) * | 2008-10-27 | 2009-03-12 | Ibiden Co Ltd | Multi-layer printed wiring board having filled via structure |
JP2014154873A (en) * | 2013-02-08 | 2014-08-25 | Ichia Technologies Inc | Multilayer flexible printed circuit board and method of manufacturing the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58196238A (en) * | 1982-05-13 | 1983-11-15 | Toyo Ink Mfg Co Ltd | Electroless plating process |
JPS60130889A (en) * | 1983-12-20 | 1985-07-12 | 住友ベークライト株式会社 | Method of producing multilayer laminated board |
JPH01172816A (en) * | 1987-12-28 | 1989-07-07 | Canon Inc | Formation of protective layer of high-polymer liquid crystal |
JPH02286222A (en) * | 1989-04-03 | 1990-11-26 | Internatl Business Mach Corp <Ibm> | Method for bonding polymer |
JPH0418787A (en) * | 1990-03-30 | 1992-01-22 | Toshiba Corp | Device for connecting printed wiring boards |
JPH04160164A (en) * | 1990-01-08 | 1992-06-03 | Mitsui Petrochem Ind Ltd | Alpha-olefinic polymer molding plated with metal and its production |
JPH05202483A (en) * | 1991-04-25 | 1993-08-10 | Shipley Co Inc | Method and composition for electroless metallization |
JPH07188947A (en) * | 1993-12-27 | 1995-07-25 | Sumitomo Metal Mining Co Ltd | Surface roughening method |
-
1996
- 1996-10-09 JP JP8268344A patent/JPH09214140A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58196238A (en) * | 1982-05-13 | 1983-11-15 | Toyo Ink Mfg Co Ltd | Electroless plating process |
JPS60130889A (en) * | 1983-12-20 | 1985-07-12 | 住友ベークライト株式会社 | Method of producing multilayer laminated board |
JPH01172816A (en) * | 1987-12-28 | 1989-07-07 | Canon Inc | Formation of protective layer of high-polymer liquid crystal |
JPH02286222A (en) * | 1989-04-03 | 1990-11-26 | Internatl Business Mach Corp <Ibm> | Method for bonding polymer |
JPH04160164A (en) * | 1990-01-08 | 1992-06-03 | Mitsui Petrochem Ind Ltd | Alpha-olefinic polymer molding plated with metal and its production |
JPH0418787A (en) * | 1990-03-30 | 1992-01-22 | Toshiba Corp | Device for connecting printed wiring boards |
JPH05202483A (en) * | 1991-04-25 | 1993-08-10 | Shipley Co Inc | Method and composition for electroless metallization |
JPH07188947A (en) * | 1993-12-27 | 1995-07-25 | Sumitomo Metal Mining Co Ltd | Surface roughening method |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11200063A (en) * | 1997-10-21 | 1999-07-27 | Boehringer Mannheim Gmbh | Surface coating method |
US8987603B2 (en) | 1998-02-26 | 2015-03-24 | Ibiden Co,. Ltd. | Multilayer printed wiring board with filled viahole structure |
US8115111B2 (en) | 1998-02-26 | 2012-02-14 | Ibiden Co., Ltd. | Multilayer printed wiring board with filled viahole structure |
US7737366B2 (en) | 1998-02-26 | 2010-06-15 | Ibiden Co., Ltd. | Multilayer printed wiring board with filled viahole structure |
US7622183B2 (en) | 1998-02-26 | 2009-11-24 | Ibiden Co., Ltd. | Multilayer printed wiring board with filled viahole structure |
US7390974B2 (en) | 1998-02-26 | 2008-06-24 | Ibiden Co., Ltd. | Multilayer printed wiring board with filled viahole structure |
JP2001345554A (en) * | 2000-03-29 | 2001-12-14 | Toppan Printing Co Ltd | Multilayered wiring board and its manufacturing method |
WO2001072463A1 (en) * | 2000-03-30 | 2001-10-04 | Institut Fiziki Prochnosti I Materialovedeniya Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk | Method for cathode-ray surfacing |
KR100914376B1 (en) * | 2001-07-05 | 2009-08-28 | 메지로 프리씨젼 가부시끼가이샤 | Method for manufacturing printed wiring board |
WO2003005786A1 (en) * | 2001-07-05 | 2003-01-16 | Mejiro Precision, Inc. | Method for manufacturing printed wiring board |
WO2003024174A1 (en) * | 2001-09-05 | 2003-03-20 | Zeon Corporation | Mulitilayer circuit board, resin base material, and its production method |
KR100912920B1 (en) * | 2001-09-05 | 2009-08-20 | 니폰 제온 가부시키가이샤 | Multilayer circuit board, resin base material, and its production method |
US7614145B2 (en) | 2001-09-05 | 2009-11-10 | Zeon Corporation | Method for manufacturing multilayer circuit board and resin base material |
US6793759B2 (en) | 2001-10-09 | 2004-09-21 | Dow Corning Corporation | Method for creating adhesion during fabrication of electronic devices |
JP2005347424A (en) * | 2004-06-01 | 2005-12-15 | Fuji Photo Film Co Ltd | Multi-layer printed wiring board and manufacturing method thereof |
JP2007125862A (en) * | 2005-11-07 | 2007-05-24 | Fujifilm Corp | Laminate for printed wiring board, printed wiring board using it, manufacturing method of printed wiring substrate, electric component, electronic component, and electric appliance |
WO2007052660A1 (en) * | 2005-11-07 | 2007-05-10 | Fujifilm Corporation | Laminate for printed wiring board, printed wiring board using same, method for manufacturing printed wiring board, electrical component, electronic component, and electrical device |
JP2009055059A (en) * | 2008-10-27 | 2009-03-12 | Ibiden Co Ltd | Multi-layer printed wiring board having filled via structure |
JP2014154873A (en) * | 2013-02-08 | 2014-08-25 | Ichia Technologies Inc | Multilayer flexible printed circuit board and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5374469A (en) | Flexible printed substrate | |
JP3407274B2 (en) | Improved polytetrafluoroethylene thin film chip carrier | |
JPH09214140A (en) | Multilayered printed wiring board and its manufacture | |
US4888450A (en) | Circuit board fabrication leading to increased capacity | |
JP2008108791A (en) | Multilayer printed wiring board and method of manufacturing the same | |
EP0096701B1 (en) | Circuit board fabrication leading to increased capacity | |
EP0147566B1 (en) | Method of forming contacts for flexible module carriers | |
JP2002525882A (en) | Manufacturing method of multilayer circuit | |
JPH08242064A (en) | Printed wiring board | |
JP4826020B2 (en) | Manufacturing method of multilayer wiring board | |
CN1021878C (en) | method for manufacturing multilayer printed circuit board | |
JP4164904B2 (en) | CURABLE RESIN COMPOSITION, SURFACE Roughening Treatment Method, AND ELECTRONIC DEVICE COMPONENT USING THE SAME | |
JPH07283540A (en) | Multilayered printed wiring board and its manufacture | |
JPH0983138A (en) | Method of manufacturing multi-layered printed wiring board | |
JP2630193B2 (en) | Copper-clad insulation sheet for printed wiring boards | |
JP2000129137A (en) | Resin composition having high adhesion and electronic instrument part using the same | |
JPH0783570B2 (en) | Double-sided fine pattern circuit | |
JP2005005319A (en) | Method for forming wiring and wiring board | |
JP2000294933A (en) | Multilayer circuit substrate and manufacture thereof | |
JP2008108797A (en) | Method of manufacturing circuit board and circuit board obtained thereby | |
JPH1168321A (en) | Circuit board | |
JPS5817696A (en) | Method of producing multilayer printed circuit board | |
JPH07131182A (en) | Manufacture of printed-circuit board | |
JPH07170073A (en) | Manufacture of multilayer printed wiring board | |
JP4978820B2 (en) | Manufacturing method of high-density printed wiring board. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070313 |