JPH0916918A - Magneto-resistance effect head - Google Patents

Magneto-resistance effect head

Info

Publication number
JPH0916918A
JPH0916918A JP16725995A JP16725995A JPH0916918A JP H0916918 A JPH0916918 A JP H0916918A JP 16725995 A JP16725995 A JP 16725995A JP 16725995 A JP16725995 A JP 16725995A JP H0916918 A JPH0916918 A JP H0916918A
Authority
JP
Japan
Prior art keywords
magnetic
head
layer
magnetoresistive
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16725995A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hamakawa
佳弘 濱川
Yoshio Suzuki
良夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16725995A priority Critical patent/JPH0916918A/en
Publication of JPH0916918A publication Critical patent/JPH0916918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a shift in lateral bias, a drop in output, and a secular change by making a magnetic field produced with a longitudinal bias not substantially enter an antiferromagnetic layer or a magnetic layer whose magnetism is fixed by the antiferromagnetic layer. SOLUTION: On a substrate 10, the antiferromagnetic layer 11 which fixes the magnetism of ferromagnetic layers 12 and 13, a nonmagnetic layer 14, and a soft magnetic layer 15 are formed. Further, soft magnetic layers 17 and 17' and electrode layers 18 and 18' which serve as a longitudinal bias pattern in another process are formed. This magneto-resistance effect head is so formed that the projection surface b-b' of the end surfaces B and B' of the layers 17 and 17' on a plane A-A' perpendicular to the substrate 10 and the projection surface c-c' of the end surfaces C and C' of the layer 11 and layers 12 and 13 whose magnetism is fixed by the layer 11 do not overlap with each other. Consequently, the static magnetic field from the end surface of the pattern generating the longitudinal bias hardly enters the fixed-side magnetic layers, whose magnetism is not affected by it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気抵抗効果ヘッドに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetoresistive head.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに高い感度が求められている。高感度の再生用磁
気ヘッドとして、磁気抵抗効果ヘッド(MRヘッド)とよ
ばれる物が知られている。磁気抵抗効果型ヘッドは、記
録媒体からの磁界を、素子の抵抗変化として検出する。
従来の一般的な磁気抵抗効果型ヘッドは、抵抗が磁化と
電流方向との間の角度θの関数としてcos2θ に比例し
て変化するという異方性磁気抵抗効果(AMR)に基づい
て動作する。最近、異方性磁気抵抗効果とは別の原理で
動作する磁気抵抗効果型ヘッドとして、DienyらによるP
hsical Review B,第43巻,1297〜1300項
「軟磁性多層膜における巨大磁気抵抗効果」に記載のよ
うに2層の磁性層を非磁性層で分離し、一方の磁性層に
反強磁性層からの交換バイアス磁界を印加する構造のヘ
ッドが考案された。このような多層膜では、抵抗Rは、
2層の磁性層の磁化の間の角度θの関数として、cosθ
に比例して変化することが、Dieny らの論文に示されて
おり、このような効果を、巨大磁気抵抗効果(GMR)
とよんでいる。このような多層膜により、磁界センサを
作ると、2層の磁性層のうち反強磁性層に接していない
方のみの磁化が回転できるので、外部磁界により、2層
の磁化の角度θが変化し、これが抵抗変化として検出で
きる。ここで、2層の磁性層のうち、反磁性層に接して
いる磁性層を固定側磁性層,反強磁性層に接していない
側の磁性層を自由側磁性層と称している。このような多
層膜の巨大磁気抵抗効果を利用した磁気抵抗効果型ヘッ
ドは、従来の異方性磁気抵抗効果を利用したヘッドと比
べて、大きい磁気抵抗変化量ΔRを示すことが知られて
いる。
2. Description of the Related Art As magnetic recording becomes higher in density, reproducing magnetic heads are required to have higher sensitivity. As a high-sensitivity reproducing magnetic head, a so-called magnetoresistive head (MR head) is known. The magnetoresistive head detects a magnetic field from a recording medium as a change in resistance of the element.
Conventional conventional magnetoresistive heads operate on the basis of the anisotropic magnetoresistive effect (AMR) in which the resistance changes in proportion to cos 2 θ as a function of the angle θ between the magnetization and the current direction. Recently, as a magnetoresistive head that operates on a principle different from the anisotropic magnetoresistive effect, P by Dieny et al.
As described in hsical Review B, Volume 43, Items 1297 to 1300 “Giant magnetoresistance effect in soft magnetic multilayer film”, two magnetic layers are separated by a nonmagnetic layer, and one magnetic layer is an antiferromagnetic layer. A head having a structure for applying an exchange bias magnetic field from the above was devised. In such a multilayer film, the resistance R is
Cos θ as a function of the angle θ between the magnetizations of the two magnetic layers
It is shown in the paper of Dieny et al.
Is called. When a magnetic field sensor is made up of such a multilayer film, the magnetization of only one of the two magnetic layers that is not in contact with the antiferromagnetic layer can rotate, so the angle θ of the magnetization of the two layers changes due to the external magnetic field. However, this can be detected as a resistance change. Here, of the two magnetic layers, the magnetic layer in contact with the diamagnetic layer is referred to as the fixed magnetic layer, and the magnetic layer not in contact with the antiferromagnetic layer is referred to as the free magnetic layer. It is known that the magnetoresistive head using the giant magnetoresistive effect of such a multilayer film exhibits a large magnetoresistive change amount ΔR as compared with the conventional head using the anisotropic magnetoresistive effect. .

【0003】AMRとGMRを利用したヘッドを区別す
るために、それぞれAMRヘッド、巨大磁気抵抗効果型
ヘッド(GMRヘッド)と呼ぶことがある。
In order to distinguish the heads using AMR and GMR, they are sometimes called AMR heads and giant magnetoresistive heads (GMR heads), respectively.

【0004】一方、AMRヘッドとGMRヘッドに共通
の課題として、バルクハウゼンノイズの抑制がある。磁
気抵抗効果膜に、磁壁などが入って磁化状態が不安定で
あると大きなノイズが発生する。このノイズを抑止する
ためには、磁気抵抗膜に対して、トラック幅方向にいわ
ゆる「縦バイアス磁界」を印加することが有効であるこ
とがAMRヘッドに関しては良く知られている。巨大磁
気抵抗効果型ヘッドにおいても、自由側磁性層の磁化状
態を安定化させるために、縦バイアスを印加する方法が
特開平4−358310 号公報に開示されている。
On the other hand, a problem common to both AMR heads and GMR heads is suppression of Barkhausen noise. If a magnetic wall is included in the magnetoresistive film and the magnetization state is unstable, large noise is generated. It is well known for AMR heads that it is effective to apply a so-called "longitudinal bias magnetic field" to the magnetoresistive film in the track width direction in order to suppress this noise. Also in the giant magnetoresistive head, a method of applying a longitudinal bias in order to stabilize the magnetization state of the free side magnetic layer is disclosed in JP-A-4-358310.

【0005】これによると、磁性膜の両端部に強磁性も
しくは反強磁性の膜を積層して、これと感磁部磁性膜と
の交換結合により縦バイアス磁界を与え、磁化状態を安
定させる。
According to this, a ferromagnetic or antiferromagnetic film is laminated on both ends of the magnetic film, and a longitudinal bias magnetic field is given by exchange coupling with the magnetic film of the magnetic sensing part to stabilize the magnetized state.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記のような
従来提案されてきた巨大磁気抵抗効果を利用した磁気ヘ
ッドでは、たとえば縦バイアスを強磁性体で与えた場
合、強磁性体からの磁界が固定磁性層側の磁化方向に対
して垂直に入ることで、固定層の磁化が回転し、横バイ
アスのずれや、出力の低下をひきおこすという問題があ
った。また、固定磁性層の磁化を固定している反強磁性
層にも、強磁性からの磁界が侵入するので、センス電流
などの発熱で素子温度が上昇すると、反強磁性層が経時
変化を起こし、固定磁性層の磁化方向を変化させてしま
うといった問題があった。
However, in the magnetic head utilizing the giant magnetoresistive effect which has been conventionally proposed as described above, when a longitudinal bias is applied by a ferromagnetic material, the magnetic field from the ferromagnetic material is reduced. The magnetization perpendicular to the magnetization direction on the pinned magnetic layer side causes the magnetization of the pinned layer to rotate, which causes a problem of lateral bias shift and output reduction. In addition, since the magnetic field from ferromagnetism also penetrates into the antiferromagnetic layer that fixes the magnetization of the pinned magnetic layer, if the element temperature rises due to heat generation such as a sense current, the antiferromagnetic layer changes over time. However, there is a problem that the magnetization direction of the pinned magnetic layer is changed.

【0007】[0007]

【課題を解決するための手段】上記課題は、巨大磁気抵
抗効果を用いた磁気抵抗効果型ヘッドにおいて、縦バイ
アスに強磁性膜を使った場合、固定磁性層あるいは、固
定磁性層の磁化を固定している反強磁性層に、強磁性か
らの磁界が侵入するためである。従って、複数層の磁性
層及びそれらを分離する非磁性層からなる磁気抵抗効果
膜および上記磁気抵抗効果膜に電流を供給する複数の電
極を有し、上記磁気抵抗効果膜が、上記電極の間隔に比
して十分に小さな幅の重なり部分を除いて、上記電極に
挟まれた内側部分のみ存在し、上記電極の下もしくは上
に硬磁性膜を設け、上記電極と上記硬磁性膜のトラック
内側方向の端部が実質的に一致した磁気抵抗効果ヘッド
において、固定磁性層あるいは、固定磁性層の磁化を固
定している反強磁性膜に、縦バイアスを発生するパター
ンからの磁界が、実質的に侵入しないようにする事によ
って解決される。
SUMMARY OF THE INVENTION The above problem is that in a magnetoresistive head using a giant magnetoresistive effect, when a ferromagnetic film is used for longitudinal bias, the pinned magnetic layer or the magnetization of the pinned magnetic layer is pinned. This is because the magnetic field from ferromagnetism penetrates into the antiferromagnetic layer. Therefore, it has a magnetoresistive effect film consisting of a plurality of magnetic layers and a non-magnetic layer separating them and a plurality of electrodes for supplying a current to the magnetoresistive effect film, and the magnetoresistive effect film has a space between the electrodes. Except for the overlapping portion of a width sufficiently smaller than the above, there is only the inner portion sandwiched between the electrodes, a hard magnetic film is provided below or above the electrode, and the track inside the electrode and the hard magnetic film is provided. In the magnetoresistive effect head whose ends in the direction substantially coincide with each other, the magnetic field from the pattern for generating the longitudinal bias is substantially generated in the fixed magnetic layer or the antiferromagnetic film fixing the magnetization of the fixed magnetic layer. It is solved by not invading.

【0008】[0008]

【作用】本発明によれば、複数層の磁性層及びそれらを
分離する非磁性層からなる磁気抵抗効果膜を有する磁気
抵抗効果型ヘッドにおいて、固定磁性層には、縦バイア
スを発生するパターンからの磁界が、実質的に侵入しな
いので、固定磁性層の磁化の回転が起こらず、横バイア
スのずれ、出力の低下を防ぐことができる。また、固定
磁性層の磁化を固定している反強磁性膜に、実質的に磁
界が侵入しないので、反強磁性膜の経時変化を防ぐ事が
できる。
According to the present invention, in a magnetoresistive head having a magnetoresistive film including a plurality of magnetic layers and a nonmagnetic layer separating the magnetic layers, the fixed magnetic layer has a pattern for generating a longitudinal bias. Since the magnetic field of 1 does not substantially invade, the rotation of the magnetization of the pinned magnetic layer does not occur, and the deviation of the lateral bias and the reduction of the output can be prevented. Further, since the magnetic field does not substantially penetrate into the antiferromagnetic film that fixes the magnetization of the pinned magnetic layer, it is possible to prevent the antiferromagnetic film from changing over time.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings.

【0010】(実施例1)図1に本発明の実施例1の磁
気抵抗効果ヘッドの主要部分の断面図を示す。本発明の
磁気抵抗効果ヘッドは、ZrO2 ,Al23−TiCで
形成された基板10上に強磁性層12,13の磁化を固
定するための反強磁性層11には膜厚50nmのNi
O,固定側磁性層となる強磁性層12,13には膜厚2
nmのNiFe,膜厚1nmのCo,非磁性層14には
膜厚2nmのCu,自由側磁性層となる軟磁性層15に
は膜厚10nmのNiFeを形成した。これらの膜は、
いずれも高周波マグネトロンスパッタリング装置を用
い、アルゴン3mTorrの雰囲気で形成した。なお、本発
明の効果はこれらの膜厚に限定されるものではない。ま
た、本発明では、積層膜をスパッタリング法で作製した
が、同様の薄膜プロセス、たとえば、蒸着法、あるいは
イオンビームスパッタリング法によっても、なんらその
特性を害するものではない。なお、縦バイアスパターン
となる硬磁性層17,17′、ならびに電極層18,1
8′は、図2に示すプロセスによって形成した。(a)
まず、基板10上に複数の磁性層および非磁性層を含む
磁気抵抗効果膜を設ける。(b)次に、この磁気抵抗効
果膜にフォトレジスト20で、フォトリソグラフィ技術
を用いてステンシルを形成する。(c)イオンミリング
等の方法により、フォトレジストの乗っていない部分の
磁気抵抗効果膜をエッチングする。ただしこの時、反強
磁性層11,強磁性層12,13は残しておく。(d)こ
の上に、フォトレジストを残したまま、膜厚5nmの下
地層16,16′Cr,縦バイアスを発生するパターン
である膜厚10nmの硬磁性層17,17′のCoPtCr、
電極層18,18′であるAuを0.2μmスパッタリ
ング法により形成した。なお、下地層16,16′のC
rは、CoPtCrの保磁力を高めるために形成したものであ
る。この下地層16,16′は必ずしも必要ではない。
硬磁性層17,17′は、CoPt,CoCrTa,CoNiPt,
SmCoなどでも良い。(e)最後にフォトレジスト2
0を剥離し、縦バイアスを構成する膜、電極膜の不要部
をリフトオフ法により除去する。これにより、目標とす
るヘッド形状が実現する。なお、この縦バイアスパター
ン,電極パターンの形成方法は、たとえば、特開平3−1
25311 号公報に記載されているように公知である。ま
た、反強磁性層11と固定側磁性層となる強磁性層1
2,13とを交換結合させて、強磁性膜12,13の磁
化を固定するに際しては、磁界中で熱処理を行う必要が
ある。この熱処理は、真空中でトラック幅方向に5kO
eの磁界を印加した状態で、反強磁性層11のネール温
度以上に温度を上げた後、磁界をトラック幅方向に垂直
に5kOe印加し、真空中で徐々に冷却する方法をもちい
た。また、縦バイアスを発生する硬磁性層17,17′
については、室温でトラック幅方向に5kOeの磁界を
印加し、0kOeまで磁界を減少させる方法によって着
磁を行った。
(Embodiment 1) FIG. 1 is a sectional view of a main part of a magnetoresistive head according to Embodiment 1 of the present invention. In the magnetoresistive head of the present invention, the antiferromagnetic layer 11 for fixing the magnetization of the ferromagnetic layers 12 and 13 on the substrate 10 made of ZrO 2 , Al 2 O 3 —TiC has a film thickness of 50 nm. Ni
O, the ferromagnetic layers 12 and 13 to be the fixed magnetic layers have a film thickness of 2
nm NiCo, 1 nm thick Co, 2 nm thick Cu in the non-magnetic layer 14, and 10 nm thick NiFe in the soft magnetic layer 15 to be the free magnetic layer. These membranes
All were formed by using a high frequency magnetron sputtering device in an atmosphere of argon 3 mTorr. The effect of the present invention is not limited to these film thicknesses. Further, in the present invention, the laminated film is produced by the sputtering method, but the characteristics thereof are not impaired even by the same thin film process, for example, the vapor deposition method or the ion beam sputtering method. It should be noted that the hard magnetic layers 17 and 17 ′ serving as the longitudinal bias pattern and the electrode layers 18 and 1
8'was formed by the process shown in FIG. (A)
First, a magnetoresistive effect film including a plurality of magnetic layers and nonmagnetic layers is provided on the substrate 10. (B) Next, a stencil is formed on the magnetoresistive film using the photoresist 20 by using a photolithography technique. (C) By a method such as ion milling, the magnetoresistive effect film in the portion where the photoresist is not placed is etched. However, at this time, the antiferromagnetic layer 11 and the ferromagnetic layers 12 and 13 are left. (d) On top of this, while leaving the photoresist, the underlayers 16 and 16'Cr having a film thickness of 5 nm, the CoPtCr of the hard magnetic layers 17 and 17 'having a film thickness of 10 nm which are patterns for generating longitudinal bias,
Au, which is the electrode layers 18 and 18 ′, was formed by the 0.2 μm sputtering method. In addition, C of the underlayer 16, 16 '
r is formed to increase the coercive force of CoPtCr. The base layers 16 and 16 'are not always necessary.
The hard magnetic layers 17, 17 'are made of CoPt, CoCrTa, CoNiPt,
SmCo or the like may be used. (E) Finally photoresist 2
0 is peeled off, and unnecessary portions of the film forming the longitudinal bias and the electrode film are removed by the lift-off method. As a result, the target head shape is realized. The method of forming the vertical bias pattern and the electrode pattern is described in, for example, Japanese Patent Laid-Open No. 3-1
It is known as described in Japanese Patent No. 25311. In addition, the antiferromagnetic layer 11 and the ferromagnetic layer 1 serving as the fixed-side magnetic layer
In order to exchange-couple with 2 and 13 to fix the magnetization of the ferromagnetic films 12 and 13, it is necessary to perform heat treatment in a magnetic field. This heat treatment is 5 kO in the track width direction in vacuum.
With the magnetic field of e being applied, the temperature was raised above the Neel temperature of the antiferromagnetic layer 11 and then the magnetic field was applied perpendicularly to the track width direction at 5 kOe and gradually cooled in vacuum. In addition, the hard magnetic layers 17 and 17 'that generate a longitudinal bias
With respect to the above, magnetization was performed by applying a magnetic field of 5 kOe in the track width direction at room temperature and reducing the magnetic field to 0 kOe.

【0011】なお、実際の磁気抵抗効果ヘッドは、図1
に示す主要部を上下のシールド膜で挟ことによって作製
した。このとき下部シールドには、膜厚2μmの非晶質
CoTaZrを用い、上部シールドは、スパッタ法により形成
した膜厚2μmのパーマロイを用いた。シールド間のギ
ャップ絶縁膜は、スパッタ法により形成したアルミナ膜
を用いた。
The actual magnetoresistive head is shown in FIG.
It was produced by sandwiching the main part shown in (1) with the upper and lower shield films. At this time, the lower shield has an amorphous film with a thickness of 2 μm.
CoTaZr was used, and the upper shield was made of permalloy having a film thickness of 2 μm formed by a sputtering method. An alumina film formed by a sputtering method was used as the gap insulating film between the shields.

【0012】このようにして形成された磁気抵抗効果ヘ
ッドは、縦バイアスを発生するパターンと感磁部との相
対する端面において、縦バイアスを発生するパターンの
端面(B−B′)の基板10に垂直な面(A−A′)へ
の射影面(b−b′)と反強磁性層11および反強磁性
層11による磁化が固定された強磁性層12,13の端
面(C−C′)の基板10に垂直な面(A−A′)への射影
面(c−c′)が重なり合わない。図3は、従来例の磁
気抵抗効果ヘッドの主要部分の断面図を示す。この磁気
抵抗効果ヘッドは、本発明の磁気抵抗効果ヘッド同様、
ZrO2 ,Al23−TiCで形成された基板10上に
強磁性層12,13の磁化を固定するための反強磁性層
11には膜厚50nmのNiO、固定側磁性層となる強
磁性層12,13には膜厚2nmのNiFe,膜厚1n
mのCo,非磁性層14には膜厚2nmのCu、自由側
磁性層となる軟磁性層15に膜厚10nmのNiFeを
形成した。なお、縦バイアスパターンとなる硬磁性層1
7,17′、ならびに電極層18,18′は、本発明と
ほぼ同様の方法で形成するが、イオンミリング等の方法
により、フォトレジストの乗っていない部分の磁気抵抗
効果膜をエッチングする際に、反強磁性層11の一部、
固定側磁性層となる強磁性層12,13もエッチングし
てしまった。このようにしてされた磁気抵抗効果ヘッド
では、縦バイアスを発生するパターンと感磁部との相対
する端面において、縦バイアスを発生するパターンの端
面(B−B′)の基板10に垂直な面(A−A′)への
射影面(b−b′)と反強磁性層11および反強磁性層
による磁化が固定された強磁性層12,13の端面(C
−C′)の基板10に垂直な面(A−A′)への射影面
(c−c′)が一部重なり合う。
In the magnetoresistive head thus formed, the substrate 10 on the end face (BB ') of the pattern for generating the longitudinal bias on the end faces of the pattern for generating the longitudinal bias and the magnetically sensitive portion which face each other. A plane (bb ') projected onto a plane perpendicular to (A-A') and the end faces (C-C) of the antiferromagnetic layer 11 and the ferromagnetic layers 12, 13 whose magnetizations are fixed by the antiferromagnetic layer 11 The projection plane (cc ') of the plane (') onto the plane (AA ') perpendicular to the substrate 10 does not overlap. FIG. 3 is a sectional view of a main part of a conventional magnetoresistive head. This magnetoresistive head is similar to the magnetoresistive head of the present invention.
The antiferromagnetic layer 11 for fixing the magnetization of the ferromagnetic layers 12, 13 on the substrate 10 formed of ZrO 2 , Al 2 O 3 —TiC has a film thickness of 50 nm of NiO, and a strong magnetic layer serving as the fixed magnetic layer. The magnetic layers 12 and 13 have a NiFe film thickness of 2 nm and a film thickness of 1 n.
m of Co, non-magnetic layer 14 of Cu having a thickness of 2 nm, and soft magnetic layer 15 serving as the free-side magnetic layer of NiFe having a thickness of 10 nm were formed. It should be noted that the hard magnetic layer 1 having a longitudinal bias pattern
7, 17 'and the electrode layers 18, 18' are formed by a method substantially similar to that of the present invention, but when the magnetoresistive effect film in the portion where the photoresist is not formed is etched by a method such as ion milling. , Part of the antiferromagnetic layer 11,
The ferromagnetic layers 12 and 13 serving as the fixed magnetic layers are also etched. In the magnetoresistive head thus formed, the end face (BB ') of the pattern for generating the longitudinal bias is a surface perpendicular to the substrate 10 at the end faces of the pattern for generating the longitudinal bias and the magnetically sensitive portion. The plane (b-b ') projected onto (A-A') and the end faces (C) of the ferromagnetic layers 12 and 13 in which the magnetizations of the antiferromagnetic layer 11 and the antiferromagnetic layer are fixed.
The projection plane (cc ') of -C') onto the plane (AA ') perpendicular to the substrate 10 partially overlaps.

【0013】図4は、本発明の実施例(a)と従来例
(b)の磁気抵抗効果素子の磁界応答曲線を示したもの
である。本発明の実施例の方が従来例に比較して、最大
電圧変化が大きく、高磁界側での電圧変化も変化してい
ない。また、最大電圧変化の1/2を示す点が、本発明
の場合は、磁界0Oeに位置しているが、従来では0O
eからずれている。これは従来例では、縦バイアスを発
生するパターンの端面の基板に垂直な面への射影面と反
強磁性層および反強磁性層による磁化が固定された磁性
層の端面の基板に垂直な面への射影面が一部重なり合う
ために、縦バイアスを発生するパターンの端面からの静
磁界が固定側磁性層にはいり、固定磁性層の磁化がトラ
ック幅方向に垂直な方向から回転しずれたためである。
一方、本発明の実施例では、縦バイアスを発生するパタ
ーンの端面の基板に垂直な面への射影面と反強磁性層お
よび反強磁性層による磁化が固定された磁性層の端面の
基板に垂直な面への射影面が重なり合わないために、縦
バイアスを発生するパターンの端面からの静磁界は、固
定側磁性層にはいりにくく、固定側磁性層の磁化はその
影響をうけない。また、本発明の実施例では、反強磁性
層にも縦バイアスの磁化が入らないために、通電寿命評
価をしても経時変化がなかった。
FIG. 4 shows magnetic field response curves of the magnetoresistive effect element of the embodiment (a) of the present invention and the conventional example (b). The embodiment of the present invention has a larger maximum voltage change than the conventional example, and the voltage change on the high magnetic field side does not change. Further, the point indicating 1/2 of the maximum voltage change is located in the magnetic field 0 Oe in the present invention, but is 0 O in the conventional case.
deviated from e. In the conventional example, this is the plane perpendicular to the substrate, which is the projection surface of the end face of the pattern for generating the longitudinal bias onto the face perpendicular to the substrate and the end face of the magnetic layer in which the magnetization by the antiferromagnetic layer and the antiferromagnetic layer is fixed. Due to the overlapping of the projection planes to the part, the static magnetic field from the end face of the pattern that generates the longitudinal bias enters the fixed side magnetic layer, and the magnetization of the fixed magnetic layer is rotated and deviated from the direction perpendicular to the track width direction. is there.
On the other hand, in the embodiment of the present invention, the projection surface of the end face of the pattern for generating the longitudinal bias onto the surface perpendicular to the substrate and the end face of the magnetic layer in which the magnetization by the antiferromagnetic layer and the antiferromagnetic layer is fixed are formed on the substrate. Since the projection planes on the vertical plane do not overlap with each other, the static magnetic field from the end face of the pattern that generates the longitudinal bias is difficult to enter the fixed magnetic layer, and the magnetization of the fixed magnetic layer is not affected by it. In addition, in the examples of the present invention, longitudinal bias magnetization was not introduced into the antiferromagnetic layer, so that there was no change with time even when the conduction life was evaluated.

【0014】図5は本実施例の磁気抵抗効果型ヘッドを
再生ヘッドとして用いたときの記録再生分離型ヘッドの
斜視図である。この記録再生分離型ヘッドは、図1に示
す磁気抵抗効果ヘッドと誘導型記録ヘッドとを重ね合わ
せた構成である。即ち、磁気抵抗効果型ヘッドは、シー
ルド層54,55間のギャップ層53に挿入された再生
ヘッドとして働き、誘導型記録ヘッドは、記録磁極5
7,58間に挿入されたコイル56を備えて記録ヘッド
として働くように構成されている。
FIG. 5 is a perspective view of a recording / reproducing separated type head when the magnetoresistive head of this embodiment is used as a reproducing head. This recording / reproducing separated type head has a structure in which the magnetoresistive head and the induction type recording head shown in FIG. 1 are superposed. That is, the magnetoresistive head functions as a reproducing head inserted in the gap layer 53 between the shield layers 54 and 55, and the inductive recording head functions as the recording magnetic pole 5.
A coil 56 is inserted between 7, 58 so as to function as a recording head.

【0015】本実施例では、再生ヘッドとし、巨大磁気
抵抗抵抗効果型ヘッドを用いているので、ヘッド感度が
高く、装置の小型化が図れる。
In this embodiment, since the giant magnetoresistive resistance type head is used as the reproducing head, the head sensitivity is high and the device can be downsized.

【0016】図6の(a),(b)は、本発明の磁気抵抗
効果型ヘッドを再生ヘッドに用いた磁気記録再生装置の
平面模式図および、A−A′断面図である。この磁気記
録再生装置は、ディスク上の磁気記録媒体61と、記録
媒体を回駆動する磁気記録媒体駆動部62と、記録再生
分離型ヘッド61を位置決め旋回させるヘッド駆動部6
4と、記録再生分離型ヘッドに関する記録信号および再
生信号を処理する記録再生信号処理部65とを具備して
構成されている。
6 (a) and 6 (b) are a schematic plan view and a sectional view taken along the line AA 'of a magnetic recording / reproducing apparatus using the magnetoresistive head of the present invention as a reproducing head. This magnetic recording / reproducing apparatus includes a magnetic recording medium 61 on a disk, a magnetic recording medium driving unit 62 for driving the recording medium, and a head driving unit 6 for positioning and rotating the recording / reproducing separated type head 61.
4 and a recording / reproducing signal processing unit 65 for processing a recording signal and a reproducing signal relating to the recording / reproducing separated type head.

【0017】本実施例では、再生ヘッドとして本発明の
磁気抵抗効果型ヘッドを備えた記録再生分離型ヘッドを
用いているので、ヘッド感度が高く、高記録密度化が可
能であり、装置の小型化が図れる。
In this embodiment, since the recording / reproducing separated type head provided with the magnetoresistive head of the present invention is used as the reproducing head, the head sensitivity is high, the recording density can be increased, and the apparatus can be made compact. Can be realized.

【0018】(実施例2)図7に本発明の他の実施例の
磁気抵抗効果ヘッドの主要部分の断面図を示す。本発明
の磁気抵抗効果ヘッドは、ZrO2 ,Al23−TiC
で形成された基板10上に下地層70,自由磁性層とる
軟磁性層15,非磁性層14には膜厚2nmのCu,強
磁性層12,13,固定側磁性層となる強磁性層12,
13には膜厚2nmのNiFe,膜厚1nmのCo,強
磁性層12,13の磁化を固定するための反強磁性層1
1には膜厚10nmのFeMnを形成した。これらの膜
は、いずれも高周波マグネトロンスパッタリング装置を
用い、アルゴン3mTorrの雰囲気で形成した。なお、本
発明の効果はこれらの膜厚に限定されるものではない。
また、本発明では、積層膜をスパッタリング法で作製し
たが、同様の薄膜プロセス、たとえば、蒸着法、あるい
はイオンビームスパッタリング法によっても、なんらそ
の特性を害するものではない。なお、縦バイアスパター
ンとなる硬磁性層17,17′、ならびに電極層18,
18′は、実施例1と同様の方法で形成した。なお、縦
バイアスを発生するパターンである硬磁性層17,1
7′は膜厚10nmのCoPtCr、電極層18,18′であ
るAuを0.2μm スパッタリング法により形成した。
なお、下地層にCrなどの金属膜をしいても良い。ま
た、硬磁性層17,17′は、CoPt,CoCrTa,CoNi
Pt,SmCoなどでも良い。なお、実際の磁気抵抗効果
ヘッドは、図1に示す主要部を上下のシールド膜で挟む
ことによって作製した。このとき下部シールドには、膜
厚2μmの非晶質CoTaZrを用い、上部シールドは、スパ
ッタ法により形成した膜厚2μmのパーマロイを用い
た。シールド間のギャップ絶縁膜は、スパッタ法により
形成したアルミナ膜を用いた。
(Embodiment 2) FIG. 7 is a sectional view of the main part of a magnetoresistive head according to another embodiment of the present invention. The magnetoresistive head of the present invention is made of ZrO 2 , Al 2 O 3 —TiC.
The base layer 70 formed on the substrate 10, the soft magnetic layer 15 serving as a free magnetic layer, the nonmagnetic layer 14 having a thickness of 2 nm of Cu, the ferromagnetic layers 12 and 13, and the ferromagnetic layer 12 serving as the fixed magnetic layer. ,
Reference numeral 13 denotes NiFe having a film thickness of 2 nm, Co having a film thickness of 1 nm, and an antiferromagnetic layer 1 for fixing the magnetizations of the ferromagnetic layers 12 and 13.
In No. 1, FeMn having a film thickness of 10 nm was formed. All of these films were formed by using a high frequency magnetron sputtering device in an atmosphere of 3 mTorr of argon. The effect of the present invention is not limited to these film thicknesses.
Further, in the present invention, the laminated film is produced by the sputtering method, but the characteristics thereof are not impaired even by the same thin film process, for example, the vapor deposition method or the ion beam sputtering method. In addition, the hard magnetic layers 17 and 17 ′ serving as the longitudinal bias pattern, and the electrode layer 18,
18 'was formed in the same manner as in Example 1. Incidentally, the hard magnetic layers 17 and 1 which are patterns for generating a longitudinal bias.
7'is formed of CoPtCr having a film thickness of 10 nm and Au which is the electrode layers 18 and 18 'by a 0.2 .mu.m sputtering method.
The base layer may be a metal film such as Cr. The hard magnetic layers 17, 17 'are made of CoPt, CoCrTa, CoNi.
Pt or SmCo may be used. The actual magnetoresistive head was manufactured by sandwiching the main part shown in FIG. 1 between the upper and lower shield films. At this time, an amorphous CoTaZr having a film thickness of 2 μm was used for the lower shield, and a permalloy having a film thickness of 2 μm formed by a sputtering method was used for the upper shield. An alumina film formed by a sputtering method was used as the gap insulating film between the shields.

【0019】このようにして形成された磁気抵抗効果ヘ
ッドは、縦バイアスを発生するパターンと感磁部との相
対する端面で、縦バイアスを発生するパターンの端面
(B−B′)の基板10に垂直な面(A−A′)への射
影面(b−b′)と反強磁性層11および反強磁性層1
1による磁化が固定された強磁性層12,13の端面
(C−C′)の基板10に垂直な面(A−A′)への射
影面(c−c′)が重なり合わない。従って、実施例1
と同様の効果があった。
The magnetoresistive head thus formed is the substrate 10 of the end face (BB ') of the pattern for generating the longitudinal bias, which is the end face between the pattern for generating the longitudinal bias and the magnetically sensitive portion. The plane (bb ') projected onto the plane (AA') perpendicular to the plane, the antiferromagnetic layer 11 and the antiferromagnetic layer 1
The end surfaces (C-C ') of the ferromagnetic layers 12 and 13 whose magnetizations are fixed by 1 do not overlap with the projection surface (cc') onto the surface (AA ') perpendicular to the substrate 10. Therefore, Example 1
The same effect was obtained.

【0020】(実施例3)図8に本発明の他の実施例の
磁気抵抗効果ヘッドの主要部分の断面図を示す。本発明
の磁気抵抗効果ヘッドは、ZrO2 ,Al23−TiC
で形成された基板10上に下地層70,自由磁性層とる
軟磁性層15,非磁性層14には膜厚2nmのCu,強
磁性層12,13,固定側磁性層となる強磁性層12,
13には膜厚2nmのNiFe,膜厚1nmのCo,強
磁性層12,13の磁化を固定するための反強磁性層1
1には膜厚10nmのFeMnを形成した。これらの膜
は、いずれも高周波マグネトロンスパッタリング装置を
用い、アルゴン3mTorrの雰囲気で形成した。なお、本
発明の効果はこれらの膜厚に限定されるものではない。
また、本発明では、積層膜をスパッタリング法で作製し
たが、同様の薄膜プロセス、たとえば、蒸着法、あるい
はイオンビームスパッタリング法によっても、なんらそ
の特性を害するものではない。なお、縦バイアスパター
ンとなる層、ならびに電極層18,18′は、実施例1
と同様の方法で形成した。なお、縦バイアスを発生する
パターンは強磁性層82と反強磁性層83の積層膜で形
成した。ここでは、強磁性層82はNiFe膜を用い
た。また、反強磁性層83は、NiMn合金膜をもちい
た。反強磁性膜83は、FeMn,CrMn,CoM
n,MnIr、あるいは少なくとも一つ以上の高元素を
添加した合金膜でもよい。なお、実際の磁気抵抗効果ヘ
ッドは、図1に示す主要部を上下のシールド膜で挟むこ
とによって作製した。このとき下部シールドには、膜厚
2μmの非晶質CoTaZrを用い、上部シールドは、スパッ
タ法により形成した膜厚2μmのパーマロイを用いた。
シールド間のギャップ絶縁膜は、スパッタ法により形成
したアルミナ膜を用いた。
(Embodiment 3) FIG. 8 is a sectional view of the main part of a magnetoresistive head according to another embodiment of the present invention. The magnetoresistive head of the present invention is made of ZrO 2 , Al 2 O 3 —TiC.
The base layer 70 formed on the substrate 10, the soft magnetic layer 15 serving as a free magnetic layer, the nonmagnetic layer 14 having a thickness of 2 nm of Cu, the ferromagnetic layers 12 and 13, and the ferromagnetic layer 12 serving as the fixed magnetic layer. ,
Reference numeral 13 denotes NiFe having a film thickness of 2 nm, Co having a film thickness of 1 nm, and an antiferromagnetic layer 1 for fixing the magnetizations of the ferromagnetic layers 12 and 13.
In No. 1, FeMn having a film thickness of 10 nm was formed. All of these films were formed by using a high frequency magnetron sputtering device in an atmosphere of 3 mTorr of argon. The effect of the present invention is not limited to these film thicknesses.
Further, in the present invention, the laminated film is produced by the sputtering method, but the characteristics thereof are not impaired even by the same thin film process, for example, the vapor deposition method or the ion beam sputtering method. The layers forming the vertical bias pattern and the electrode layers 18 and 18 'are the same as those in the first embodiment.
It was formed in the same manner as. The pattern for generating the longitudinal bias is formed by a laminated film of the ferromagnetic layer 82 and the antiferromagnetic layer 83. Here, the ferromagnetic layer 82 uses a NiFe film. The antiferromagnetic layer 83 used a NiMn alloy film. The antiferromagnetic film 83 is made of FeMn, CrMn, CoM.
An alloy film to which n, MnIr, or at least one high element is added may be used. The actual magnetoresistive head was manufactured by sandwiching the main part shown in FIG. 1 between the upper and lower shield films. At this time, an amorphous CoTaZr having a film thickness of 2 μm was used for the lower shield, and a permalloy having a film thickness of 2 μm formed by a sputtering method was used for the upper shield.
An alumina film formed by a sputtering method was used as the gap insulating film between the shields.

【0021】このようにして形成された磁気抵抗効果ヘ
ッドは、縦バイアスを発生するパターンと感磁部との相
対する端面において、縦バイアスを発生するパターンの
端面(B−B′)の基板10に垂直な面(A−A′)へ
の射影面(b−b′)と反強磁性層11および反強磁性
層11による磁化が固定された強磁性層12,13の端
面(C−C′)の基板10に垂直な面(A−A′)への
射影面(c−c′)が重なり合わない。従って、実施例
1と同様の効果があった。
In the magnetoresistive head thus formed, the substrate 10 on the end face (BB ') of the pattern for generating the longitudinal bias on the end faces of the pattern for generating the longitudinal bias and the magnetically sensitive portion which face each other. Plane (bb ') onto the plane perpendicular to (A-A') and the end faces (C-C) of the antiferromagnetic layer 11 and the ferromagnetic layers 12, 13 whose magnetizations are fixed by the antiferromagnetic layer 11 The projection plane (cc) of the plane ') to the plane (AA') perpendicular to the substrate 10 does not overlap. Therefore, the same effect as in Example 1 was obtained.

【0022】[0022]

【発明の効果】本発明によれば、複数層の磁性層及びそ
れらを分離する非磁性層からなる磁気抵抗効果膜を有す
る磁気抵抗効果型ヘッドにおいて、固定磁性層には、縦
バイアスを発生するパターンからの磁界が、実質的に侵
入しないので、固定磁性層の磁化の回転が起こらず、横
バイアスのずれ、出力の低下を防ぐことができる。ま
た、固定磁性層の磁化を固定している反強磁性膜に、実
質的に磁界が侵入しないので、反強磁性膜の経時変化を
防ぐ事ができる。
According to the present invention, in a magnetoresistive head having a magnetoresistive film including a plurality of magnetic layers and a nonmagnetic layer separating them, a longitudinal bias is generated in the fixed magnetic layer. Since the magnetic field from the pattern does not substantially enter, the rotation of the magnetization of the pinned magnetic layer does not occur, and the deviation of the lateral bias and the reduction of the output can be prevented. Further, since the magnetic field does not substantially penetrate into the antiferromagnetic film that fixes the magnetization of the pinned magnetic layer, it is possible to prevent the antiferromagnetic film from changing over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す磁気抵抗効果型ヘッド
の主要部の断面図。
FIG. 1 is a sectional view of a main part of a magnetoresistive head showing an embodiment of the present invention.

【図2】本発明の磁気抵抗効果型ヘッドの主要部の作製
プロセスを示す断面図。
FIG. 2 is a cross-sectional view showing the manufacturing process of the main part of the magnetoresistive head of the present invention.

【図3】従来例の磁気抵抗効果型ヘッドの主要部の断面
図。
FIG. 3 is a sectional view of a main part of a conventional magnetoresistive head.

【図4】本発明の磁気抵抗効果型ヘッドの磁界応答特性
図。
FIG. 4 is a magnetic field response characteristic diagram of the magnetoresistive head of the present invention.

【図5】本発明の磁気抵抗効果型ヘッドを再生ヘッドと
して用いた時の記録再生分離型ヘッドの斜視図。
FIG. 5 is a perspective view of a recording / reproducing separated type head when the magnetoresistive head of the present invention is used as a reproducing head.

【図6】磁気抵抗効果型ヘッドを再生ヘッドに用いた磁
気記録再生装置の説明図。
FIG. 6 is an explanatory diagram of a magnetic recording / reproducing device using a magnetoresistive head as a reproducing head.

【図7】本発明の他の実施例を示す磁気抵抗効果型ヘッ
ドの主要部の断面図。
FIG. 7 is a sectional view of the main part of a magnetoresistive head showing another embodiment of the present invention.

【図8】本発明の他の実施例を示す磁気抵抗効果型ヘッ
ドの主要部の断面図。
FIG. 8 is a sectional view of a main part of a magnetoresistive head showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…基板、11…反強磁性層、12,15…軟磁性
層、13…非磁性層、14…強磁性層、16,16′…
下地層、17,17′…硬磁性層、18,18′…電極
層。
10 ... Substrate, 11 ... Antiferromagnetic layer, 12, 15 ... Soft magnetic layer, 13 ... Nonmagnetic layer, 14 ... Ferromagnetic layer, 16, 16 '...
Underlayer, 17, 17 '... Hard magnetic layer, 18, 18' ... Electrode layer.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】複数層の磁性層及びそれらを分離する非磁
性層からなり、上記磁性層の一方に接する反強磁性層に
よって上記磁性層に一方向性異方性を付与した磁気抵抗
効果膜からなる感磁部および上記磁気抵抗効果膜に電流
を供給する複数の電極を有し、上記電極の下もしくは上
に縦バイアスを発生させるパターンを設けた磁気抵抗効
果ヘッドにおいて、上記縦バイアスから発生する磁界
が、上記反強磁性層あるいは上記反強磁性層により磁化
が固定された磁性層に、実質的に磁界が入らない事を特
徴とする磁気抵抗効果ヘッド。
1. A magnetoresistive effect film comprising a plurality of magnetic layers and a non-magnetic layer separating the magnetic layers, wherein an antiferromagnetic layer in contact with one of the magnetic layers imparts unidirectional anisotropy to the magnetic layer. In the magnetoresistive effect head having a magnetic sensing part made of and a plurality of electrodes for supplying a current to the magnetoresistive effect film and provided with a pattern for generating a longitudinal bias below or above the electrodes, the magnetoresistive effect head is generated from the longitudinal bias. A magnetoresistive effect head, wherein the magnetic field to be applied does not substantially enter into the antiferromagnetic layer or the magnetic layer whose magnetization is fixed by the antiferromagnetic layer.
【請求項2】上記縦バイアスを発生するパターンと上記
感磁部との相対する端面において、上記縦バイアスを発
生するパターンの端面の基板に垂直な面への射影面と上
記反強磁性層および上記反強磁性層による磁化が固定さ
れた磁性層の端面の基板に垂直な面への射影面が重なり
合わない請求項1に記載の磁気抵抗効果ヘッド。
2. An end face of the pattern for generating the longitudinal bias and the magnetically sensitive portion facing each other, a projecting face of the end face of the pattern for generating the longitudinal bias onto a plane perpendicular to the substrate, the antiferromagnetic layer, and 2. The magnetoresistive head according to claim 1, wherein the projection planes of the end faces of the magnetic layer, in which the magnetization of the antiferromagnetic layer is fixed, to the plane perpendicular to the substrate do not overlap.
【請求項3】上記縦バイアスを発生するパターンが硬磁
性層である請求項1に記載の磁気抵抗効果ヘッド。
3. The magnetoresistive head according to claim 1, wherein the pattern for generating the longitudinal bias is a hard magnetic layer.
【請求項4】上記硬磁性層が、CoPt,CoPtCr,CoCr
Ta,SmCoである請求項1または2に記載の磁気抵抗
効果ヘッド。
4. The hard magnetic layer comprises CoPt, CoPtCr, CoCr
The magnetoresistive head according to claim 1, wherein the magnetoresistive head is Ta or SmCo.
【請求項5】上記縦バイアスを発生するパターンが反強
磁性層と強磁性層の積層膜である請求項1に記載の磁気
抵抗効果型ヘッド。
5. The magnetoresistive head according to claim 1, wherein the pattern for generating the longitudinal bias is a laminated film of an antiferromagnetic layer and a ferromagnetic layer.
【請求項6】請求項4に記載の反強磁性層がFeMn,
NiMn,CrMn,CoMn,MnIr、あるいは少
なくとも一つ以上の鉱元素を添加した合金膜である請求
項1または2に記載の磁気抵抗効果ヘッド。
6. The antiferromagnetic layer according to claim 4 is FeMn,
3. The magnetoresistive head according to claim 1, wherein the magnetoresistive head is an alloy film containing NiMn, CrMn, CoMn, MnIr, or at least one or more mineral elements.
【請求項7】請求項1,2,3,4,5または6に記載
の磁気抵抗効果ヘッドを再生ヘッドとし、誘導型磁気ヘ
ッドを記録ヘッドとし、それらを重ねた記録再生分離型
ヘッド。
7. A recording / reproducing separated type head in which the magnetoresistive effect head according to any one of claims 1, 2, 3, 4, 5 or 6 is used as a reproducing head, and an inductive type magnetic head is used as a recording head.
【請求項8】磁気記録媒体と磁気記録駆動部と,磁気抵
抗効果ヘッドと誘導型磁気ヘッドとを一体化した記録再
生分離型ヘッドと,磁気ヘッド駆動部と,記録再生信号
系とを有する磁気記録再生装置において、上記記録再生
分離型ヘッドに請求項7に記載の記録再生分離型ヘッド
を用いる磁気記録再生装置。
8. A magnetic recording medium comprising a magnetic recording medium, a magnetic recording drive section, a recording / reproducing separated type head in which a magnetoresistive effect head and an induction type magnetic head are integrated, a magnetic head driving section and a recording / reproducing signal system. A magnetic recording / reproducing apparatus, wherein the recording / reproducing separated type head according to claim 7 is used as the recording / reproducing separated type head.
JP16725995A 1995-07-03 1995-07-03 Magneto-resistance effect head Pending JPH0916918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16725995A JPH0916918A (en) 1995-07-03 1995-07-03 Magneto-resistance effect head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16725995A JPH0916918A (en) 1995-07-03 1995-07-03 Magneto-resistance effect head

Publications (1)

Publication Number Publication Date
JPH0916918A true JPH0916918A (en) 1997-01-17

Family

ID=15846426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16725995A Pending JPH0916918A (en) 1995-07-03 1995-07-03 Magneto-resistance effect head

Country Status (1)

Country Link
JP (1) JPH0916918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094325A (en) * 1997-12-25 2000-07-25 Fujitsu Limited Spin valve head reducing barkhausen noise
KR100300366B1 (en) * 1997-06-06 2001-10-19 가타오카 마사타카 Spin-valve magnetoresistive element
EP1237150A2 (en) * 2001-02-15 2002-09-04 Fujitsu Limited Magnetic head of a magnetoresistance type having an underlying layer having a laminated structure of a tungsten-group metal layer formed on a tantalum-group metal layer
US6762916B2 (en) 2000-01-05 2004-07-13 Alps Electric Co., Ltd. Thin-film magnetic head with low barkhausen noise and floating-type magnetic head therewith
US6950290B2 (en) 1998-11-30 2005-09-27 Nec Corporation Magnetoresistive effect transducer having longitudinal bias layer directly connected to free layer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100300366B1 (en) * 1997-06-06 2001-10-19 가타오카 마사타카 Spin-valve magnetoresistive element
US6094325A (en) * 1997-12-25 2000-07-25 Fujitsu Limited Spin valve head reducing barkhausen noise
US6950290B2 (en) 1998-11-30 2005-09-27 Nec Corporation Magnetoresistive effect transducer having longitudinal bias layer directly connected to free layer
US7372673B2 (en) 1998-11-30 2008-05-13 Nec Corporation Magnetoresistive effect transducer having longitudinal bias layer and control layer directly connected to free layer
US6762916B2 (en) 2000-01-05 2004-07-13 Alps Electric Co., Ltd. Thin-film magnetic head with low barkhausen noise and floating-type magnetic head therewith
EP1237150A2 (en) * 2001-02-15 2002-09-04 Fujitsu Limited Magnetic head of a magnetoresistance type having an underlying layer having a laminated structure of a tungsten-group metal layer formed on a tantalum-group metal layer
EP1237150A3 (en) * 2001-02-15 2004-05-19 Fujitsu Limited Magnetic head of a magnetoresistance type having an underlying layer having a laminated structure of a tungsten-group metal layer formed on a tantalum-group metal layer
US6829122B2 (en) 2001-02-15 2004-12-07 Fujitsu Limited Magnetic head of a magnetoresistance type having an underlying layer having a laminated structure of a tungsten-group metal layer formed on a tantalum-group metal layer

Similar Documents

Publication Publication Date Title
US7400475B2 (en) Patterned, synthetic longitudinally exchange biased GMR sensor
US7428126B2 (en) Domain wall free shields of MR sensors
US20050073777A1 (en) Magnetic head comprising magnetic domain control layer formed on ABS-side of magnetic flux guide for GMR element and method of manufacturing the magnetic head
JP2006294210A (en) Thin film magnetic head
US10249329B1 (en) Current-perpendicular-to-the-plane (CPP) magnetoresistive (MR) sensor with wedge shaped free layer
EP1193692B1 (en) Spin-valve magnetoresistance effect head, composite magnetic head comprising the same, and magnetoresistance recorded medium drive
KR20020013577A (en) Spin bulb magnetoresistance effect head and compound magnetic head and compound magnetic head using it and magnetic recording medium drive unit
JPH07296340A (en) Magnetoresistance effect device and thin film magnetic head utilizing the device
US5852533A (en) Magnetoresistance effect transducer element with continuous central active area
JP2001351209A (en) Spin valve head, method of manufacture and magnetic disk device
JPH0916918A (en) Magneto-resistance effect head
JP2001056908A (en) Magneto-resistance effect element, magneto-resistance effect head, magneto-resistance detecting system and magnetic storage system
JPH0877517A (en) Magneto-resistive head and its production
JP2746226B2 (en) Magnetic field detection method using magnetoresistive element
JPH1125431A (en) Magneto-resistance effect type reproducing head and magnetic recording and reproducing device
JPH11175925A (en) Magnetic reluctance effect type element and magnetic recording and reproducing device
JP3325853B2 (en) Spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing spin valve thin film magnetic element
JP2865055B2 (en) Magnetoresistive magnetic sensing element and magnetic head using the same
US6842315B2 (en) Magnetoresistive effect head and a method of producing the same
JP2897725B2 (en) Magnetoresistive head
JPH1186237A (en) Magnetoresistance effect head and magnetic memory apparatus
JPH10320717A (en) Magnetic sensor
JP3377522B1 (en) Thin film magnetic head, thin film magnetic head assembly, storage device, and method of manufacturing thin film magnetic head
JP2004006493A (en) Giant magnetoresistive effect element and its manufacturing method
JP3325852B2 (en) Spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing spin valve thin film magnetic element