JPH09134594A - Semiconductor nonvolatile memory - Google Patents

Semiconductor nonvolatile memory

Info

Publication number
JPH09134594A
JPH09134594A JP7289596A JP28959695A JPH09134594A JP H09134594 A JPH09134594 A JP H09134594A JP 7289596 A JP7289596 A JP 7289596A JP 28959695 A JP28959695 A JP 28959695A JP H09134594 A JPH09134594 A JP H09134594A
Authority
JP
Japan
Prior art keywords
cell
memory cell
memory
data line
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7289596A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanigawa
博之 谷川
Miki Takeuchi
幹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7289596A priority Critical patent/JPH09134594A/en
Publication of JPH09134594A publication Critical patent/JPH09134594A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dram (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a highly reliable, highly integrated nonvolatile ferroelectric memory exerting a long life to a fatigue of a ferroelectric capacitor, by constituting the memory of a memory cell for storing information and a dummy cell for judging stored information. SOLUTION: The drawing shows a constitution of a cell of a ferroelectric memory. A pair of data lines DLMm and BLMm wherein (m) is the order of an array are coupled to one sense amplifier per unit array. To each data line are connected (n) memory cells consisting of a ferroelectric capacitor CFE and a field effect transistor, and a dummy cell of a combination of a cell of the same shape as the memory cell and a cell of a paraelectric capacitor CO and a field effect transistor. The ferroelectric capacitor of the dummy cell is polarized in a direction not to cause a polarization inversion during the operation. A capacity of the paraelectric capacitor CO is determined to be lower than an intermediate value of potentials of two signals output to the data line corresponding to binary information stored in the memory cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は強誘電体を用いた不
揮発性の半導体メモリに関する。
TECHNICAL FIELD The present invention relates to a nonvolatile semiconductor memory using a ferroelectric substance.

【0002】[0002]

【従来の技術】強誘電体を用いたメモリは、現在広く用
いられているダイナミックランダムアクセスメモリ(D
RAM)とほぼ同等の短時間で読み書きができる。加え
て、電源が無くとも情報が保持される不揮発性を有す
る。強誘電体メモリの形式は主に、DRAM同様のセル
構成を持つトランジスタ付きキャパシタ方式と強誘電体
膜をMOSトランジスタの絶縁膜に用いるMOSトラン
ジスタ方式がある。前者には、互いに相反する残留分極
の向きの二つのセルを一組として分極の組み合わせで一
つの情報を記録する二トランジスタ二キャパシタ(以下
2Tr2C)型と、一つのセルで一つの情報を記録する
一トランジスタ一キャパシタ(以下1Tr1C )型がある。
高集積化に適する1Tr1C型では、読み出すときに残
留分極の向きを判別するために基準となる電位(参照電
位)を発生させる必要がある。
2. Description of the Related Art A memory using a ferroelectric material is a dynamic random access memory (D) which is widely used at present.
Reading and writing can be done in a short time almost equal to that of RAM). In addition, it has a non-volatile property in which information is held even without a power source. Ferroelectric memories are mainly classified into a capacitor type with a transistor having a cell structure similar to that of a DRAM and a MOS transistor type using a ferroelectric film as an insulating film of a MOS transistor. The former is a two-transistor / two-capacitor (hereinafter referred to as 2Tr2C) type in which two cells having mutually opposite remanent polarization directions are set as one set and one piece of information is recorded by a combination of polarizations, and one cell records one piece of information. There is a one-transistor-one-capacitor (1Tr1C) type.
In the 1Tr1C type suitable for high integration, it is necessary to generate a reference potential (reference potential) in order to determine the direction of remanent polarization when reading.

【0003】参照電位を発生する方法として、ダミーセ
ルを用いる方法がいくつか提案されている。一例とし
て、特開昭63−201998号公報で述べられているダミーセ
ルを用いたアレー構成を図10に示す。この例ではダミ
ーセルのキャパシタ面積をメモリセルキャパシタ面積の
2倍以上にして、ダミーセルの分極非反転時の容量を、
メモリセルキャパシタの分極反転時の容量と非反転時の
容量の間の容量値とする。読み出し時には、ダミーセル
のキャパシタを反転させずに用いてダミーセル側データ
線に、メモリセル側データ線の反転時の電位と非反転時
の電位の間の電位を発生する。参照電位は従来、例えば
アイエスエスシーシー 1994 ダイジェスト オブ
テクニカル ペーパーズ(ISSCC Dig.Tech.Pap.)26
8頁から269頁に示されるように、反転時と非反転時
とのメモリセル側データ線電位の丁度中間が最適とされ
てきた。
Several methods using a dummy cell have been proposed as methods for generating a reference potential. As an example, FIG. 10 shows an array configuration using dummy cells described in Japanese Patent Laid-Open No. 63-201998. In this example, the capacitor area of the dummy cell is made twice or more the memory cell capacitor area, and the capacity of the dummy cell at the time of non-inversion of polarization is
The capacitance value is between the capacitance of the memory cell capacitor when the polarization is inverted and the capacitance when the polarization is not inverted. During reading, the dummy cell capacitor is used without being inverted to generate a potential between the inverted and non-inverted potentials of the memory cell side data line on the dummy cell side data line. The reference potential has been conventionally determined, for example, by ISSC 1994 Digest of Technical Papers (ISSCC Dig.Tech.Pap.) 26.
As shown on pages 8 to 269, the optimum middle point between the data line potentials on the memory cell side during inversion and non-inversion has been optimized.

【0004】[0004]

【発明が解決しようとする課題】上記のダミーセルによ
る参照電位発生法には以下の問題点がある。 (1)分極反転を繰り返すことによりメモリセルの強誘
電体キャパシタは疲労して読み出し時のデータ線電位が
変化することが考慮されておらず、この変化を想定した
ときに、最適な参照電位をどのように設定すべきかとい
う問題。
The method of generating a reference potential using the dummy cell described above has the following problems. (1) It is not considered that the ferroelectric capacitor of the memory cell is fatigued and the data line potential at the time of reading changes due to repeated polarization inversion. The question of how to set it up.

【0005】(2)上記のダミーセルのキャパシタ面積
を2倍以上にする方法では、微細な強誘電体膜では膜質
の制御が難しいため容量は必ずしも面積に比例せず所望
の容量を得るのが難しいという問題。
(2) In the method of doubling the capacitor area of the dummy cell more than twice, it is difficult to control the film quality of a fine ferroelectric film, and the capacitance is not always proportional to the area, and it is difficult to obtain a desired capacitance. Problem.

【0006】本発明は、上記(1),(2)の問題を解決
するための1Tr1C型強誘電体メモリの参照電位発生
法を提供するものである。
The present invention provides a method for generating a reference potential of a 1Tr1C type ferroelectric memory for solving the problems (1) and (2).

【0007】[0007]

【課題を解決するための手段】本発明の1Tr1C型メ
モリセル構造の強誘電体メモリは、情報を記憶するメモ
リセルと、上記メモリセルの二値の記憶情報を判定する
ための参照電位をデータ線に発生するダミーセルとを有
し、上記ダミーセルは、常誘電体キャパシタと上記メモ
リセルと同形の強誘電体キャパシタとを含む。上記ダミ
ーセルが上記データ線に出力する参照電位は、上記メモ
リセルの強誘電体キャパシタが疲労する前の状態にある
とき上記メモリセルの二値の記憶情報に対応してデータ
線に出力される二つの信号電位の丁度中間の電位よりも
低くなるように、望ましくは上記の二つの信号電位のう
ち低い方の電位よりも高くその差がセンスアンプの最小
検知可能電位差になるように、上記ダミーセルの常誘電
体キャパシタの容量を決める。参照電位を上記の二つの
信号電位の丁度中間の電位よりも低くすることにより、
メモリセルの強誘電体キャパシタの疲労現象による信号
量低下に対して、より大きなメモリアクセス可能回数を
実現できる。また、ダミーセルにメモリセルと同形の強
誘電体キャパシタを用いて上記の二つの信号電位の低い
ほうの電位の分を発生させ、確立された技術であるSi
2 ,Si34等の常誘電体キャパシタを用いてセンス
アンプで増幅する電位差の分を発生する参照電位発生法
により、強誘電体膜の加工ばらつき等によるメモリセル
の信号量ばらつきに対して高信頼の、かつ信号量の低下
に対する読み出しの余裕を大きく精密に設定できる参照
電位を発生できる。
In a ferroelectric memory having a 1Tr1C type memory cell structure of the present invention, a memory cell for storing information and a reference potential for judging binary storage information of the memory cell are stored as data. A dummy cell generated in a line, the dummy cell including a paraelectric capacitor and a ferroelectric capacitor having the same shape as the memory cell. The reference potential output to the data line by the dummy cell is output to the data line corresponding to the binary storage information of the memory cell when the ferroelectric capacitor of the memory cell is in a state before fatigue. Of the dummy cells, so that it is lower than just the middle potential of the two signal potentials, preferably higher than the lower potential of the two signal potentials, and the difference is the minimum detectable potential difference of the sense amplifier. Determine the capacitance of the paraelectric capacitor. By making the reference potential lower than the potential just between the two signal potentials,
It is possible to realize a larger number of times of memory access with respect to a decrease in signal amount due to the fatigue phenomenon of the ferroelectric capacitor of the memory cell. Moreover, a ferroelectric capacitor having the same shape as that of the memory cell is used as a dummy cell to generate the lower potential of the above two signal potentials, which is an established technology.
By using the reference potential generation method that generates the potential difference amplified by the sense amplifier using a paraelectric capacitor such as O 2 or Si 3 N 4, the variation in the signal amount of the memory cell due to the variation in the processing of the ferroelectric film, etc. It is possible to generate a reference potential that is highly reliable and that can set the reading margin with respect to the decrease in the signal amount largely and precisely.

【0008】本発明の別の1Tr1C型メモリセル構造
の強誘電体メモリは、ダミーセルに属する上記データ線
の一部は電源電圧に、その他のデータ線部分およびこれ
と対をなし所望のメモリセルが接続するデータ線を別電
位にプリチャージし、読み出し動作を行う。上記方法に
より発生する参照電位が、上記メモリセルの強誘電体キ
ャパシタが疲労する前の状態のとき上記メモリセルが二
値の記憶情報に対応してデータ線に出力される二つの信
号電位の丁度中間の電位よりも低くなるように、望まし
くは上記の二つの信号電位のうち低い方の電位よりも高
くその差がセンスアンプの最小検知可能電位差になるよ
うに、上記参照電位を発生させる上記データ線を分割プ
リチャージする。参照電位を上記の二つの信号電位の丁
度中間の電位よりも低くすることにより、メモリセルの
強誘電体キャパシタの疲労現象による信号量低下に対し
て、より大きなメモリアクセス可能回数を実現できる。
また、メモリセルとの同形のダミーセルとプリチャージ
させたデータ線の一部とを用いて上記参照電位を発生さ
せることにより、強誘電体膜の加工ばらつき等によるメ
モリセルの信号量ばらつきに対して高信頼の、かつ高集
積な強誘電体メモリを実現できる効果が得られる。
According to another ferroelectric memory of the 1Tr1C type memory cell structure of the present invention, a part of the data lines belonging to the dummy cell is used as a power supply voltage, the other data line parts and a desired memory cell paired with this are provided. The data line to be connected is precharged to another potential and a read operation is performed. When the reference potential generated by the above method is in a state before the ferroelectric capacitor of the memory cell is fatigued, the memory cell outputs exactly the two signal potentials corresponding to binary storage information to the data line. The data for generating the reference potential so that the reference potential is lower than the intermediate potential, preferably higher than the lower potential of the two signal potentials and the difference is the minimum detectable potential difference of the sense amplifier. Precharge lines separately. By setting the reference potential lower than the potential just between the two signal potentials described above, it is possible to realize a larger number of times of memory access with respect to the reduction in the signal amount due to the fatigue phenomenon of the ferroelectric capacitor of the memory cell.
Further, by generating the above-mentioned reference potential by using a dummy cell having the same shape as the memory cell and a part of the precharged data line, it is possible to cope with variations in the signal amount of the memory cell due to variations in processing of the ferroelectric film. The effect that a highly reliable and highly integrated ferroelectric memory can be realized can be obtained.

【0009】本発明の別の1Tr1C型メモリセル構造
の強誘電体メモリは、情報を記憶するメモリセルと、上
記メモリセルと同形の強誘電体キャパシタを備えた第1
のダミーセルが付属したデータ線対と、常誘電体キャパ
シタと上記メモリセルと同形の強誘電体キャパシタとを
備えた第2のダミーセルが付属したデータ線対とが、交
互に配置され、隣り合う2本のデータ線間すべてに置か
れた差動型センスアンプと、隣り合う二つの差動型セン
スアンプを同時に選択駆動できる選択回路と、隣り合う
3本のデータ線を同時に選択できるプリチャージ回路と
を有する。読み出し時にはメモリセルの情報を出力する
データ線に隣り合う2本のデータ線に、上記第1および
第2のダミーセルから参照電位をそれぞれ発生して、こ
れらの参照電位と上記メモリセルの情報を出力したデー
タ線の電位とを、上記メモリセルの情報が出力されるデ
ータ線につながる二つのセンスアンプを選択駆動するこ
とによって比較し、上記メモリセルの情報を判定する。
Another ferroelectric memory having a 1Tr1C type memory cell structure of the present invention is a first ferroelectric memory having a memory cell for storing information and a ferroelectric capacitor having the same shape as the memory cell.
Data line pairs attached with dummy cells and data line pairs attached with second dummy cells each including a paraelectric capacitor and a ferroelectric capacitor having the same shape as the memory cell are alternately arranged and adjacent to each other. Differential sense amplifiers placed between all the two data lines, a selection circuit that can selectively drive two adjacent differential sense amplifiers, and a precharge circuit that can simultaneously select three adjacent data lines. Have. At the time of reading, reference potentials are generated from the first and second dummy cells on two data lines adjacent to the data line outputting the information of the memory cell, and the reference potential and the information of the memory cell are output. The potential of the data line is compared by selectively driving two sense amplifiers connected to the data line to which the information of the memory cell is output, and the information of the memory cell is determined.

【0010】上記常誘電体キャパシタの容量は、第2の
ダミーセルが発生する参照電位が、上記メモリセルの強
誘電体キャパシタが疲労前の状態にあるとき上記メモリ
セルの二値の記憶情報に対応してデータ線に出力される
二つの信号電位の丁度中間の電位よりも低くなるよう
に、望ましくは上記の二つの信号電位のうち低い方の電
位よりも高く、その差がセンスアンプの最小検知可能電
位差になるように決める。第1のダミーセルからは上記
の二つの信号電位のうち低い方の電位と同電位の参照電
位を発生する。第2のダミーセルから発生する参照電位
を上記の二つの信号電位の丁度中間の電位よりも低くす
ることにより、メモリセルの強誘電体キャパシタの疲労
現象による信号量低下に対して、より大きなメモリアク
セス可能回数を実現できる。また、参照電位を二つ発生
させ、メモリセルの低い方の出力電位を高い方の参照電
位で判定し、メモリセルの高い方の出力電位を低い方の
参照電位で判定することによって、実効的にセンスアン
プの感度が向上し、メモリセルの強誘電体キャパシタの
疲労現象による信号量低下に対して大きなメモリアクセ
ス可能回数が得られる。
The capacitance of the paraelectric capacitor corresponds to binary storage information of the memory cell when the reference potential generated by the second dummy cell is in a state before the ferroelectric capacitor of the memory cell is in a fatigue state. Therefore, it should be lower than the intermediate potential of the two signal potentials output to the data line, preferably higher than the lower potential of the above two signal potentials, and the difference between them should be the minimum detection of the sense amplifier. Determine so that the potential difference is possible. The first dummy cell generates a reference potential having the same potential as the lower potential of the above two signal potentials. By setting the reference potential generated from the second dummy cell to be lower than the intermediate potential between the above-mentioned two signal potentials, a larger memory access can be achieved against a decrease in the signal amount due to the fatigue phenomenon of the ferroelectric capacitor of the memory cell. The number of possible times can be realized. In addition, by generating two reference potentials, the lower output potential of the memory cell is determined by the higher reference potential, and the higher output potential of the memory cell is determined by the lower reference potential. In addition, the sensitivity of the sense amplifier is improved, and a large number of times of memory access can be obtained even when the signal amount is reduced due to the fatigue phenomenon of the ferroelectric capacitor of the memory cell.

【0011】上記のいずれの発明でも、センスアンプで
電位差を増幅する前にダミーセルに付属するワード線を
制御して上記ダミーセルに含まれるトランジスタを非導
通にし、一連の読み出し動作の最後に上記ワード線を制
御して上記トランジスタを導通させて上記ダミーセルに
含まれるキャパシタにかかる電圧を0にする駆動法が好
ましい。この駆動法により、ダミーセルの強誘電体キャ
パシタの破壊読み出しを回避でき、安定した参照電位の
発生が実現できる。
In any of the above inventions, the word line attached to the dummy cell is controlled before the potential difference is amplified by the sense amplifier to make the transistor included in the dummy cell non-conductive, and at the end of a series of read operation, the word line is attached. Is preferably controlled so that the transistor becomes conductive and the voltage applied to the capacitor included in the dummy cell becomes zero. By this driving method, destructive reading of the ferroelectric capacitor of the dummy cell can be avoided, and stable generation of the reference potential can be realized.

【0012】[0012]

【発明の実施の形態】図1は、強誘電体メモリのセル構
成を示す本発明の第1の実施例である。1アレー単位
は、一つのセンスアンプに2本の対データ線DLMm
BLMmが結合されている。mはアレーの順番をあらわ
す。各データ線には強誘電体キャパシタCFEと電界効
果トランジスタからなるメモリセルがn個(DLMmには
MC1 2mからMC2n-1 2m-1,BLMmにはMC2 2mから
MC2n 2m-1 )と、メモリセルと同形セルおよび常誘電
体キャパシタCOと電界効果トランジスタからなるセル
を組み合わせたダミーセルが1個(DLMmにはDC
2m-1,BLMmにはDC2m)結合されている。ダミーセ
ルの強誘電体キャパシタは動作中分極反転が起こらない
方向に分極させておく。常誘電体キャパシタCOの容量
は(VREF−VSS)/(VCC−VREF)×CD
ーCFE0(CFE0はCFEの非反転時容量、VREF
は参照電位)とする。
1 is a first embodiment of the present invention showing a cell structure of a ferroelectric memory. In one array unit, two paired data lines DLM m and BLM m are coupled to one sense amplifier. m represents the order of the array. Memory cells are n consisting of the ferroelectric capacitor CFE and the field effect transistor to the data line (DLM m MC 2n-1 2m -1 from MC 1 2m in, the BLM m MC 2 from 2m MC 2n 2M- 1 ) and a memory cell and a cell of the same shape, and a cell composed of a paraelectric capacitor CO and a field-effect transistor are combined into one dummy cell (DC for DLM m).
Are DC 2m) bind to 2m-1, BLM m. The ferroelectric capacitor of the dummy cell is polarized in a direction in which polarization reversal does not occur during operation. The capacitance of the paraelectric capacitor CO is (VREF-VSS) / (VCC-VREF) * CD
-CFE 0 (CFE 0 is the non-inverting capacity of CFE, VREF
Is the reference potential).

【0013】図2は、図1の実施例で発生させる参照電
位である。読み出し時に、メモリセルの強誘電体キャパ
シタの分極が非反転の場合データ線に発生する電位が非
反転信号、反転した場合に発生する電位が反転信号であ
る。参照電位VREFは反転信号と非反転信号との丁度
中間の電位よりも低く、望ましくは非反転信号より高く
その差がセンスアンプで検知可能な電位差(例えば20
0mV)である電位とする。
FIG. 2 is a reference potential generated in the embodiment of FIG. At the time of reading, the potential generated on the data line is a non-inversion signal when the polarization of the ferroelectric capacitor of the memory cell is non-inversion, and the potential generated when the polarization is inverted is an inversion signal. The reference potential VREF is lower than the intermediate potential between the inverted signal and the non-inverted signal, preferably higher than the non-inverted signal, and the difference between them is a potential difference (for example, 20
The potential is 0 mV).

【0014】図3は、図1における読み出し動作を示す
ものである。MC1 2m-1セル選択の例を示す。ダミーセ
ルは、選択メモリセルのデータ線対で、選択メモリセル
側でないデータ線BLMm に結合しているDC2mが選択
される。まずPCSスイッチを切り、VSSにプリチャ
ージされていたデータ線対を分離しフローティング状態
にする。同時にメモリセルのワード線VW1 とダミーセ
ルのワード線VWD2を駆動する。この状態でVSSに
プリチャージされていたプレート線VP1 とVPD2
VCCに駆動する。このとき、ダミーセル側データ線B
LMmには図1に示した参照電位VREFが発生する。
一方メモリセル側データ線DLMm には、書き込まれて
いる分極方向に応じて反転信号か非反転信号(図2参
照)が発生する。その後、ダミーセルのCFEが分極反
転しないようにVWD2 を閉じた上で、センスアンプで
DLMmとBLMmとの電位差をVSSとVCCに増幅す
る。増幅したデータ線電位はYSm によりI/O線に読
み出す。読み出し終了後、プレート線VP1とVPD2
VSSに戻してメモリセルのCFEの再書き込みを行
い、センスアンプをオフにする。DLMmとBLMmをV
SSに再びプリチャージし、VWD2 をオンにしてダミ
ーセルのキャパシタにかかっている電位差を0にする。
VWD2 をオフにして一連の読み出し動作を終了する。
FIG. 3 shows the read operation in FIG. An example of MC 1 2m-1 cell selection is shown. The dummy cell is a data line pair of the selected memory cell, and DC 2m coupled to the data line BLM m that is not on the selected memory cell side is selected. First, the PCS switch is turned off to separate the data line pair that has been precharged to VSS and put it in a floating state. At the same time, the word line VW 1 of the memory cell and the word line VWD 2 of the dummy cell are driven. In this state, the plate lines VP 1 and VPD 2 that were precharged to VSS are driven to VCC. At this time, the dummy cell side data line B
The reference potential VREF shown in FIG. 1 is generated at LM m .
On the other hand, an inverted signal or a non-inverted signal (see FIG. 2) is generated in the memory cell side data line DLM m , depending on the polarization direction written. After that, VWD 2 is closed so that the CFE of the dummy cell is not inverted, and the sense amplifier amplifies the potential difference between DLM m and BLM m to VSS and VCC. The amplified data line potential is read out to the I / O line by YS m . After the reading is completed, the plate lines VP 1 and VPD 2 are returned to VSS, the CFE of the memory cell is rewritten, and the sense amplifier is turned off. DLM m and BLM m to V
The SS is precharged again, VWD 2 is turned on, and the potential difference applied to the capacitor of the dummy cell is set to zero.
VWD 2 is turned off, and a series of read operations is completed.

【0015】この実施例によれば、ダミーセルにメモリ
セルと同形の強誘電体キャパシタを用いてメモリセルの
非反転信号量を発生し、既に確立した技術のある常誘電
体キャパシタを用いてセンスアンプで検知する電位差を
高精度に発生する。このため、メモリセルの強誘電体キ
ャパシタの特性のばらつきに対して信頼性が高く、疲労
による信号量の低下に対して許容メモリアクセス回数を
大きくとれる参照電位を精密に供給できる。
According to this embodiment, a non-inverted signal amount of the memory cell is generated by using a ferroelectric capacitor having the same shape as the memory cell for the dummy cell, and a sense amplifier is formed by using a paraelectric capacitor having an established technology. The potential difference detected by is generated with high accuracy. For this reason, it is possible to accurately supply the reference potential that has high reliability against variations in the characteristics of the ferroelectric capacitors of the memory cells and can have a large allowable number of times of memory access with respect to a decrease in signal amount due to fatigue.

【0016】図4に、第1の実施例の参照電位VREF
を発生させる、図1に示した実施例以外のダミーセルの
例を示す。図4(a)は、強誘電体キャパシタの非反転容
量がCD・(VREF−VSS)/(VCCーVRE
F)の1Tr1C型のダミーセルである。容量を持つな
らば、常誘電体キャパシタに代えることもできる。図4
(b)はメモリセルと同形の1Tr1C型のダミーセルで
ある。ただし読み出す際には、ダミーセルプレート線を
VCCではなく(1+CD/CFE0)×VREF−CD
/CFE0×VSS に駆動する。図1のダミーセルを図
4のダミーセルに置き換えても、疲労による信号量の低
下に対して許容メモリアクセス回数を大きく取れる効果
がある。
FIG. 4 shows the reference potential VREF of the first embodiment.
An example of a dummy cell other than the embodiment shown in FIG. In FIG. 4A, the non-inversion capacitance of the ferroelectric capacitor is CD. (VREF-VSS) / (VCC-VRE).
It is a 1Tr1C type dummy cell of F). If it has a capacitance, it can be replaced with a paraelectric capacitor. FIG.
(b) is a 1Tr1C type dummy cell having the same shape as the memory cell. However, when reading, the dummy cell plate line is set to (1 + CD / CFE0) × VREF-CD instead of VCC.
Drive to / CFE0 × VSS. Even if the dummy cell shown in FIG. 1 is replaced with the dummy cell shown in FIG. 4, there is an effect that a large number of allowable memory accesses can be taken against the decrease in the signal amount due to fatigue.

【0017】図5は強誘電体メモリのセル構成を示す本
発明の第2の実施例である。この実施例でも、第1実施
例と同じ参照電位VREFを発生させる。ダミーセルは
メモリセルと同形である。データ線DLMmはPCB1
BLMmはPCB2によりメモリセル側(DLM1m,BL
1m)とダミーセル側(DLM2m,BLM2m)に分けら
れる。ただしメモリセル側DLM1m,BLM1m のデー
タ線容量をCD1,ダミーセル側DLM2m,BLM2m
データ線容量CD2 としたときに、VREF=(CFE
0+CD2)VCC/(CFE0+CD1+CD2)が成り立
つように分割する。メモリセル側データ線にはVSSプ
リチャージ回路、ダミーセル側データ線にはVCCプリ
チャージ回路が付属している。
FIG. 5 is a second embodiment of the present invention showing a cell structure of a ferroelectric memory. In this embodiment as well, the same reference potential VREF as in the first embodiment is generated. The dummy cell has the same shape as the memory cell. The data line DLM m is PCB 1 ,
BLM m memory cell side by the PCB 2 (DLM 1m, BL
M 1m ) and the dummy cell side (DLM 2m , BLM 2m ). However, when the data line capacitance of the memory cell side DLM 1m and BLM 1m is CD 1 and the data line capacitance of the dummy cell side DLM 2m and BLM 2m is CD 2 , VREF = (CFE
0 + CD 2 ) VCC / (CFE 0 + CD 1 + CD 2 ) is established. A VSS precharge circuit is attached to the data line on the memory cell side, and a VCC precharge circuit is attached to the data line on the dummy cell side.

【0018】図6は図5における読み出し動作を示すも
のである。MC1 2m-1セル選択の例を示す。待機時には
PCA,PCB1,PCB2はオンであり、データ線はメ
モリセル側とダミーセル側がつながった状態でVSSに
プリチャージされている。読み出し開始するときにはP
CB2 をオフにして選択ダミーセル側のデータ線を分離
し、PCC2をオンにしてBLM2m をVCCにプリチャ
ージする。その後PCC2,PCAをオフにしてデータ
線をフローティングにし、PCB2をオンにして、以下
第1実施例と同様の手順により読み出し動作を行う。
FIG. 6 shows the read operation in FIG. An example of MC 1 2m-1 cell selection is shown. During standby, PCA, PCB 1 and PCB 2 are on, and the data line is precharged to VSS with the memory cell side and the dummy cell side connected. When starting to read P
CB 2 is turned off to separate the data line on the selected dummy cell side, and PCC 2 is turned on to precharge BLM 2m to VCC. After that, PCC 2 and PCA are turned off to float the data line, PCB 2 is turned on, and the read operation is performed by the same procedure as in the first embodiment.

【0019】本実施例によれば、図1から図3の実施例
と同じ効果がある。また、常誘電体キャパシタが不要な
分、高集積な強誘電体メモリを実現できる。
According to this embodiment, the same effect as the embodiment of FIGS. 1 to 3 is obtained. In addition, since a paraelectric capacitor is unnecessary, a highly integrated ferroelectric memory can be realized.

【0020】図7は、別の参照電位発生法により読み出
しを行う強誘電体メモリのセル構成を示す本発明の第3
の実施例である。データ線はセンスアンプで連続的に結
ばれている。例えば、データ線DLMx-1とDLMx
間、DLMxとDLMx+1との間にセンスアンプが一つず
つ配置されている。各データ線には、第1実施例と同形
のダミーセルと、メモリセルと同形のダミーセルが2個
ずつ交互に付属している。例えば、データ線DLMx-1
とDLMxにはメモリセルと同形のセルと常誘電体キャ
パシタを備えたセルからなるダミーセル、DLMx+1
DLMx+2にはメモリセルと同形のダミーセルがついて
いる。ダミーセルの強誘電体キャパシタは動作中分極反
転が起こらない方向に分極させておく。また、データ線
にはPCx 等で制御され、同時に3本のデータ線を選択
できるVSSプリチャージ回路が付属している。センス
アンプは、PCSx 等により同時に二つ選択駆動できる
回路を備えている。
FIG. 7 is a third embodiment of the present invention showing a cell structure of a ferroelectric memory for reading by another reference potential generating method.
This is an embodiment of the present invention. The data lines are continuously connected by a sense amplifier. For example, during the data line DLM x-1 and DLM x, the sense amplifier between the DLM x and DLM x + 1 are disposed one by one. Two dummy cells of the same shape as the first embodiment and two dummy cells of the same shape as the memory cells are alternately attached to each data line. For example, the data line DLM x-1
, DLM x is a dummy cell composed of a cell having the same shape as the memory cell and a cell having a paraelectric capacitor, DLM x + 1 ,
DLM x + 2 has a dummy cell of the same shape as the memory cell. The ferroelectric capacitor of the dummy cell is polarized in a direction in which polarization reversal does not occur during operation. Further, the data line is provided with a VSS precharge circuit which is controlled by PC x or the like and which can simultaneously select three data lines. The sense amplifier includes a circuit that can selectively drive two of them by PCS x or the like.

【0021】図8は図7の実施例で発生させる参照電位
を示す。読み出し時に、メモリセルの強誘電体キャパシ
タの分極が非反転の場合データ線に発生する電位が非反
転信号、反転した場合に発生する電位が反転信号であ
る。参照電位VREF1 は第1の実施例の参照電位VR
EFと同電位とする。別の参照電位VREF2 は非反転
信号量と同電位とする。反転信号はVREF2との差
を、非反転信号はVREF1との差をセンスアンプで増
幅する。
FIG. 8 shows the reference potential generated in the embodiment of FIG. At the time of reading, the potential generated on the data line is a non-inversion signal when the polarization of the ferroelectric capacitor of the memory cell is non-inversion, and the potential generated when the polarization is inverted is an inversion signal. The reference potential VREF 1 is the reference potential VR of the first embodiment.
It has the same potential as EF. Another reference potential VREF 2 has the same potential as the non-inverted signal amount. The sense amplifier amplifies the difference between the inverted signal and VREF 2 and the difference between the non-inverted signal and VREF 1 .

【0022】図9は図7における読み出し動作を示すも
のである。MC2 x セル選択の例を示す。待機時には全
てのデータ線をVSSにプリチャージしておく。読み出
し開始時にはPCxをオフにして3本のデータ線DLM
x-1,DLMx,DLMx+1をフローティングにする。同
時にVW2とVWD2をオンにしてメモリセルMC2xとダ
ミーセルDCx-1,DCx+1を選択する。また、PCSx
をオンにしてDMLxに隣接する二つのセンスアンプを
選択しておく。次に、プレート線VPx,VPDx-1,V
PDx+1をVSSからVCCに駆動すると、DLMx-1
は参照電位VREF1,DLMxには分極方向に応じて反
転信号あるいは非反転信号電位、DLMx+1には参照電
位VREF2 が発生する(図8参照)。ダミーセルに分
極反転が起こらないようにVWD2をオフにした後、セ
ンスアンプをオンにしてDLMxとDMLx-1,DML
x+1との電位差をVCCにまで増幅する。このときメモ
リセルの反転信号電位はVREF2との間で主に増幅さ
れ、非反転信号電位はVREF1との間で主に増幅され
る。このためメモリセルの強誘電体キャパシタが疲労し
て反転信号電位が次第に減少しても、見掛け上非反転信
号電位(疲労しても減少しない)との差が、VREF1
−VREF2以下になるまでは、メモリセルの分極情報
を読み出すことができる。増幅後、YSx によりI/O
線にメモリセルの分極情報を読み出す。その後、駆動し
たプレート線VPx ,VPDx-1,VPDx+1をVSSに
戻してメモリセルにもとの情報を再書き込みした後、セ
ンスアンプをオフにする。PCxをオンにして3本のデ
ータ線DLMx-1,DLMx,DLMx+1を再びVSSに
プリチャージする。同時にPCSx をオフにしてセンス
アンプを非選択の状態に戻しておく。最後にVWD2
オンにしてダミーセルのキャパシタにかかる電圧を0に
リセットし、VW2とVWD2をオフにする。
FIG. 9 shows the read operation in FIG. An example of MC 2 x cell selection is shown. During standby, all data lines are precharged to VSS. At the start of reading, PC x is turned off and the three data lines DLM
Floating x-1 , DLM x , DLM x + 1 . At the same time, VW 2 and VWD 2 are turned on to select the memory cell MC 2x and the dummy cells DC x-1 and DC x + 1 . Also, PCS x
Is turned on and two sense amplifiers adjacent to DML x are selected. Next, the plate lines VP x , VPD x-1 , V
When the PD x + 1 is driven from VSS to VCC, DLM x-1 reference to the potential VREF 1, DLM inverted signal or a non-inverted signal potential in accordance with the polarization direction in the x, DLM x + 1 reference to the potential VREF 2 Occurs (see FIG. 8). After turning off VWD 2 so that polarization inversion does not occur in the dummy cell, the sense amplifier is turned on to turn on DLM x and DML x-1 , DML.
The potential difference from x + 1 is amplified to VCC. At this time, the inverted signal potential of the memory cell is mainly amplified with VREF 2 and the non-inverted signal potential is mainly amplified with VREF 1 . Therefore, even if the ferroelectric capacitor of the memory cell fatigues and the inverted signal potential gradually decreases, the difference from the apparent non-inverted signal potential (which does not decrease even if fatigued) is VREF 1
The polarization information of the memory cell can be read until it becomes −VREF 2 or less. I / O by YS x after amplification
The polarization information of the memory cell is read out on the line. After that, the driven plate lines VP x , VPD x-1 , and VPD x + 1 are returned to VSS and the original information is rewritten in the memory cell, and then the sense amplifier is turned off. PC x is turned on to precharge the three data lines DLM x-1 , DLM x , DLM x + 1 to VSS again. At the same time, PCS x is turned off and the sense amplifier is returned to the non-selected state. Finally, VWD 2 is turned on to reset the voltage applied to the capacitor of the dummy cell to 0, and VW 2 and VWD 2 are turned off.

【0023】本実施例によれば、メモリセルの疲労によ
り次第に反転信号が低下しても、見かけ上反転信号量と
非反転信号量との差がセンスアンプの検知できる最小の
電位差になるまで読み出しが可能になるので、実効的に
センスアンプの感度が向上する効果がある。
According to the present embodiment, even if the inversion signal gradually decreases due to the fatigue of the memory cell, reading is performed until the difference between the inversion signal amount and the non-inversion signal amount becomes the minimum potential difference that can be detected by the sense amplifier. Therefore, there is an effect that the sensitivity of the sense amplifier is effectively improved.

【0024】以上の三つの実施例はいずれもプレート線
をVCCに駆動して読み書きを行う方式を示したが、プ
レート線をVCC/2に固定して読み書きを行う方式で
も本発明の参照電位発生法は有効である。
In all of the above-mentioned three embodiments, the system for driving the plate line to VCC for reading and writing has been described, but the system for fixing the plate line at VCC / 2 for reading and writing also generates the reference potential of the present invention. The law is valid.

【0025】[0025]

【発明の効果】本発明によれば、強誘電体膜疲労に対し
て高信頼性の高集積不揮発性強誘電体メモリが得られ
る。
According to the present invention, it is possible to obtain a highly integrated nonvolatile ferroelectric memory having high reliability against fatigue of the ferroelectric film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の参照電位発生ダミーセルを用いたアレ
ー構成の説明図。
FIG. 1 is an explanatory diagram of an array configuration using a reference potential generation dummy cell of the present invention.

【図2】本発明の発生方式による参照電位の特性図。FIG. 2 is a characteristic diagram of a reference potential according to the generation method of the present invention.

【図3】図1のアレーにおける読み出し動作のタイミン
グチャート。
3 is a timing chart of a read operation in the array of FIG.

【図4】図1の参照電位を発生するダミーセルの例の説
明図。
FIG. 4 is an explanatory diagram of an example of a dummy cell that generates the reference potential of FIG.

【図5】本発明のアレー構成の説明図。FIG. 5 is an explanatory diagram of an array structure of the present invention.

【図6】図5のアレーにおける読み出し動作のタイミン
グチャート。
6 is a timing chart of a read operation in the array of FIG.

【図7】本発明の参照電位発生ダミーセルを用いたアレ
ー構成の説明図。
FIG. 7 is an explanatory diagram of an array configuration using a reference potential generation dummy cell of the present invention.

【図8】本発明の発生方式による参照電位の特性図。FIG. 8 is a characteristic diagram of a reference potential according to the generation method of the present invention.

【図9】図7のアレーにおける読み出し動作のタイミン
グチャート。
9 is a timing chart of a read operation in the array of FIG.

【図10】従来の参照電位発生ダミーセルを用いたアレ
ー構成の説明図。
FIG. 10 is an explanatory diagram of an array configuration using a conventional reference potential generating dummy cell.

【符号の説明】[Explanation of symbols]

VREF…参照電位、DLMm,BLMm,DLM,DL
1m,DLM2m,,BLM1m,BLM2m,DLM,BL
M…データ線、VW1,VW2,VW2n-1,VW2n,VW
…メモリセルのワード線、VWD1,VWD2,VWD…
ダミーセルのワード線、VP1,VP2,VPx-1,V
x,VPx+1,VPx+2…メモリセルのプレート線、V
PD1,VPD2,VPD,VPDD,VPDx-1,VP
x,VPDx+1,VPDx+2…ダミーセルのプレート
線。
VREF ... Reference potential, DLM m , BLM m , DLM, DL
M 1m , DLM 2m , BLM 1m , BLM 2m , DLM, BL
M ... Data line, VW 1 , VW 2 , VW 2n-1 , VW 2n , VW
... Word lines of memory cells, VWD 1 , VWD 2 , VWD ...
Dummy cell word lines, VP 1 , VP 2 , VP x-1 , V
P x , VP x + 1 , VP x + 2 ... Plate line of memory cell, V
PD 1 , VPD 2 , VPD, VPDD, VPD x-1 , VP
D x , VPD x + 1 , VPD x + 2 ... Plate line of dummy cell.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】一トランジスタ一キャパシタ型メモリセル
構造の強誘電体メモリにおいて、情報を記憶するメモリ
セルと、上記メモリセルの二値の記憶情報を判定するた
めの参照電位をデータ線に発生するダミーセルとを有
し、上記ダミーセルは、常誘電体キャパシタと上記メモ
リセルと同形の強誘電体キャパシタとを含むことを特徴
とする半導体不揮発メモリ。
1. In a ferroelectric memory having a one-transistor, one-capacitor type memory cell structure, a memory cell for storing information and a reference potential for determining binary storage information of the memory cell are generated in a data line. A semiconductor non-volatile memory having a dummy cell, wherein the dummy cell includes a paraelectric capacitor and a ferroelectric capacitor having the same shape as the memory cell.
【請求項2】請求項1において、上記ダミーセルが上記
データ線に出力する参照電位は、上記メモリセルの強誘
電体キャパシタが疲労前の状態にあるとき上記メモリセ
ルの二値の記憶情報に対応してデータ線に出力される二
つの信号電位の丁度中間の電位よりも低くなるように、
ダミーセルの常誘電体キャパシタの容量が設定されてい
る半導体不揮発メモリ。
2. The reference potential output from the dummy cell to the data line according to claim 1, corresponds to binary storage information of the memory cell when the ferroelectric capacitor of the memory cell is in a state before fatigue. Then, it becomes lower than the intermediate potential of the two signal potentials output to the data line,
A semiconductor non-volatile memory in which the capacitance of a paraelectric capacitor of a dummy cell is set.
【請求項3】上記常誘電体キャパシタは上記データ線の
一部からなる請求項1又は請求項2に記載の半導体不揮
発性メモリ。
3. The semiconductor nonvolatile memory according to claim 1, wherein the paraelectric capacitor comprises a part of the data line.
【請求項4】情報を記憶するメモリセルと、上記メモリ
セルと同形の強誘電体キャパシタを備えた第1のダミー
セルが付属したデータ線対と、請求項1又は請求項2に
記載の第2のダミーセルが付属したデータ線対とが交互
に配置され、隣り合う2本のデータ線間すべてに置かれ
た差動型センスアンプと、隣り合う二つの差動型センス
アンプを同時に選択駆動できる選択回路と、隣り合う3
本のデータ線を同時に選択できるプリチャージ回路とを
有する半導体不揮発メモリ。
4. A data line pair to which a memory cell for storing information and a first dummy cell having a ferroelectric capacitor of the same shape as the memory cell are attached, and a second data line pair according to claim 1 or 2. The data line pairs to which the dummy cells are attached are alternately arranged, and the differential type sense amplifier placed between all two adjacent data lines and the two adjacent differential type sense amplifiers can be selectively driven at the same time. 3 adjacent to the circuit
A semiconductor nonvolatile memory having a precharge circuit capable of simultaneously selecting two data lines.
【請求項5】請求項4において、読み出し時にメモリセ
ルの情報を出力するデータ線に隣り合う2本のデータ線
に、上記第1および第2のダミーセルから参照電位をそ
れぞれ発生して、これらの参照電位と上記メモリセルの
情報を出力したデータ線の電位とを、上記メモリセルの
情報が出力されるデータ線につながる二つのセンスアン
プを選択駆動することによって比較し、上記メモリセル
の情報を判定する半導体不揮発メモリ。
5. A reference potential is generated from each of the first and second dummy cells on two data lines adjacent to a data line for outputting information of a memory cell at the time of reading, and these data lines are generated. The reference potential and the potential of the data line that outputs the information of the memory cell are compared by selectively driving two sense amplifiers connected to the data line that outputs the information of the memory cell, and the information of the memory cell is compared. Semiconductor non-volatile memory to judge.
【請求項6】センスアンプで電位差を増幅する前に参照
電位を出力するダミーセルに付属するワード線を制御し
て上記ダミーセルに含まれるトランジスタを非導通に
し、一連の読み出し動作の最後に上記ワード線を制御し
て上記トランジスタを導通させて上記ダミーセルに含ま
れるキャパシタにかかる電圧を0にする請求項1,請求
項3または請求項4に記載の半導体不揮発メモリの駆動
法。
6. A sense amplifier is used to control a word line attached to a dummy cell for outputting a reference potential before amplifying the potential difference to make a transistor included in the dummy cell non-conductive, and at the end of a series of read operations, the word line is connected. 5. The method of driving a semiconductor non-volatile memory according to claim 1, claim 3 or claim 4, wherein the voltage applied to the capacitor included in the dummy cell is set to 0 by controlling the transistor to make the transistor conductive.
JP7289596A 1995-11-08 1995-11-08 Semiconductor nonvolatile memory Pending JPH09134594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7289596A JPH09134594A (en) 1995-11-08 1995-11-08 Semiconductor nonvolatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7289596A JPH09134594A (en) 1995-11-08 1995-11-08 Semiconductor nonvolatile memory

Publications (1)

Publication Number Publication Date
JPH09134594A true JPH09134594A (en) 1997-05-20

Family

ID=17745289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7289596A Pending JPH09134594A (en) 1995-11-08 1995-11-08 Semiconductor nonvolatile memory

Country Status (1)

Country Link
JP (1) JPH09134594A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100293622B1 (en) * 1997-07-16 2001-07-12 가네꼬 히사시 Ferroelectric memory device
JP2002269970A (en) * 2001-03-05 2002-09-20 Samsung Electronics Co Ltd Data sensing method for ferroelectric random access memory
US6853600B2 (en) 2002-10-15 2005-02-08 Kabushiki Kaisha Toshiba Ferro-electric random access memory using paraelectric and ferroelectric capacitor for generating a reference potential
KR100492793B1 (en) * 1997-12-24 2005-08-25 주식회사 하이닉스반도체 Ferroelectric memory device with bad cell repair
JP2007141371A (en) * 2005-11-18 2007-06-07 Toshiba Corp Temperature sensing circuit, voltage generating circuit, and semiconductor storage device
US7930467B2 (en) 2007-03-08 2011-04-19 Samsung Electronics Co., Ltd. Method of converting a hybrid hard disk drive to a normal HDD

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100293622B1 (en) * 1997-07-16 2001-07-12 가네꼬 히사시 Ferroelectric memory device
KR100492793B1 (en) * 1997-12-24 2005-08-25 주식회사 하이닉스반도체 Ferroelectric memory device with bad cell repair
JP2002269970A (en) * 2001-03-05 2002-09-20 Samsung Electronics Co Ltd Data sensing method for ferroelectric random access memory
US6853600B2 (en) 2002-10-15 2005-02-08 Kabushiki Kaisha Toshiba Ferro-electric random access memory using paraelectric and ferroelectric capacitor for generating a reference potential
JP2007141371A (en) * 2005-11-18 2007-06-07 Toshiba Corp Temperature sensing circuit, voltage generating circuit, and semiconductor storage device
US7930467B2 (en) 2007-03-08 2011-04-19 Samsung Electronics Co., Ltd. Method of converting a hybrid hard disk drive to a normal HDD

Similar Documents

Publication Publication Date Title
KR100201737B1 (en) Ferroelectric random-access memory
JP3196824B2 (en) Ferroelectric memory device
JP3183076B2 (en) Ferroelectric memory device
US5677865A (en) Ferroelectric memory using reference charge circuit
JP4531886B2 (en) Ferroelectric memory device
JP3495905B2 (en) Semiconductor storage device
JP3196829B2 (en) Ferroelectric memory device
JP2005182978A (en) Ferroelectric memory device and its driving method
EP0721189B1 (en) Ferroelectric memory and method for controlling operation of the same
JPH11260066A (en) Memory having ferroelectric memory cell and reading method of ferroelectric memory
JP2002269971A (en) Semiconductor memory and driving method for the semiconductor memory
US6525956B2 (en) Ferroelectric capacitor memory
US6208550B1 (en) Ferroelectric memory device and method for operating thereof
EP0986066A2 (en) Ferroelectric memory and method of testing the same
US5805495A (en) Ferroelectric semiconductor memory and accessing method therefor
US5940316A (en) Ferroelectric memory device using a ferroelectric material and method of reading data from the ferroelectric memory device
JP3487753B2 (en) Semiconductor storage device
US6438020B1 (en) Ferroelectric memory device having an internal supply voltage, which is lower than the external supply voltage, supplied to the memory cells
JPH09134594A (en) Semiconductor nonvolatile memory
JP2000048577A (en) Ferroelectric memory
JP3397452B2 (en) Semiconductor storage device
US6487128B2 (en) Integrated memory having memory cells and reference cells, and operating method for such a memory
JPH06119773A (en) Semiconductor memory
KR100568866B1 (en) Apparatus for reference voltage generating for use in FRAM and driving method therefore
KR100353823B1 (en) Apparatus for generating reference voltage in ferroelectric memory device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A02 Decision of refusal

Effective date: 20060307

Free format text: JAPANESE INTERMEDIATE CODE: A02