JPH08298117A - Electrode material for secondary battery - Google Patents
Electrode material for secondary batteryInfo
- Publication number
- JPH08298117A JPH08298117A JP7127307A JP12730795A JPH08298117A JP H08298117 A JPH08298117 A JP H08298117A JP 7127307 A JP7127307 A JP 7127307A JP 12730795 A JP12730795 A JP 12730795A JP H08298117 A JPH08298117 A JP H08298117A
- Authority
- JP
- Japan
- Prior art keywords
- charge
- purity
- discharge
- graphite
- natural graphite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、特定の炭素材を用いた
二次電池の電極材料、殊にリチウム二次電池の負極材料
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery electrode material using a specific carbon material, and more particularly to a negative electrode material for a lithium secondary battery.
【0002】[0002]
【従来の技術】従来、二次電池(充放電可能な電池)の
電極材料の用途に供される炭素材として、石炭・石油等
を原料とするコークス類、天然黒鉛、人造黒鉛などが用
いられている。2. Description of the Related Art Conventionally, coke made from coal, petroleum, etc., natural graphite, artificial graphite, etc. have been used as carbon materials used for electrode materials of secondary batteries (chargeable / dischargeable batteries). ing.
【0003】炭素材をリチウム二次電池用負極材料の用
途に供する場合は、黒鉛の完全結晶に近いものが充放電
容量および充放電効率の点で有利と考えられる。また、
電池を組み立てるときにはその炭素材を負極の銅板に塗
布するなどの操作が必要なため、炭素材を適切な粒度に
まで粉砕することが必要となる。When a carbon material is used as a negative electrode material for a lithium secondary battery, a material close to a perfect crystal of graphite is considered to be advantageous in terms of charge / discharge capacity and charge / discharge efficiency. Also,
When assembling the battery, it is necessary to apply the carbon material to the copper plate of the negative electrode and the like, so it is necessary to crush the carbon material to an appropriate particle size.
【0004】天然黒鉛を用いたリチウム二次電池につい
ては、たとえば特開平6−290781号公報に記載が
ある。この公報の発明においては、1800℃以上の温
度で加熱処理された天然黒鉛をリチウムイオンを吸蔵放
出可能な負極材料として用いている。A lithium secondary battery using natural graphite is described, for example, in JP-A-6-290781. In the invention of this publication, natural graphite heat-treated at a temperature of 1800 ° C. or higher is used as a negative electrode material capable of inserting and extracting lithium ions.
【0005】ところで、一般に黒鉛の粉砕方式として
は、主としてボールミル粉砕に代表される磨砕型の粉砕
方式が多用されている。By the way, generally, as a crushing method of graphite, a grinding-type crushing method typified mainly by ball milling is often used.
【0006】そのほか、黒鉛の特殊な粉砕方式として、
ジェットミル粉砕を行うこともいくつか提案されてい
る。Besides, as a special crushing method of graphite,
Several proposals have been made to carry out jet mill grinding.
【0007】たとえば、本出願人の出願にかかる特開平
3−50110号公報には、天然黒鉛や製鉄工程で生成
するキッシュグラファイト等の黒鉛を高純度化するにあ
たり一方側からの瞬間的外力により黒鉛を粒径30μm
以下に解砕した後、フッ酸に浸漬し、その後水洗、乾燥
する方法が示されている。ここで、一方側からの瞬間的
外力とは、具体的にはジェットミル粉砕あるいは超音波
等に基く電磁波エネルギーの衝突による解砕である。こ
の公報には、精製して灰分を1%程度にした黒鉛は、潤
滑性、電導性、伝熱性が優れており、これらの性質を利
用してカーボンブラシや機械用炭素製品等の摺動部材の
原料として利用されている旨の記載がある。For example, Japanese Patent Application Laid-Open No. 3-50110 filed by the applicant of the present invention discloses that when graphite such as natural graphite or quiche graphite produced in an iron making process is highly purified, a graphite is applied by an instantaneous external force from one side. Particle size of 30 μm
The method of crushing, immersing in hydrofluoric acid, then washing with water and drying is shown below. Here, the instantaneous external force from one side is specifically crushing by jet mill crushing or collision of electromagnetic wave energy based on ultrasonic waves or the like. In this publication, graphite whose ash content is refined to about 1% has excellent lubricity, electrical conductivity, and heat conductivity. Utilizing these properties, sliding members such as carbon brushes and carbon products for machines are used. There is a description that it is used as a raw material of.
【0008】特公平6−45446号公報(特開平2−
83205号公報)には、黒鉛素材を粗粉砕する第1工
程、それを高温ハロゲンガスにより高純度化処理する第
2工程、それにエタノールを添加してジェットミル粉砕
により平均粒径1μm 以下に微粉化する第3工程からな
る高純度黒鉛微粉の製造方法が示されている。黒鉛素材
に関しては、通常の製法手段により得られる人造黒鉛の
ブロック材が用いられるが、電気製鋼用の大型鉛電極を
製造する過程で発生する黒鉛化品の残材あるいは加工屑
などの廃物材を利用してもかまわないとの記載がある。
この公報には、この発明によれば平均粒径1μm 以下で
不純物50ppm 以下の高純度黒鉛微粉を常に効率よく製
造することができるため、エレクトロニクス、原子力等
の分野をはじめ高純度性能が要求されるあらゆる用途に
対して安全に供給することができる旨の記載がある。Japanese Examined Patent Publication No. 6-45446 (JP-A-2-
No. 83205 gazette), a first step of roughly crushing a graphite material, a second step of purifying it with a high-temperature halogen gas, and adding ethanol to it and pulverizing it into an average particle size of 1 μm or less by jet mill grinding. A method for producing high-purity graphite fine powder, which comprises a third step of As for the graphite material, the block material of artificial graphite obtained by the usual manufacturing method is used, but the waste material such as the residual material of the graphitized product or the processing waste generated in the process of manufacturing the large lead electrode for electric steelmaking is used. There is a statement that you can use it.
According to the present invention, high-purity graphite fine powder having an average particle size of 1 μm or less and impurities of 50 ppm or less can always be efficiently produced according to the present invention, and therefore high purity performance is required in fields such as electronics and nuclear power. There is a statement that it can be safely supplied for all purposes.
【0009】特開平6−100727号公報には、天然
鱗片状黒鉛などの黒鉛を酸処理した酸処理黒鉛を膨潤さ
せて膨潤化黒鉛を得、ついでジェット粉砕機により平均
粒子径20μm 以下、かさ密度0.12g/cc以下となるよう
に粉砕して膨潤化黒鉛微粒子となし、これをポリエチレ
ン等の樹脂に配合して導電性樹脂組成物を得ることが示
されている。Japanese Patent Laid-Open No. 6-100727 discloses that acid-treated graphite obtained by acid-treating graphite such as natural flake graphite is swollen to obtain swollen graphite, and then a jet pulverizer is used to obtain an average particle diameter of 20 μm or less and a bulk density. It has been shown that the conductive resin composition is obtained by pulverizing to particles of 0.12 g / cc or less to form swollen graphite fine particles, which is mixed with a resin such as polyethylene.
【0010】[0010]
【発明が解決しようとする課題】天然黒鉛の粉砕品をリ
チウム二次電池の負極材料として用いる場合、2回目以
降の充放電容量、充放電効率(1回目の充電電気量に対
する放電電気量の百分率)などの基本的電池特性の点で
なお改良の余地がある。When a crushed product of natural graphite is used as a negative electrode material of a lithium secondary battery, the charge and discharge capacity and charge and discharge efficiency after the second time (percentage of the discharge electricity quantity relative to the first charge electricity quantity). There is still room for improvement in terms of basic battery characteristics such as).
【0011】本発明者らは、上記の問題点が、従来は黒
鉛の粉砕にボールミル粉砕に代表される磨砕方式を採用
していたため柔らかな黒鉛の結晶構造を損傷しやすく、
その結果、充放電容量や充放電効率の点で限界を与える
のではないかと考え、黒鉛粉砕方式の違いによる電池性
能につき鋭意研究を行った。The inventors of the present invention have the above-mentioned problems that the conventional grinding method, which is typified by ball milling, is used to grind graphite, so that the crystal structure of soft graphite is easily damaged.
As a result, we thought that it might limit the charge and discharge capacity and charge and discharge efficiency, and conducted intensive studies on the battery performance depending on the difference in the graphite crushing method.
【0012】なお、黒鉛のジェット粉砕方式につき記載
のある上述の特開平3−50110号公報には摺動部材
の原料についての用途しか開示がない上、高純度化と言
っても、その精製度合は純度99%程度(灰分1%程
度)である。特公平6−45446号公報(特開平2−
83205号公報)では人造黒鉛を用いている上、エレ
クトロニクス、原子力等の分野の用途についてしか開示
がない。特開平6−100727号公報における黒鉛は
酸処理および膨潤化処理したものである上、樹脂配合剤
として用いるものである。The above-mentioned Japanese Patent Laid-Open No. 3-50110, which describes a jet pulverization method of graphite, discloses only the use as a raw material of a sliding member, and even if it is called high purification, its degree of purification is high. Has a purity of about 99% (ash content of about 1%). Japanese Examined Patent Publication No. 6-45446 (JP-A-2-
In Japanese Patent Publication No. 83205), artificial graphite is used, and only application in fields such as electronics and nuclear power is disclosed. The graphite in Japanese Patent Laid-Open No. 6-100727 is acid-treated and swelled and used as a resin compounding agent.
【0013】本発明は、このようなバックグラウンドに
おいて、すぐれた充放電容量および充放電効率を有する
二次電池の電極材料、殊にリチウム二次電池用負極材料
を提供することを目的とするものである。It is an object of the present invention to provide an electrode material for a secondary battery, which has an excellent charge / discharge capacity and charge / discharge efficiency in such a background, particularly a negative electrode material for a lithium secondary battery. Is.
【0014】[0014]
【課題を解決するための手段】本発明の二次電池の電極
材料は、ジェットミル粉砕され、純度が99.9%以上で、
粒度が1〜100μm の高純度鱗片状天然黒鉛であっ
て、充放電電圧0.02〜0.5 V の条件で充放電試験したと
きの2回目以降の充放電容量が300mAh/g 以上である
ことを特徴とするものである。The electrode material of the secondary battery of the present invention is jet-milled and has a purity of 99.9% or more,
High-purity scaly natural graphite with a particle size of 1 to 100 μm, characterized by a charge and discharge capacity of 300 mAh / g or more after the second charge and discharge test under a charge and discharge voltage of 0.02 to 0.5 V. To do.
【0015】以下本発明を詳細に説明する。The present invention will be described in detail below.
【0016】本発明においては、原料として鱗片状天然
黒鉛を用いる。鱗状や土壌状など鱗片状でない天然黒鉛
は、本発明の目的には適していない。In the present invention, scaly natural graphite is used as a raw material. Natural graphite that is not scale-like, such as scale-like or soil-like, is not suitable for the purpose of the present invention.
【0017】本発明における高純度鱗片状天然黒鉛の純
度は99.9%以上(つまり灰分 0.1%以下)であることが
必要であり、純度が99.9%未満ではたとえジェットミル
粉砕を行ったものを用いても、本発明の目的に用いたと
きの電池性能が不足する。The purity of the high-purity scaly natural graphite in the present invention needs to be 99.9% or more (that is, ash content is 0.1% or less). If the purity is less than 99.9%, the product obtained by jet milling is used. However, the battery performance when used for the purpose of the present invention is insufficient.
【0018】鱗片状天然黒鉛原料は通常85〜99%程
度の純度で入手できるので、その純度を99.9%以上にま
で高めることが必要となる。高純度化手段としては、た
とえば、(1) フッ酸による酸洗浄法、(2) 真空炉で20
00℃以上に加熱するか、ハロゲンガス雰囲気中で20
00℃程度に加熱するか、アチソン炉で2500℃以上
に加熱する高温処理法、(3) ニッケル被覆されたオート
クレーブ内において約30%程度の苛性ソーダ溶液中で
約250℃加熱(約40気圧)による加圧下でのアルカ
リ処理法、などが採用される。Since the flaky natural graphite raw material is usually available with a purity of about 85 to 99%, it is necessary to raise the purity to 99.9% or more. Examples of the purification means include (1) an acid cleaning method using hydrofluoric acid, and (2) a vacuum furnace for 20 times.
Heat above 00 ° C or in a halogen gas atmosphere for 20
High temperature treatment method of heating to about 00 ° C or 2500 ° C or higher in an Acheson furnace, (3) Heating at about 250 ° C (about 40 atm) in about 30% caustic soda solution in a nickel-coated autoclave An alkali treatment method under pressure or the like is adopted.
【0019】そして上記の鱗片状天然黒鉛は、その高純
度化の前または後に、ジェットミルで粉砕することが必
要である。ボールミルなど通常の磨砕方式では、所期の
電池性能が得られない。なお鱗片状天然黒鉛の顕微鏡写
真によれば、ジェットミル粉砕品は鱗片状のままシャー
プに細断されているのに対し、ボールミル粉砕品は摩擦
圧潰してつぶれたような状態で破砕されていることがわ
かる。The scale-like natural graphite needs to be pulverized with a jet mill before or after its purification. Ordinary grinding methods such as ball mills do not provide the desired battery performance. According to the micrograph of scale-like natural graphite, the jet mill crushed product is sharply shredded in the form of scales, whereas the ball mill crushed product is crushed by friction crushing in a crushed state. I understand.
【0020】ジェットミル粉砕による粒度は1〜100
μm 、好ましくは2〜50μm とされ、粒度がこの範囲
にあるときにはじめて所期の目的が達成される。The particle size by jet mill grinding is 1-100.
.mu.m, preferably 2 to 50 .mu.m, and the intended purpose is achieved only when the particle size is within this range.
【0021】この粉砕黒鉛は、本発明の目的には、充放
電電圧0.02〜0.5 V の条件で充放電試験したときの2回
目以降の充放電容量が300mAh/g 以上であることが必
要である。従って、このような充放電容量が得られるよ
うに、鱗片状天然黒鉛の純度やジェットミル粉砕条件を
選ぶべきである。For the purpose of the present invention, this crushed graphite must have a charge / discharge capacity of 300 mAh / g or more after the second time when the charge / discharge test is performed under the condition of a charge / discharge voltage of 0.02 to 0.5 V. . Therefore, the purity of the scaly natural graphite and the jet mill grinding conditions should be selected so that such charge / discharge capacity can be obtained.
【0022】このようにして得た粉砕された高純度鱗片
状天然黒鉛は、二次電池の電極材料、殊にリチウム二次
電池の負極材料として有用である。リチウム二次電池の
負極材料のほか、ポリマーフィルム電池(ペーパー電
池)などの電極材料としても用いることができる。The pulverized high-purity scale-like natural graphite thus obtained is useful as an electrode material for secondary batteries, especially as a negative electrode material for lithium secondary batteries. In addition to the negative electrode material for lithium secondary batteries, it can also be used as an electrode material for polymer film batteries (paper batteries) and the like.
【0023】なお、リチウム二次電池における正極材料
としては、改質MnO2、LiCoO2、LiNiO2、LiNi1-yCoyO2、
LiMnO2、LiMn2O4 、LiFeO2などが用いられる。電解液と
しては、エチレンカーボネートなどの有機溶媒や、該有
機溶媒とジメチルカーボネート、ジエチルカーボネー
ト、1,2−ジメトキシエタン、1,2−ジエトキシメ
タン、エトキシメトキシエタンなどの低沸点溶媒との混
合溶媒に、LiPF6 、LiBF4 、LiClO4、LiCF3SO3などの電
解液溶質を溶解した溶液が用いられる。As the positive electrode material in the lithium secondary battery, modified MnO 2 , LiCoO 2 , LiNiO 2 , LiNi 1-y Co y O 2 ,
LiMnO 2, LiMn 2 O 4, LiFeO 2 and the like are used. As the electrolytic solution, an organic solvent such as ethylene carbonate, or a mixed solvent of the organic solvent and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, or ethoxymethoxyethane. In addition, a solution in which an electrolyte solute such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 is dissolved is used.
【0024】[0024]
【作用】リチウム二次電池の充放電反応は下記の式1の
通りであり、リチウムイオンが正極と負極の間を行き来
する。この反応はCが完全結晶に近い黒鉛の結晶構造の
ときに安定しており、充放電容量および充放電効率の安
定的な向上が期待される。The charging / discharging reaction of the lithium secondary battery is represented by the following formula 1, and lithium ions move back and forth between the positive electrode and the negative electrode. This reaction is stable when C has a crystal structure of graphite close to a perfect crystal, and a stable improvement in charge / discharge capacity and charge / discharge efficiency is expected.
【0025】[0025]
【式1】 (Equation 1)
【0026】一般にリチウム二次電池用負極材料の要求
性能に関しては、2回目以降の充放電容量が200mAh/
g 以上あると良好であるとされているが、上記の高純度
天然黒鉛からなる本発明の二次電池の電極材料は、2回
目以降の充放電容量が300mAh/g 以上と極めて大きい
ものである。Generally, regarding the required performance of the negative electrode material for the lithium secondary battery, the charge / discharge capacity after the second time is 200 mAh /
Although it is considered to be good if it is g or more, the electrode material of the secondary battery of the present invention composed of the above-mentioned high-purity natural graphite has an extremely large charge / discharge capacity of 300 mAh / g or more after the second time. .
【0027】本発明においてこのようにすぐれた充放電
容量および充放電効率が得られるのは、純度が99.9%以
上という高純度の天然黒鉛を用いている上、磨砕を伴な
わないジェットミル粉砕により、鱗片状天然黒鉛が本来
有している黒鉛結晶構造がほとんど破壊されずに所定の
粒度まで粉砕されているためである。In the present invention, such excellent charge / discharge capacity and charge / discharge efficiency can be obtained by using high-purity natural graphite having a purity of 99.9% or more and by jet mill grinding without grinding. This is because the graphite crystal structure originally possessed by the scaly natural graphite is crushed to a predetermined particle size without being substantially destroyed.
【0028】[0028]
【実施例】次に実施例をあげて本発明をさらに説明す
る。EXAMPLES The present invention will be further described with reference to examples.
【0029】〈試験方法〉供試黒鉛と約4重量%のポリ
テトラフルオロエチレン(PTFE)とを混練後、ステ
ンレスメッシュに塗布した。これを150℃で12時間
真空乾燥したものを試験極とした。試験には、金属リチ
ウムシートをステンレス板に圧着したものを対極とした
2極式セルを用いた。組み立ては、水分値20ppm 以下
に調整したドライボックス内で行い、電解液としては 1
M-LiClO4/(EC+DME(1:1))、すなわちエチレンカーボネー
トと1,2−ジメトキシエタンとの容積比で1:1の混
合溶媒にLiClO4を1Mの割合で溶解したものを用いた。<Test Method> The test graphite and about 4% by weight of polytetrafluoroethylene (PTFE) were kneaded and then applied to a stainless mesh. This was vacuum-dried at 150 ° C. for 12 hours and used as a test electrode. In the test, a bipolar cell was used in which a metal lithium sheet was pressure-bonded to a stainless steel plate as a counter electrode. Assemble in a dry box adjusted to a water content of 20 ppm or less, and
M-LiClO 4 / (EC + DME (1: 1)), that is, LiClO 4 dissolved at a 1M ratio in a mixed solvent of ethylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 is used. I was there.
【0030】〈負極材料の調製と充放電性能〉 実施例1 中国産の鱗片状黒鉛A(粒度:100メッシュ90%以
上通過、純度:99%以上)をアルピネ製カウンター式
ジェットミルにて10μm まで粉砕した。この破砕黒鉛
をフッ酸洗浄により純度 99.95%の高純度天然黒鉛にし
た。この高純度天然黒鉛を、充放電電流0.5 mA(0.17 m
A/cm2)、充放電電圧0.02〜0.5 V の条件で充放電試験し
たところ、1回目の充放電効率は84%、2回目以降の
充放電容量は315mAh/g であり、その後の充放電効率
は99.8%以上で推移した。<Preparation of Negative Electrode Material and Charge / Discharge Performance> Example 1 Flake graphite A produced in China (particle size: 100 mesh, 90% or more, purity: 99% or more) was used up to 10 μm in an Alpine counter type jet mill. Crushed. The crushed graphite was washed with hydrofluoric acid to obtain high-purity natural graphite having a purity of 99.95%. Charge and discharge current 0.5 mA (0.17 m
A / cm 2 ), charge and discharge voltage was 0.02 to 0.5 V, and a charge and discharge test showed that the first charge and discharge efficiency was 84%, and the second and subsequent charge and discharge capacities were 315 mAh / g. Efficiency remained above 99.8%.
【0031】実施例2 中国産の鱗片状黒鉛B(粒度:100メッシュ90%以
上通過、純度:99%以上)をアチソン炉にて2800
℃で高温処理して純度 99.98%に高純度化し、ついでア
ルピネ製カウンター式ジェットミルにて10μm まで粉
砕した。この粉砕黒鉛を、充放電電流0.5 mA(0.17 mA/
cm2)、充放電電圧0.02〜0.5 V の条件で充放電試験した
ところ、1回目の充放電効率85%、2回目以降の充放
電容量は320mAh/g であり、その後の充放電効率は9
9.8%以上で推移した。Example 2 Flake graphite B (grain size: 100 mesh, 90% or more, purity: 99% or more) produced in China was 2800 in an Acheson furnace.
It was treated at a high temperature at ℃ to obtain a high purity of 99.98%, and then pulverized to 10 μm by an Alpine counter type jet mill. Charge and discharge current 0.5 mA (0.17 mA /
cm 2 ), the charge and discharge voltage was 0.02 to 0.5 V. When the charge and discharge test was conducted, the charge and discharge efficiency of the first time was 85%, the charge and discharge capacity after the second time was 320 mAh / g, and the charge and discharge efficiency after that was 9
It remained above 9.8%.
【0032】実施例3 実施例1で用いた中国産の鱗片状黒鉛A(粒度:100
メッシュ90%以上通過、純度:99%以上)をまずフ
ッ酸洗浄により純度 99.95%に高純度化し、ついでホソ
カワミクロン製ミクロンジェットにて10μm まで粉砕
した。この粉砕黒鉛を、充放電電流0.5 mA(0.17 mA/cm
2)、充放電電圧0.02〜0.5 V の条件で充放電試験したと
ころ、1回目の充放電効率83%、2回目以降の充放電
容量は320mAh/g であり、その後の充放電効率は99.8
%以上で推移した。Example 3 The scale-like graphite A produced in China used in Example 1 (particle size: 100)
(90% or more of mesh, purity: 99% or more) was first highly purified to a purity of 99.95% by washing with hydrofluoric acid, and then pulverized to 10 μm by Hosokawa Micron Micron Jet. Charge and discharge current 0.5 mA (0.17 mA / cm
2 ), when the charge and discharge test was conducted under the condition of charge and discharge voltage 0.02 to 0.5 V, the charge and discharge efficiency of the first time was 83%, the charge and discharge capacity after the second time was 320 mAh / g, and the charge and discharge efficiency after that was 99.8.
% Remained above.
【0033】実施例4 中国産の鱗片状黒鉛C(粒度:100メッシュ90%以
上通過、純度:99%以上)を島津製真空炉にて210
0℃で熱処理して純度 99.95%に高純度化し、ついでホ
ソカワミクロン製ミクロンジェットにて10μm まで粉
砕した。この粉砕黒鉛を、充放電電流0.5 mA(0.17 mA/
cm2)、充放電電圧0.02〜0.5 V の条件で充放電試験した
ところ、1回目の充放電効率82%、2回目以降の充放
電容量は310mAh/g であり、その後の充放電効率は9
9.8%以上で推移した。Example 4 Flake graphite C produced in China (particle size: 100 mesh, 90% or more, purity: 99% or more) was used in a Shimadzu vacuum furnace for 210 times.
It was heat-treated at 0 ° C. to have a high purity of 99.95%, and then pulverized to 10 μm with a Hosokawa Micron Micron Jet. Charge and discharge current 0.5 mA (0.17 mA /
cm 2 ), the charge and discharge voltage was 0.02 to 0.5 V. When the charge and discharge test was performed, the charge and discharge efficiency of the first time was 82%, the charge and discharge capacity after the second time was 310 mAh / g, and the charge and discharge efficiency after that was 9
It remained above 9.8%.
【0034】比較例1 実施例1で用いた中国産の鱗片状黒鉛A(粒度:100
メッシュ90%以上通過、純度:99%以上)をまずフ
ッ酸洗浄により純度 99.95%に高純度化し、ついでボー
ルミルにて10μm まで粉砕した。この粉砕黒鉛を、充
放電電流0.5 mA(0.17 mA/cm2)、充放電電圧0.02〜0.5
V の条件で充放電試験したところ、充放電容量は200
mAh/g をはるかに下回っており、充放電可能な電池材料
としては余り性能の良いものではなかった。Comparative Example 1 Flake graphite A produced in China used in Example 1 (particle size: 100
(90% or more of mesh, purity: 99% or more) was first highly purified to a purity of 99.95% by washing with hydrofluoric acid, and then pulverized to 10 μm with a ball mill. Charge and discharge current 0.5 mA (0.17 mA / cm 2 ), charge and discharge voltage 0.02 to 0.5
When the charge and discharge test was conducted under the condition of V, the charge and discharge capacity was 200.
It was far below mAh / g, and was not a very good battery material that could be charged and discharged.
【0035】比較例2 実施例2で用いた中国産の鱗片状黒鉛B(粒度:100
メッシュ90%以上通過、純度:99%以上)をアチソ
ン炉にて2800℃で高温処理して純度 99.98%に高純
度化し、ついでボールミルにて10μm まで粉砕した。
この粉砕黒鉛を、充放電電流0.5 mA(0.17 mA/cm2)、充
放電電圧0.02〜0.5 V の条件で充放電試験したところ、
充放電容量は200mAh/g をはるかに下回っており、充
放電可能な電池材料としては余り性能の良いものではな
かった。Comparative Example 2 The scale-like graphite B from China used in Example 2 (particle size: 100)
(Mesh 90% or more, purity: 99% or more) was subjected to a high temperature treatment at 2800 ° C. in an Acheson furnace to be highly purified to 99.98%, and then ground to 10 μm by a ball mill.
This pulverized graphite was subjected to a charge / discharge test under the conditions of a charge / discharge current of 0.5 mA (0.17 mA / cm 2 ) and a charge / discharge voltage of 0.02 to 0.5 V.
The charge / discharge capacity was far below 200 mAh / g, which was not a very good performance as a chargeable / dischargeable battery material.
【0036】比較例3 実施例1で用いた中国産の鱗片状黒鉛A(粒度:100
メッシュ90%以上通過、純度:99%以上)をアルピ
ネ製カウンター式ジェットミルにて10μm まで粉砕し
た。この粉砕黒鉛を、充放電電流0.5 mA(0.17 mA/c
m2)、充放電電圧0.02〜0.5 V の条件で充放電試験した
ところ、1回目の充放電効率は72%、2回目以降の充
放電容量は270mAh/g であり、その後の充放電効率は
99.8%以上で推移した。しかしながら、黒鉛の純度が9
9.9%に満たなかったため、2回目以降の充放電容量は
300mAh/g の壁をクリアできなかった。Comparative Example 3 The scale-like graphite A produced in China used in Example 1 (particle size: 100)
A mesh of 90% or more and a purity of 99% or more) was crushed to 10 μm with an Alpine counter type jet mill. Charge and discharge current 0.5 mA (0.17 mA / c
m 2 ), charge and discharge voltage 0.02 to 0.5 V, the charge and discharge test shows that the first charge and discharge efficiency is 72%, the second and subsequent charge and discharge capacity is 270 mAh / g, and the charge and discharge efficiency after that is
It remained above 99.8%. However, the purity of graphite is 9
Since it was less than 9.9%, the charge / discharge capacity after the second time could not clear the wall of 300 mAh / g.
【0037】[0037]
【発明の効果】本発明においては、純度が99.9%以上と
いう高純度の天然黒鉛を用いている上、磨砕を伴なわな
いジェットミル粉砕により鱗片状天然黒鉛が本来有して
いる黒鉛結晶構造がほとんど破壊されずに所定の粒度ま
で粉砕されているため、すぐれた充放電容量および充放
電効率が得られる。よって本発明の二次電池の電極材料
は、殊にリチウム電池の負極材料として、実用性の高い
ものである。INDUSTRIAL APPLICABILITY In the present invention, the high-purity natural graphite having a purity of 99.9% or more is used, and the graphite crystal structure originally possessed by the scaly natural graphite is obtained by jet mill crushing without grinding. Is crushed to a predetermined particle size with almost no destruction, so that excellent charge / discharge capacity and charge / discharge efficiency can be obtained. Therefore, the electrode material of the secondary battery of the present invention is highly practical, especially as a negative electrode material of a lithium battery.
Claims (2)
で、粒度が1〜100μm の高純度鱗片状天然黒鉛であ
って、充放電電圧0.02〜0.5 V の条件で充放電試験した
ときの2回目以降の充放電容量が300mAh/g 以上であ
ることを特徴とする二次電池の電極材料。1. A high-purity scaly natural graphite having a purity of 99.9% or more and a particle size of 1 to 100 μm, which is crushed by a jet mill, and is 2 when the charge and discharge test is performed under the condition of a charge and discharge voltage of 0.02 to 0.5 V. A secondary battery electrode material having a charge / discharge capacity of 300 mAh / g or more after the first time.
1記載の二次電池の電極材料。2. The electrode material for a secondary battery according to claim 1, which is a negative electrode material for a lithium secondary battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7127307A JPH08298117A (en) | 1995-04-26 | 1995-04-26 | Electrode material for secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7127307A JPH08298117A (en) | 1995-04-26 | 1995-04-26 | Electrode material for secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08298117A true JPH08298117A (en) | 1996-11-12 |
Family
ID=14956718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7127307A Withdrawn JPH08298117A (en) | 1995-04-26 | 1995-04-26 | Electrode material for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08298117A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998028806A1 (en) * | 1996-12-20 | 1998-07-02 | Danionics A/S | Lithium secondary battery with flake graphite negative electrode |
US6139990A (en) * | 1998-03-18 | 2000-10-31 | Kansai Netsukagaku Kabushiki Kaisha | Modified graphite particles derived from scaly natural ones, production thereof and secondary battery |
WO2001022519A1 (en) * | 1999-09-20 | 2001-03-29 | Sony Corporation | Secondary cell |
WO2001038220A1 (en) * | 1999-11-26 | 2001-05-31 | Timcal Ag | Method for producing graphite powder with an increased bulk density |
KR100338133B1 (en) * | 2001-01-10 | 2002-05-24 | 오세민 | Method for preparing negative active material for lithium secondary battery |
US20090220788A1 (en) * | 2005-12-07 | 2009-09-03 | Ii-Vi Incorporated | Method for synthesizing ultrahigh-purity silicon carbide |
JP2015212228A (en) * | 2008-10-27 | 2015-11-26 | イメリス グラファイト アンド カーボン スイッツァランド リミティド | Process for production and treatment of graphite powders |
US9388509B2 (en) | 2005-12-07 | 2016-07-12 | Ii-Vi Incorporated | Method for synthesizing ultrahigh-purity silicon carbide |
-
1995
- 1995-04-26 JP JP7127307A patent/JPH08298117A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998028806A1 (en) * | 1996-12-20 | 1998-07-02 | Danionics A/S | Lithium secondary battery with flake graphite negative electrode |
US6139990A (en) * | 1998-03-18 | 2000-10-31 | Kansai Netsukagaku Kabushiki Kaisha | Modified graphite particles derived from scaly natural ones, production thereof and secondary battery |
US6884546B1 (en) | 1999-09-20 | 2005-04-26 | Sony Corporation | Secondary battery |
WO2001022519A1 (en) * | 1999-09-20 | 2001-03-29 | Sony Corporation | Secondary cell |
US7150941B2 (en) | 1999-09-20 | 2006-12-19 | Sony Corporation | Secondary battery |
WO2001038220A1 (en) * | 1999-11-26 | 2001-05-31 | Timcal Ag | Method for producing graphite powder with an increased bulk density |
JP2003514753A (en) * | 1999-11-26 | 2003-04-22 | ティムカル アーゲー | Method for producing graphite powder with increased bulk density |
KR100769531B1 (en) * | 1999-11-26 | 2007-10-23 | 팀칼 아게 | Method for producing graphite powder with an increased bulk density |
JP2016175839A (en) * | 1999-11-26 | 2016-10-06 | イメリス グラファイト アンド カーボン スイッツァランド エスアー | Method for producing graphite powder with increased bulk density |
KR100338133B1 (en) * | 2001-01-10 | 2002-05-24 | 오세민 | Method for preparing negative active material for lithium secondary battery |
US20090220788A1 (en) * | 2005-12-07 | 2009-09-03 | Ii-Vi Incorporated | Method for synthesizing ultrahigh-purity silicon carbide |
US9388509B2 (en) | 2005-12-07 | 2016-07-12 | Ii-Vi Incorporated | Method for synthesizing ultrahigh-purity silicon carbide |
JP2015212228A (en) * | 2008-10-27 | 2015-11-26 | イメリス グラファイト アンド カーボン スイッツァランド リミティド | Process for production and treatment of graphite powders |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Armstrong et al. | TiO2 (B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0. 5Mn1. 5O4 cathodes and a polymer electrolyte | |
TW513823B (en) | Method for the preparation of cathode active material and method for the preparation of non-aqueous electrolyte | |
EP0397608B1 (en) | High energy and high power lithium batteries, and method for producing the same | |
JP6071171B2 (en) | Electrode material and lithium ion battery using the same | |
KR101245418B1 (en) | Titanium and dense lithium mixed oxide powder compound, method for producing said compound and compound-containing electrode | |
US7501209B2 (en) | Process for producing a lithium-cobalt composite oxide for a positive electrode for a lithium secondary cell | |
JP6230571B2 (en) | Method for producing carbon-silicon composite | |
TW201138193A (en) | Lithium iron phosphate and carbon based lithium accumulator | |
JP2003157846A (en) | Carbon black slurry and lithium secondary battery | |
JP2012036048A (en) | Process of producing vanadium lithium phosphate carbon composite | |
JP5604217B2 (en) | Method for producing lithium vanadium phosphate carbon composite | |
JP5604216B2 (en) | Method for producing lithium vanadium phosphate carbon composite | |
JP2018045904A (en) | Lithium ion secondary battery and method of manufacturing the same | |
JPH08298117A (en) | Electrode material for secondary battery | |
Shi et al. | Submicron‐sized Sb2O3 with hierarchical structure as high‐performance anodes for Na‐ion storage | |
WO2005096416A1 (en) | Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery | |
JPH06275274A (en) | Nonaqueous battery | |
JP2001167755A (en) | Negative electrode material for use in non-aqueous secondary battery and method of producing the same | |
Zhu et al. | Effect of the stirring rate on physical and electrochemical properties of LiMnPO4 nanoplates prepared in a polyol process | |
JP5239153B2 (en) | Electrode material composite method, electrode and lithium ion battery | |
JPH08213020A (en) | Electrode material of secondary battery | |
CN104411627A (en) | Low-cost method for making lithium transition metal olivines with high energy density | |
JP2021086667A (en) | TiSi2 and Si-containing negative electrode active material | |
JPH11130438A (en) | Production of lithium manganese double oxide particulate composition and utilization of the same for lithium ion secondary battery | |
WO2017073063A1 (en) | Method for producing silicon material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020702 |