JPH08208211A - Activated carbon - Google Patents

Activated carbon

Info

Publication number
JPH08208211A
JPH08208211A JP7037758A JP3775895A JPH08208211A JP H08208211 A JPH08208211 A JP H08208211A JP 7037758 A JP7037758 A JP 7037758A JP 3775895 A JP3775895 A JP 3775895A JP H08208211 A JPH08208211 A JP H08208211A
Authority
JP
Japan
Prior art keywords
activated carbon
titanium dioxide
tio2
reaction
harmful substances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7037758A
Other languages
Japanese (ja)
Inventor
Mitsuo Suzuki
光雄 鈴木
Hiroyuki Aikyo
浩幸 相京
Satoshi Hirahara
聡 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7037758A priority Critical patent/JPH08208211A/en
Priority to TW085101266A priority patent/TW369510B/en
Priority to KR1019960002801A priority patent/KR960031341A/en
Priority to DE69603515T priority patent/DE69603515T2/en
Priority to EP96300734A priority patent/EP0725036B1/en
Priority to CN96104345A priority patent/CN1137021A/en
Publication of JPH08208211A publication Critical patent/JPH08208211A/en
Priority to US08/904,837 priority patent/US5965479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To obtain activated carbon improved in the ability to remove harmful substances by immobilizing TiO2 on the surface of active carbon so that the lightness (L value) comes to a specified value or lower. CONSTITUTION: The form of the original activated carbon is chips, granules, fibers, felt, fabric, sheet, etc., according to the purpose of its use. A specified amount of the active carbon is then mixed with an aqueous slurry of TiO2 adjusted to pH8 or so to effect immobilizing such as amount of the TiO2 on the surface of the active carbon as to be <=50 (pref. <=40) in the lightness determined by a spectroscopic differential colorimeter by making use of surface electric potential difference or a binder. Subsequently, wastewater or exhaust gas is passed through a column packed with the resultant activated carbon while irradiating the column with ultraviolet light or sunlight including the ultraviolet rays <=400nm in wavelength, thus obtaining clean water or gas free from harmful substances.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性炭に係わるもので
ある。本発明の特定の活性炭は、紫外線や太陽光照射下
において、水中あるいは気相中有害物質の除去能を大幅
に向上させたもので、かかる活性炭は、上水処理、下水
処理、廃液処理、廃気ガス処理、悪臭除去等に好適に使
用される。
FIELD OF THE INVENTION The present invention relates to activated carbon. The specific activated carbon of the present invention has a significantly improved ability to remove harmful substances in water or in the gas phase under irradiation of ultraviolet rays or sunlight, and such activated carbon is used for water treatment, sewage treatment, waste liquid treatment, and waste treatment. It is suitable for use in air and gas treatment, odor removal, etc.

【0002】[0002]

【従来の技術】活性炭は、高比表面積であるため、優れ
た吸着能を有しており、水中あるいは気相中有害物質を
吸着除去するのに現在用いられている。近年、生活排水
や産業排水による水質汚染や海洋汚染、大気汚染などが
地球的規模で広がっている。合成洗剤などを含む生活排
水による湖・河川の富栄養化、ハイテク産業やクリーニ
ング店で使われている有機溶剤による地下水や水源の汚
染、ゴルフ場で使用される農薬の流出による水質の汚
染、などがその代表例である。
2. Description of the Related Art Activated carbon has a high specific surface area and thus has an excellent adsorption ability, and is currently used to adsorb and remove harmful substances in water or gas phase. In recent years, water pollution, marine pollution, and air pollution caused by domestic wastewater and industrial wastewater have spread on a global scale. Eutrophication of lakes and rivers by domestic wastewater containing synthetic detergents, pollution of groundwater and water sources by organic solvents used in high-tech industries and laundry, water pollution due to outflow of pesticides used at golf courses, etc. Is a typical example.

【0003】現在、広く行われている排水処理法は、ほ
とんどは活性汚泥法であるが、微生物を用いるため、温
度、pH、ガス雰囲気、毒性などの条件が厳しく、しか
も上述の農薬や有機溶剤(含ハロゲン化合物)、界面活
性剤などを分解、除去しにくく、それらに対して無力で
あるという欠点をもっている。このような生物学的に難
分解性の有機物の処理法としては、塩素処理法、オゾン
処理法、焼却処理法、活性炭吸着法などがある。塩素処
理法は、過剰注入による残留塩素の問題、あるいは、被
処理水中に含まれる有機物と反応して発癌性を持つトリ
ハロメタンに代表される有機ハロゲン化合物を生成する
などの問題がある。また、最近、浄水場等において、高
度上水処理法として、オゾン処理が脚光を浴びている
が、設備費、運転費がともに高価であるという問題があ
る。焼却処理法は、希薄溶液の場合には現実的でない。
活性炭吸着法は、非常に有効な方法ではあるが、有機ハ
ロゲン化合物の吸着除去能が若干劣り、水中の有害物質
全てに対して有効というわけではなかった。
The most widely used wastewater treatment method at present is an activated sludge method, but since microorganisms are used, conditions such as temperature, pH, gas atmosphere and toxicity are strict, and the above-mentioned pesticides and organic solvents are used. (Halogen-containing compounds), surfactants, etc. are difficult to decompose and remove, and they have the disadvantage of being ineffective against them. Examples of methods for treating such biologically hardly decomposable organic substances include a chlorine treatment method, an ozone treatment method, an incineration treatment method, and an activated carbon adsorption method. The chlorine treatment method has a problem of residual chlorine due to excessive injection, or a problem of reacting with an organic substance contained in the water to be treated to generate an organohalogen compound represented by trihalomethane having carcinogenicity. Further, recently, ozone treatment has been in the spotlight as an advanced water treatment method in a water purification plant or the like, but there is a problem that both equipment cost and operation cost are expensive. Incineration methods are not practical for dilute solutions.
The activated carbon adsorption method is a very effective method, but the adsorption removal ability of organic halogen compounds is slightly inferior, and it is not effective for all harmful substances in water.

【0004】大気汚染や悪臭物質等の気相中有害物質の
除去においても、活性炭の吸着除去は有効である。一般
に、気相中の汚染成分を対象とする吸着技術は、水蒸気
や炭酸ガスの共存下で低濃度ガスに対して有効なもので
なければならない。活性炭は、そのような条件下で多種
類の有機、無機化合物に対して使用される。気相用活性
炭は、特に大きい比表面積と小孔径の細孔構造を持ち、
低濃度ガスに対する吸着親和性が大きい。また、その表
面が疎水性であるために水蒸気に対する吸着親和性が小
さく、気相中に混在する有害ガスや臭気物質、特に有機
化合物を効率良く除去することができる。しかし、吸着
親和性が弱いガスもあり、活性炭の吸着除去能は、全て
において万能というわけではなかった。
The removal of activated carbon by adsorption is also effective in removing harmful substances in the gas phase such as air pollution and malodorous substances. In general, an adsorption technique targeting pollutant components in a gas phase must be effective for a low concentration gas in the presence of water vapor or carbon dioxide. Activated carbon is used for many types of organic and inorganic compounds under such conditions. Activated carbon for vapor phase has a pore structure with a particularly large specific surface area and small pore size,
Large adsorption affinity for low concentration gas. Further, since its surface is hydrophobic, it has a low adsorption affinity for water vapor and can efficiently remove harmful gases and odorous substances mixed in the gas phase, particularly organic compounds. However, some gases have a weak adsorption affinity, and the adsorptive removal ability of activated carbon was not universal.

【0005】一方、二酸化チタンの結晶を光電極とする
半導体光電極を用いて、光エネルギーを直接的に水の分
解に利用できることが、1969年に発見されて以来
(本多−藤嶋効果)、二酸化チタンに代表される光触媒
は、光エネルギーを化学エネルギーへ変換する有力な手
段になり得るものとして、世界的に様々な分野で研究開
発が活発に進められている。この光触媒反応は、光の助
けにより進む触媒反応であり、その反応系に触媒が共存
し、それだけでは反応が進まないが、光の照射によって
反応が促進されるものと定義されているが、通常の触媒
反応や光化学反応と深い関わりを有する反面、それらの
反応と際だった相違を有するものである。通常の触媒は
その駆動力が熱であり、触媒の存在によって反応系が生
成系移行する速度が変化する。したがって、触媒の役割
は、その系の温度、圧力などで規定される平衡状態への
到達速度を制御するものであり、達成される反応は熱力
学的に進行可能な反応に限定される。これに対して、光
化学反応は、反応系に光が吸収され、物質の電子状態や
化学結合性に変化が生じることによって、生成系に変化
するものであり、通常の触媒反応のような熱反応では起
こすことのできない反応を実現できる。一方、光触媒反
応は、光を吸収して電子的励起状態に置かれた触媒が反
応系に作用することにより触媒表面でのみ反応が進行す
るものである。この触媒の電子的励起状態は、光化学反
応における励起種と同様、電子の温度だけが極めて高く
なった非平衡の状態に相当するもので、その結果、熱力
学的には反応が不可能である温和な条件下であっても反
応が進行する。これは、通常の触媒反応で知られている
「触媒は化学反応の平衡を変えない」という大原則が光
触媒反応では成り立たない場合のあることを意味してお
り、光触媒反応の重要な特徴となっている。この光触媒
反応は、(1)半導体が光を吸収し、励起して電子−正
孔対を生じる光励起過程と、(2)生成した電子および
正孔が、半導体粒子内電位勾配や拡散により各々表面に
移動する電荷分離と移動の過程、(3)表面に移動した
正孔および電子が触媒に吸着した基質と電子移動を起こ
し、各々酸化還元反応を行う表面反応過程に分かれる。
On the other hand, since it was discovered in 1969 that light energy could be directly used for the decomposition of water by using a semiconductor photoelectrode having a titanium dioxide crystal as a photoelectrode (Honda-Fujishima effect), Photocatalyst typified by titanium dioxide is being actively researched and developed in various fields worldwide as a potential means for converting light energy into chemical energy. This photocatalytic reaction is a catalytic reaction that proceeds with the aid of light, and the catalyst coexists in the reaction system, and the reaction does not proceed by itself, but it is defined that the reaction is accelerated by irradiation of light, Although it is closely related to the catalytic reaction and photochemical reaction of, it has a significant difference from those reactions. The driving force of an ordinary catalyst is heat, and the speed at which the reaction system transfers to the production system changes due to the presence of the catalyst. Therefore, the role of the catalyst is to control the rate of reaching the equilibrium state defined by the temperature, pressure and the like of the system, and the achieved reaction is limited to the reaction that can proceed thermodynamically. On the other hand, a photochemical reaction is a reaction in which light is absorbed by the reaction system and changes in the electronic state and chemical bondability of the substance to change into a production system. Can realize reactions that cannot occur in. On the other hand, in the photocatalytic reaction, the reaction proceeds only on the surface of the catalyst due to the fact that the catalyst, which is placed in an electronically excited state by absorbing light, acts on the reaction system. The electronically excited state of this catalyst, like the excited species in photochemical reactions, corresponds to a non-equilibrium state in which only the temperature of the electron becomes extremely high, and as a result, the reaction is thermodynamically impossible. The reaction proceeds even under mild conditions. This means that the principle that "catalyst does not change the equilibrium of chemical reaction", which is known in ordinary catalytic reactions, may not hold in photocatalytic reactions, which is an important feature of photocatalytic reactions. ing. In this photocatalytic reaction, (1) a photoexcitation process in which a semiconductor absorbs light and is excited to generate an electron-hole pair, and (2) the generated electrons and holes are each surface-induced by potential gradient or diffusion in the semiconductor particles. The charge separation and transfer process to move to (3), and (3) surface reaction process in which holes and electrons transferred to the surface cause electron transfer with the substrate adsorbed on the catalyst to perform redox reaction.

【0006】そして、この様な、活性炭と二酸化チタン
の特性を利用した発明としては、例えば特開平6−31
5614号公報に、二酸化チタンと活性炭との混合物を
汚染物質の除去に用いることが記載されている。しかし
ながらこの方法では、二酸化チタンの保持が難しく、ま
た活性炭と二酸化チタンがバラバラに存在しているた
め、十分に二酸化チタンの能力を使用することが困難で
ある。又、従来型の浄化装置をそのまま用いることも難
しい。
An invention utilizing such characteristics of activated carbon and titanium dioxide is disclosed in, for example, JP-A-6-31.
5614 describes the use of a mixture of titanium dioxide and activated carbon for the removal of contaminants. However, in this method, it is difficult to retain titanium dioxide, and it is difficult to use the ability of titanium dioxide sufficiently because activated carbon and titanium dioxide are separately present. It is also difficult to use the conventional purification device as it is.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明者は、
上記の課題を解決すべく鋭意検討した結果、二酸化チタ
ンが適量表面に固定化された活性炭が、紫外線や太陽光
照射下において、水中あるいは気相中有害物質の除去能
を大幅に向上することを見い出し本発明に到達した。
Therefore, the inventor of the present invention
As a result of diligent studies to solve the above problems, activated carbon having an appropriate amount of titanium dioxide immobilized on the surface thereof, under irradiation of ultraviolet rays or sunlight, significantly improves the ability to remove harmful substances in water or in the gas phase. The present invention has been found.

【0008】[0008]

【課題を解決するための手段】即ち、本発明は、二酸化
チタンが表面に存在し、明度L値が50以下であること
を特徴とする活性炭に存する。以下、本発明を詳細に説
明する。本発明の最大の特徴は、活性炭自身の吸着除去
能を実質的に低下させないよう明度L値が50以下(二
酸化チタンの表面存在量の指標)になるように活性炭の
表面に二酸化チタンを固定化し、活性炭に光触媒機能を
付与したことにある。
That is, the present invention resides in activated carbon which is characterized in that titanium dioxide is present on the surface and the brightness L value is 50 or less. Hereinafter, the present invention will be described in detail. The greatest feature of the present invention is that titanium dioxide is immobilized on the surface of activated carbon so that the lightness L value is 50 or less (an index of the amount of titanium dioxide present on the surface) so as not to substantially reduce the adsorptive removal ability of activated carbon itself. , The photocatalytic function was added to the activated carbon.

【0009】本発明で用いられる活性炭の原料として
は、従来活性炭原料として用いられているものであれば
特に限定されないが、工業的には活性化の難易、原料の
品位、価格、大量かつ安定的に入手できることなどの点
が選定条件となる。原料の種類によって製造条件や、製
品の価格、用途は異なる。原料としては、植物系の木
材、のこくず、ヤシ殻、パルプ廃液、化石燃料系の石
炭、石油重質油、あるいはそれらを熱分解した石炭およ
び石油系ピッチ、タールピッチを紡糸した繊維、合成高
分子、フェノール樹脂、フラン樹脂、ポリ塩化ビニル樹
脂、ポリ塩化ビニリデン樹脂、プラスチック廃棄物、廃
タイヤ等多種多様である。これらの原料を炭化後、賦活
することにより活性炭とするが、賦活法は、通常ガス賦
活と薬品賦活に大別される。ガス賦活法は、薬品賦活が
化学的な活性化であるのに対して、物理的な活性化とも
いわれ、炭化された原料を高温で水蒸気、炭酸ガス、酸
素、その他の酸化ガスなどと接触反応させて、微細な多
孔質の吸着炭をつくる方法であり、工業的には水蒸気を
用いる方法が主流である。薬品賦活法は、原料に賦活薬
品を均等に含侵させて、不活性ガス雰囲気中で加熱し、
薬品の脱水および酸化反応により、微細な多孔質の吸着
炭をつくる方法である。使用される薬品としては、塩化
亜鉛、りん酸、りん酸ナトリウム、塩化カルシウム、硫
化カリウム、水酸化カリウム、水酸化ナトリウム、炭酸
カリウム、炭酸ナトリウム、硫酸ナトリウム、硫酸カリ
ウム、炭酸カルシウム等がある。本発明の活性炭の製法
に関しては、上記に各種あげたが、特に問わない。原料
または製造方法により得られる活性炭は、多種多様であ
るが、どのような原料や方法で作られた活性炭でも本発
明に使用できる。また、活性炭の形状は、使用目的によ
り、破砕、造粒、顆粒、繊維、フェルト、織物、シート
状等各種の形状があるが、いずれも本発明に使用するこ
とができる。
The raw material of the activated carbon used in the present invention is not particularly limited as long as it has been conventionally used as the activated carbon raw material, but it is industrially difficult to activate, the quality of the raw material, the price, a large amount and stable. It is a condition of selection that it can be obtained at. Manufacturing conditions, product prices, and uses vary depending on the type of raw material. As raw materials, plant-based wood, sawdust, coconut shells, pulp waste liquor, fossil fuel-based coal, petroleum heavy oil, or pyrolyzed coal and petroleum-based pitch, fibers spun tar pitch, synthetic There are a wide variety of polymers, phenolic resins, furan resins, polyvinyl chloride resins, polyvinylidene chloride resins, plastic waste, and waste tires. Although activated carbon is obtained by activating these raw materials after carbonization, the activation methods are generally classified into gas activation and chemical activation. In the gas activation method, chemical activation is chemical activation, but it is also called physical activation.The carbonized raw material is contact-reacted with steam, carbon dioxide, oxygen, and other oxidizing gases at high temperature. This is a method for producing fine porous adsorptive carbon, and the method using steam is industrially the mainstream. In the chemical activation method, the raw material is impregnated with the activation chemical evenly and heated in an inert gas atmosphere,
It is a method of making fine porous adsorptive carbon by dehydration and oxidation reaction of chemicals. Examples of the chemicals used include zinc chloride, phosphoric acid, sodium phosphate, calcium chloride, potassium sulfide, potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate, sodium sulfate, potassium sulfate, calcium carbonate and the like. Regarding the method for producing the activated carbon of the present invention, various kinds have been mentioned above, but there is no particular limitation. There are various kinds of activated carbon obtained by the raw material or the production method, and any activated carbon produced by any raw material or method can be used in the present invention. Further, the shape of the activated carbon may be various shapes such as crushed, granulated, granulated, fiber, felt, woven fabric and sheet, depending on the purpose of use, and any of them can be used in the present invention.

【0010】本発明で、活性炭表面に存在する二酸化チ
タンはn型半導体であり、バンドギャップは、ルチルで
3.0eV、アナターゼで3.2eVである。一般に、
200meVのバンドギャップの差からアナターゼの方
が、光触媒活性が若干高く、酸化力に富むといわれてい
るが、本発明における二酸化チタンは、ルチルでも、ア
ナターゼでも良く、その結晶形は問わずいずれも好適に
使用できる。二酸化チタンの製造法に関しても、光触媒
活性を有していればよく、硫酸法、塩素法等その製造法
は問わない。励起光に関しても波長400nm以下の紫
外光が含まれていればよく、紫外線ランプに限らず、太
陽光でも十分である。
In the present invention, titanium dioxide existing on the surface of activated carbon is an n-type semiconductor, and the band gap is 3.0 eV for rutile and 3.2 eV for anatase. In general,
It is said that anatase has a slightly higher photocatalytic activity and is rich in oxidizing power due to the difference in band gap of 200 meV, but the titanium dioxide in the present invention may be rutile or anatase, and its crystal form is not limited. It can be preferably used. The production method of titanium dioxide may be any method as long as it has photocatalytic activity, and the production method such as the sulfuric acid method or the chlorine method does not matter. With respect to the excitation light, it is sufficient that it includes ultraviolet light having a wavelength of 400 nm or less, and not only an ultraviolet lamp but also sunlight is sufficient.

【0011】活性炭表面近傍上では、その吸着能により
水中あるいは気相中の有害物質の濃度が高くなる。この
ため、二酸化チタンが表面上に存在している活性炭によ
り、水中あるいは気相中の有害物質の分解除去能が大幅
に向上する。本発明においては、このような酸化チタン
が活性炭表面に存在するものである。ここで活性炭表面
上存在するとは、活性炭表面に、物理的或は化学的に固
定化した状態で存在していることを意味する。固定化方
法は、特に限定されないが、例えば、表面電位を利用し
たり、樹液、糖みつ、ポリビニルアルコール、テフロ
ン、粘土鉱物、ピッチ、フェノール樹脂等のバインダー
を使用し、必要に応じ、適当な熱処理を施して固定化し
てもよい。さらに、活性炭製造において原料の段階か
ら、二酸化チタンを混入させる方法もある。また、ゾル
ゲル法、CVD法等も有効な手法である。
On the surface of activated carbon, the concentration of harmful substances in water or gas phase becomes high due to its adsorption ability. For this reason, the activated carbon having titanium dioxide on its surface significantly improves the ability to decompose and remove harmful substances in water or in the gas phase. In the present invention, such titanium oxide is present on the surface of activated carbon. Here, "existing on the surface of activated carbon" means that it is present on the surface of activated carbon in a physically or chemically immobilized state. The immobilization method is not particularly limited, for example, by utilizing the surface potential, using a binder such as sap, molasses, polyvinyl alcohol, Teflon, clay minerals, pitch, phenol resin, etc., if necessary, appropriate heat treatment You may fix and fix. Further, there is a method of mixing titanium dioxide from the raw material stage in the production of activated carbon. Further, the sol-gel method, the CVD method, etc. are also effective methods.

【0012】活性炭表面を白色になるまで二酸化チタン
で被覆した場合には、比表面積が低下する。一般に、活
性炭の吸着能は、比表面積見合いで決まるため、活性炭
表面が白色になるまで二酸化チタンで被覆したことによ
り、比表面積が低下すると、吸着能が著しく低下するの
で、好ましくない。そこで、二酸化チタンの表面存在量
としては、明度L値が50以下、好ましくは40以下と
なる量である。二酸化チタンは白色顔料でありその存在
量により活性炭の見かけの明度L値が変化する。明度L
値が上記の範囲内であれば、活性炭は見かけ上黒色であ
り、その比表面積の大きな低下はなく、細孔が二酸化チ
タンで埋まることもないので、活性炭の吸着能はほとん
ど損われない。明度L値が上記範囲をはずれる程二酸化
チタンを表面に存在させると、活性炭の吸着能の低下が
大きい。明度L値の測定は、分光式色差計で0°照明−
45°受光の光学条件で丸ガラスセルに充填して行う。
活性炭表面上の二酸化チタンの量については、活性炭と
二酸化チタンの各粒子の大きさ、二酸化チタンの分布
(表面のみか、粒内に均一か)によってかなり異なるた
め、重量%ではなく、L値を用いて定義するが、乾燥後
の固形分換算(重量%)でいうと、通常30%以下、好
ましくは、0.1〜20%、特に好ましくは0.1〜5
%である。
When the surface of activated carbon is coated with titanium dioxide until it becomes white, the specific surface area decreases. In general, the adsorption capacity of activated carbon is determined by the specific surface area. Therefore, if the specific surface area is reduced by coating titanium dioxide until the surface of the activated carbon becomes white, the adsorption capacity is significantly reduced, which is not preferable. Therefore, the amount of titanium dioxide present on the surface is such that the L value is 50 or less, preferably 40 or less. Titanium dioxide is a white pigment, and the apparent lightness L value of activated carbon changes depending on the amount thereof. Lightness L
When the value is within the above range, the activated carbon is apparently black, its specific surface area is not significantly reduced, and the pores are not filled with titanium dioxide, so that the adsorption capacity of the activated carbon is hardly impaired. When titanium dioxide is present on the surface to such an extent that the lightness L value deviates from the above range, the adsorptivity of activated carbon is greatly reduced. Lightness L value is measured with a spectroscopic color difference meter at 0 ° illumination-
It is performed by filling a round glass cell under the optical condition of 45 ° light reception.
Regarding the amount of titanium dioxide on the surface of activated carbon, it is considerably different depending on the size of each particle of activated carbon and titanium dioxide and the distribution of titanium dioxide (whether only on the surface or even within the particles). When used in terms of solid content after drying (% by weight), it is usually 30% or less, preferably 0.1 to 20%, and particularly preferably 0.1 to 5%.
%.

【0013】本発明の活性炭は、従来使用されている活
性炭と同様に使用でき、流動床、固定床等の使用法を問
わない。従来の装置がそのまま使用可能であり、装置を
大型化する必要もない。さらに、本発明の活性炭を紫外
線や太陽光照射下で使用することにより、水中あるいは
気相中の有害物質の除去は、活性炭のみによる吸着除去
に比べ、二酸化チタンの光触媒反応による分解除去が加
わるため、その除去能は飛躍的に増加することになる。
特に、活性炭では従来、吸着除去が難しかった有機ハロ
ゲン化合物、臭気物質などが多く含まれる被処理水ある
いは被処理ガスなどにも好適に使用される。また、活性
炭に藻が生えにくくなることや、最も吸着量の多い活性
炭表面で、酸化チタンが、吸着した成分の一部を分解す
るため、再生までの時間がより長くなること等の長所が
あるため、装置の維持・管理が今まで以上に容易にな
る。
The activated carbon of the present invention can be used in the same manner as the conventionally used activated carbon, and the method of using a fluidized bed, a fixed bed or the like does not matter. The conventional device can be used as it is, and there is no need to upsize the device. Furthermore, by using the activated carbon of the present invention under irradiation of ultraviolet rays or sunlight, the removal of harmful substances in water or in the gas phase is accompanied by decomposition and removal by the photocatalytic reaction of titanium dioxide, as compared with adsorption removal by activated carbon alone. , Its removal capacity will increase dramatically.
In particular, activated carbon is suitable for use in treated water or treated gas that contains a large amount of organic halogen compounds, odorous substances, etc., which have hitherto been difficult to remove by adsorption. In addition, there are advantages such that it becomes difficult for algae to grow on the activated carbon, and that titanium oxide decomposes a part of the adsorbed components on the surface of the activated carbon with the most adsorption amount, so that the time until regeneration becomes longer. Therefore, maintenance and management of the device will be easier than ever.

【0014】[0014]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、その要旨を越えない限り、下記実施
例により限定されるものではない。 (実施例1)石原産業(株)製二酸化チタン(アナター
ゼ)「MC−50」の水スラリーをpH8に調整し、三
菱化学(株)製活性炭「008S」(粒径0.35〜
0.71mm)を混入し、表面電位の差を利用して、活
性炭表面に二酸化チタンを固定化した。図2〜5にその
SEM写真を示す。図2は活性炭粒子の全体像であり、
図3の小さな白色の粒子が二酸化チタンである。図4、
5はさらに高倍率のもので、二酸化チタンが数百nmの
凝集粒として存在していることがわかる。この白色にみ
える数百nmの凝集粒が二酸化チタンであることは、S
EM−EDX(SEM:日立製作所「S−4100」、
EDX:Kevex社「Delta System」)
により、TiのX線スペクトルから確認した。図5よ
り、活性炭の細孔を二酸化チタンで埋めていないことが
よくわかる。したがって、活性炭の吸着能を低下させず
に、二酸化チタンが表面に存在していることになる。二
酸化チタンの表面存在量の指標として、明度L値を日本
電色製分光式色差計(0°照明−45°受光)で、30
mmφの丸ガラスセルに入れ測定したところ、19であ
った。二酸化チタンの固形分濃度は、ICP発光分光分
析より求めたところ、0.4wt%であった。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to the following examples unless it exceeds the gist thereof. (Example 1) An aqueous slurry of titanium dioxide (anatase) "MC-50" manufactured by Ishihara Sangyo Co., Ltd. was adjusted to pH 8, and activated carbon "008S" manufactured by Mitsubishi Chemical Corporation (particle size 0.35 to 0.35).
0.71 mm) was mixed in and titanium dioxide was immobilized on the surface of the activated carbon by utilizing the difference in surface potential. The SEM photograph is shown in FIGS. Figure 2 is the whole picture of activated carbon particles,
The small white particles in Figure 3 are titanium dioxide. Figure 4,
No. 5 has a higher magnification, and it can be seen that titanium dioxide exists as agglomerated particles of several hundred nm. The fact that the agglomerates of hundreds of nm that appear white are titanium dioxide means that S
EM-EDX (SEM: Hitachi "S-4100",
EDX: Kevex "Delta System")
Was confirmed from the X-ray spectrum of Ti. From FIG. 5, it is clear that the pores of the activated carbon are not filled with titanium dioxide. Therefore, titanium dioxide is present on the surface without lowering the adsorption capacity of activated carbon. As an index of the surface abundance of titanium dioxide, the lightness L value was measured with a Nippon Denshoku spectroscopic color difference meter (0 ° illumination -45 ° light reception) to 30
It was 19 when measured in a round glass cell of mmφ. The solid content concentration of titanium dioxide was 0.4 wt% as determined by ICP emission spectroscopy.

【0015】こうして得られた活性炭を用い、140W
の紫外線ランプ照射下で、SV5の条件でカラム通水テ
ストを行った。カラムは、石英製で内径5mmφのもの
を使用した。原水には、260nmの吸光度が石英製5
cmセルで9(E260〔5cmセル〕=9)となる腐
葉土抽出水を使用した。この原水を用いてフミン質の除
去能を評価した。図1のBは、得られた破過曲線(吸光
度と通水時間の関係を示す)である。
Using the activated carbon thus obtained, 140 W
Column irradiation test was performed under the condition of SV5 under the irradiation of the ultraviolet lamp. The column used was made of quartz and had an inner diameter of 5 mmφ. Raw water has an absorbance of 260 nm made of quartz.
The leaf extract of mulch that was 9 in cm cell (E260 [5 cm cell] = 9) was used. The raw water was used to evaluate the ability to remove humic substances. B of FIG. 1 is the obtained breakthrough curve (showing the relationship between absorbance and water passage time).

【0016】(比較例1)実施例1で、二酸化チタンを
使用しない以外は同様にして、L値を測定したところ、
16であった。図1のAは、活性炭のみの場合の破過曲
線である。これより、二酸化チタンが表面に存在する活
性炭の方が除去能が優れていることが良くわかる。
Comparative Example 1 The L value was measured in the same manner as in Example 1 except that titanium dioxide was not used.
It was 16. A of FIG. 1 is a breakthrough curve when only activated carbon is used. From this, it is clearly understood that the activated carbon having titanium dioxide on the surface has a better removal ability.

【0017】[0017]

【発明の効果】本発明の活性炭は、水中あるいは気相中
有害物質の除去能を大幅に向上することができ、多大な
工業的利益を提供するものである。
INDUSTRIAL APPLICABILITY The activated carbon of the present invention can greatly improve the ability to remove harmful substances in water or in the gas phase, and provides great industrial benefits.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1及び比較例1で得られた吸光度と通水
時間の関係を示す破過曲線
1 is a breakthrough curve showing the relationship between the absorbance and water passage time obtained in Example 1 and Comparative Example 1.

【図2】実施例1で用いた活性炭粒子の全体像を示すS
EM写真による粒子構造
2 is an S showing an overall image of activated carbon particles used in Example 1. FIG.
Particle structure by EM photograph

【図3】実施例1で用いた活性炭粒子の全体像を示すS
EM写真による粒子構造
3 is an S showing an overall image of activated carbon particles used in Example 1. FIG.
Particle structure by EM photograph

【図4】実施例1で用いた活性炭粒子の全体像を示すS
EM写真による粒子構造
4 is an S showing an overall image of activated carbon particles used in Example 1. FIG.
Particle structure by EM photograph

【図5】実施例1で用いた活性炭粒子の全体像を示すS
EM写真による粒子構造
5 is an S showing an overall image of activated carbon particles used in Example 1. FIG.
Particle structure by EM photograph

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二酸化チタンが表面に存在し、明度L値
が50以下であることを特徴とする活性炭。
1. Activated carbon characterized by having titanium dioxide on its surface and having a lightness L value of 50 or less.
JP7037758A 1995-02-03 1995-02-03 Activated carbon Pending JPH08208211A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7037758A JPH08208211A (en) 1995-02-03 1995-02-03 Activated carbon
TW085101266A TW369510B (en) 1995-02-03 1996-02-01 Activated carbon and process for producing the same
KR1019960002801A KR960031341A (en) 1995-02-03 1996-02-02 Activated carbon and method for producing the same
DE69603515T DE69603515T2 (en) 1995-02-03 1996-02-02 Activated carbon and process for its production
EP96300734A EP0725036B1 (en) 1995-02-03 1996-02-02 Activated carbon and process for producing the same
CN96104345A CN1137021A (en) 1995-02-03 1996-02-02 Activated carbon and process for producing the same
US08/904,837 US5965479A (en) 1995-02-03 1997-08-01 Activated carbon and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7037758A JPH08208211A (en) 1995-02-03 1995-02-03 Activated carbon

Publications (1)

Publication Number Publication Date
JPH08208211A true JPH08208211A (en) 1996-08-13

Family

ID=12506376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7037758A Pending JPH08208211A (en) 1995-02-03 1995-02-03 Activated carbon

Country Status (1)

Country Link
JP (1) JPH08208211A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023374A1 (en) * 1996-11-25 1998-06-04 Ecodevice Laboratory Co., Ltd. Photocatalyst having visible light activity and uses thereof
JP2002066332A (en) * 2000-08-25 2002-03-05 Tokyo Roki Co Ltd Method for working photocatalyst
CN100460060C (en) * 2005-01-05 2009-02-11 中国科学院过程工程研究所 Supported TiO2 photocatalyst, its preparation method and photocatalytic water purifier
JP2012066963A (en) * 2010-09-22 2012-04-05 Noritake Co Ltd Method for producing porous ceramic base material and multistage filter
KR101159706B1 (en) * 2010-01-12 2012-06-26 한밭대학교 산학협력단 Active carbon and manufacturing method thereof, and filter with the same
JPWO2014088039A1 (en) * 2012-12-07 2017-01-05 株式会社マンダム Body odor suppressor
JP2020075206A (en) * 2018-11-06 2020-05-21 凸版印刷株式会社 Inspection method for oxygen absorption performance of deoxygenating agent, manufacturing method for deoxygenating agent, deoxygenating agent, deoxygenating agent package, and food product package
CN112888325A (en) * 2018-10-18 2021-06-01 日本烟草产业株式会社 Smoking article, method for producing smoking article, and method for identifying granular activated carbon
KR102509003B1 (en) * 2021-12-28 2023-03-10 퓨리바이드 주식회사 Photocatalytic Adsorbent Manufacturing Method
PL244171B1 (en) * 2021-10-29 2023-12-11 Univ West Pomeranian Szczecin Tech Method of selective reduction of carbon dioxide to carbon monoxide

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023374A1 (en) * 1996-11-25 1998-06-04 Ecodevice Laboratory Co., Ltd. Photocatalyst having visible light activity and uses thereof
US6306343B1 (en) 1996-11-25 2001-10-23 Ecodevice Laboratory Co., Ltd Photocatalyst having visible light activity and uses thereof
JP2002066332A (en) * 2000-08-25 2002-03-05 Tokyo Roki Co Ltd Method for working photocatalyst
CN100460060C (en) * 2005-01-05 2009-02-11 中国科学院过程工程研究所 Supported TiO2 photocatalyst, its preparation method and photocatalytic water purifier
KR101159706B1 (en) * 2010-01-12 2012-06-26 한밭대학교 산학협력단 Active carbon and manufacturing method thereof, and filter with the same
JP2012066963A (en) * 2010-09-22 2012-04-05 Noritake Co Ltd Method for producing porous ceramic base material and multistage filter
JPWO2014088039A1 (en) * 2012-12-07 2017-01-05 株式会社マンダム Body odor suppressor
US9737467B2 (en) 2012-12-07 2017-08-22 Mandom Corporation Body odor suppressing agent
CN112888325A (en) * 2018-10-18 2021-06-01 日本烟草产业株式会社 Smoking article, method for producing smoking article, and method for identifying granular activated carbon
CN112888325B (en) * 2018-10-18 2023-12-05 日本烟草产业株式会社 Smoking article, method for producing the same, and method for identifying granular activated carbon
JP2020075206A (en) * 2018-11-06 2020-05-21 凸版印刷株式会社 Inspection method for oxygen absorption performance of deoxygenating agent, manufacturing method for deoxygenating agent, deoxygenating agent, deoxygenating agent package, and food product package
PL244171B1 (en) * 2021-10-29 2023-12-11 Univ West Pomeranian Szczecin Tech Method of selective reduction of carbon dioxide to carbon monoxide
KR102509003B1 (en) * 2021-12-28 2023-03-10 퓨리바이드 주식회사 Photocatalytic Adsorbent Manufacturing Method

Similar Documents

Publication Publication Date Title
Saleh Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies
Peng et al. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution
US5965479A (en) Activated carbon and process for producing the same
Jain et al. Photocatalytic and adsorption studies on the removal of dye Congo red from wastewater
Wang et al. Preparation of sludge-based activated carbon and its application in dye wastewater treatment
Taoufik et al. Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants
Mondal et al. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review
Gülen et al. Methylene Blue Adsorption on a Low Cost Adsorbent—Carbonized Peanut Shell: Gülen and Zorbay
Bayrakdar et al. Efficient treatment for textile wastewater through sequential photo Fenton-like oxidation and adsorption processes for reuse in irrigation
Tsai et al. Preparation of TiN–TiO2 composite nanoparticles for organic dye adsorption and photocatalysis
SG182696A1 (en) A buoyant multifunctional composite material for effective removal of organic compounds in water and wastewater
Tu et al. Heterogeneous photo‐Fenton oxidation of Acid Orange II over iron–sewage sludge derived carbon under visible irradiation
EP0725036B1 (en) Activated carbon and process for producing the same
Kadirova et al. Photodegradation of gaseous acetaldehyde and methylene blue in aqueous solution with titanium dioxide-loaded activated carbon fiber polymer materials and aquatic plant ecotoxicity tests
JPH08208211A (en) Activated carbon
Mahanna et al. Enhanced catalytic oxidation of reactive dyes by reuse of adsorption residuals as a heterogeneous catalyst with persulfate/UV process
Orero et al. UV photodegradation of textile dyes using TiO2–ZnO supported on banana peel activated carbon
Manirajah et al. Evaluation of low cost-activated carbon produced from waste tyres pyrolysis for removal of 2-chlorophenol
El-Shafie et al. TiO2-functionalized biochar from pistachio nutshells: adsorptive removal and photocatalytic decolorization of methyl orange
CN113976166B (en) Preparation method and application of nitrogen-doped ordered mesoporous carbon catalyst
Mohamed et al. Doping cadmium oxide into mesoporous zinc oxide matrix for enhanced removal/reduction of Hg (II) Ions
Kumar et al. Experimental study of adsorption efficiency of methylene blue dye by using banana leaf biochar as an adsorbent
Cai et al. Preparation and evaluation of a hierarchical Bi 2 MoO 6/MSB composite for visible-light-driven photocatalytic performance
JPH0966231A (en) Activated carbon
Gadore et al. Emerging applications of waste fly ash for remediation of environmental contaminants: a high-value and sustainable approach towards utilization of waste materials

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040727