JPH08124864A - Vacuum plasma treating apparatus - Google Patents
Vacuum plasma treating apparatusInfo
- Publication number
- JPH08124864A JPH08124864A JP26470094A JP26470094A JPH08124864A JP H08124864 A JPH08124864 A JP H08124864A JP 26470094 A JP26470094 A JP 26470094A JP 26470094 A JP26470094 A JP 26470094A JP H08124864 A JPH08124864 A JP H08124864A
- Authority
- JP
- Japan
- Prior art keywords
- vacuum
- dome
- divided electrodes
- susceptor
- processing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32137—Radio frequency generated discharge controlling of the discharge by modulation of energy
- H01J37/32155—Frequency modulation
- H01J37/32165—Plural frequencies
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体ウェハや液晶表
示基板等の被処理基板にドライエッチング、スパッタリ
ング、プラズマCVD、その他の表面を行う真空プラズ
マ処理装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum plasma processing apparatus for performing dry etching, sputtering, plasma CVD and other surfaces on a substrate to be processed such as a semiconductor wafer and a liquid crystal display substrate.
【0002】[0002]
【従来の技術】従来、分割電極に位相の異なる高周波電
力を印加してプラズマを発生させる真空プラズマ処理装
置として、壁面電極型と吊り下げ電極型が知られてい
る。2. Description of the Related Art Conventionally, a wall surface electrode type and a hanging electrode type are known as a vacuum plasma processing apparatus for generating high-frequency power having different phases by applying high frequency powers to divided electrodes.
【0003】壁面電極型のプラズマ処理装置は、例え
ば”Lissajous ElectronPlasm
a (LEP) Generation for Et
ching”Jpn.J.Appln.Phys.Vo
l.31 (1992) pp.4332−4337”
に開示されている。また、吊り下げ電極型は、電極端と
真空容器の内壁との間で局所的な放電が起こらない機構
のもので、特開平5−198002号公報等に開示され
ている。A wall electrode type plasma processing apparatus is, for example, a "Lissajous Electron Plasma".
a (LEP) Generation for Et
ching "Jpn.J.Appln.Phys.Vo
l. 31 (1992) pp. 4332-4337 "
Is disclosed in. The hanging electrode type has a mechanism in which a local discharge does not occur between the electrode end and the inner wall of the vacuum container, and is disclosed in Japanese Patent Laid-Open No. 5-180002.
【0004】壁面電極型の構成例を、図6、図7を参照
して説明する。真空ポンプ22と反応ガス供給口23を
有する真空容器21内に、被処理基板24を保持するサ
セプタ25が配設され、このサセプタ25に高周波電源
26が接続されている。真空容器21の壁面に絶縁体か
らなるスペーサ29を介して3つの平板型の分割電極2
7a〜27cが配設され、各分割電極27a〜27cに
は各々約120°の位相の異なる高周波電源28a〜2
8cが接続されている。A configuration example of the wall electrode type will be described with reference to FIGS. 6 and 7. A susceptor 25 holding a substrate 24 to be processed is disposed in a vacuum container 21 having a vacuum pump 22 and a reaction gas supply port 23, and a high frequency power supply 26 is connected to the susceptor 25. Three flat plate type divided electrodes 2 are provided on the wall surface of the vacuum container 21 via a spacer 29 made of an insulator.
7a to 27c are arranged, and the divided electrodes 27a to 27c have high frequency power sources 28a to 2c having different phases of about 120 °.
8c is connected.
【0005】吊り下げ電極型の構成例を、図8、図9を
参照して説明する。真空ポンプ32と反応ガス供給口3
3とを有する真空容器31内に、被処理基板34を保持
するサセプタ35が配設され、このサセプタ35に高周
波電源36が接続されている。サセプタ35の上方には
3つの円弧状の分割電極37a〜37cが全体として円
筒状に配設され、各分割電極37a〜37cには各々約
120°の位相の異なる高周波電源38a〜38cが接
続されている。A structural example of the hanging electrode type will be described with reference to FIGS. 8 and 9. Vacuum pump 32 and reaction gas supply port 3
A susceptor 35 for holding a substrate to be processed 34 is disposed in a vacuum container 31 having a high frequency power source 36 connected to the susceptor 35. Above the susceptor 35, three arc-shaped divided electrodes 37a to 37c are arranged in a cylindrical shape as a whole, and each divided electrode 37a to 37c is connected to a high frequency power source 38a to 38c having a phase difference of about 120 °. ing.
【0006】次に、以上の構成の真空プラズマ処理装置
の動作について説明すると、真空容器21、31が真空
ポンプ22、32により真空排気されつつ、反応ガス供
給口23、33より反応ガスが真空容器21、31内に
導入され、適当な圧力に保持される。次いで、3つの分
割電極27a〜27c、37a〜37cに高周波電源2
8a〜28c、38a〜38cにより各々約120°位
相の異なる高周波電力が印加され、真空容器21、31
内に電界が発生される。この電界により電子が加速さ
れ、プラズマが生起される。一方、サセプタ25、35
に接続された高周波電源26、36により被処理基板2
4、34にバイアス電位を生じさせる。そして、プラズ
マ中のイオンを被処理基板24、34に入射させ、被処
理基板24、34を表面処理する。Next, the operation of the vacuum plasma processing apparatus having the above-described structure will be described. While the vacuum containers 21 and 31 are evacuated by the vacuum pumps 22 and 32, the reaction gas is supplied from the reaction gas supply ports 23 and 33. It is introduced into 21, 31 and kept at an appropriate pressure. Next, the high frequency power supply 2 is applied to the three divided electrodes 27a to 27c and 37a to 37c.
8a to 28c and 38a to 38c apply high frequency power having a phase difference of about 120 ° to each other.
An electric field is generated inside. Electrons are accelerated by this electric field, and plasma is generated. On the other hand, the susceptors 25 and 35
The high-frequency power sources 26 and 36 connected to the substrate 2 to be processed 2
A bias potential is generated at 4, 34. Then, the ions in the plasma are made incident on the substrates 24 and 34 to be processed, and the substrates 24 and 34 are surface-treated.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、図6、
図7の壁面電極型の構成では、分割電極27a〜27c
と真空容器21の間に異常放電が生じ易く、電界の均一
性が低いという問題がある。However, as shown in FIG.
In the configuration of the wall electrode type of FIG. 7, the divided electrodes 27a to 27c
There is a problem that abnormal discharge is likely to occur between the vacuum container 21 and the vacuum container 21 and the uniformity of the electric field is low.
【0008】また、図8、図9の吊り下げ電極型の構成
では、局所的な放電が起りにくいために被処理基板34
に対する表面処理の均一性が極めて優れているが、分割
電極37a〜37cと真空容器31との間にもプラズマ
が生じ、電力ロスとなるとともに被処理基板34上のプ
ラズマ密度の低下の原因になるという問題がある。Further, in the structure of the hanging electrode type shown in FIGS. 8 and 9, since the local discharge is unlikely to occur, the substrate to be processed 34 is processed.
However, plasma is also generated between the divided electrodes 37a to 37c and the vacuum container 31, resulting in power loss and a decrease in plasma density on the substrate 34 to be processed. There is a problem.
【0009】また、上記いずれの構成においても、電界
強度を高めてプラズマ密度を向上するために分割電極2
7a〜27c、37a〜37cの面積を大きくするに
は、分割電極27a〜27c、37a〜37cを被処理
基板24、34に対して離れる方向に伸ばさねばなら
ず、そのため被処理基板24、34から遠い位置で発生
した活性種が表面処理に有効に寄与せず、効果的でない
という問題がある。In any of the above constructions, the split electrode 2 is used to enhance the electric field strength and plasma density.
In order to increase the area of 7a to 27c and 37a to 37c, the divided electrodes 27a to 27c and 37a to 37c must be extended in a direction away from the substrates 24 and 34 to be processed. There is a problem that the active species generated at a distant position do not contribute effectively to the surface treatment and are not effective.
【0010】本発明は、上記従来の問題点に鑑み、プラ
ズマの均一性を維持しながら、被処理基板上のプラズマ
密度の増大を図ることができる真空プラズマ処理装置を
提供することを目的としている。In view of the above conventional problems, it is an object of the present invention to provide a vacuum plasma processing apparatus capable of increasing plasma density on a substrate to be processed while maintaining plasma uniformity. .
【0011】[0011]
【課題を解決するための手段】本発明の真空プラズマ処
理装置は、真空容器と、真空容器内を真空排気する手段
と、真空容器内に反応ガスを供給する手段と、真空容器
内で被処理基板を保持するサセプタと、サセプタに対し
て高周波電力を印加する手段と、被処理基板に対向して
配置された分割電極と、分割電極に各々位相の異なる高
周波電力を印加する電源装置とを備えた真空プラズマ処
理装置において、真空容器のサセプタに対向する部分を
絶縁体から成るドーム状壁面にて構成し、分割電極をド
ーム状壁面に配設したことを特徴とする。A vacuum plasma processing apparatus according to the present invention comprises a vacuum container, a means for evacuating the inside of the vacuum container, a means for supplying a reaction gas into the vacuum container, and an object to be processed in the vacuum container. A susceptor for holding the substrate, means for applying high-frequency power to the susceptor, divided electrodes arranged facing the substrate to be processed, and a power supply device for applying high-frequency power with different phases to the divided electrodes In the above vacuum plasma processing apparatus, the portion of the vacuum container facing the susceptor is formed of a dome-shaped wall made of an insulator, and the divided electrodes are arranged on the dome-shaped wall.
【0012】分割電極は、ドーム状壁面に形成した電極
装着窓に嵌め込んで配置されるとともに真空容器内に臨
む面が凸球面、凹球面若しくは平面に形成され、または
ドーム状壁面の外面に配置される。The divided electrodes are arranged by fitting them into an electrode mounting window formed on the dome-shaped wall surface, and the surface facing the inside of the vacuum container is formed into a convex spherical surface, a concave spherical surface or a flat surface, or arranged on the outer surface of the dome-shaped wall surface. To be done.
【0013】[0013]
【作用】本発明によれば、真空容器のサセプタと対向す
る部分をドーム状の絶縁体から成る壁面にて構成してい
るので、局部的な放電を防ぐことができてプラズマの均
一性の悪化を防ぐことができ、またドーム状の壁面に配
設された分割電極に各々位相の異なる高周波電力を印加
することにより、サセプタ上の被処理基板に対する距離
を大きく変化させずに各分割電極の電極面の大きさを大
きくすることができ、プラズマの均一性を維持しながら
電界強度を高めることができてプラズマ密度を向上する
ことができ、かつそれによって増加した活性種を表面処
理に有効に寄与させることができる。また、被処理基板
を保持するサセプタに高周波電力を印加することで、被
処理基板に到達するイオンエネルギーを独立制御するこ
とが可能であり、高密度プラズマを発生しながら被処理
基板にダメージを与えないようにできる。According to the present invention, since the portion of the vacuum container facing the susceptor is constituted by the wall surface made of a dome-shaped insulator, it is possible to prevent local discharge and deteriorate plasma uniformity. By applying high-frequency power with different phases to the divided electrodes arranged on the dome-shaped wall surface, the electrode of each divided electrode can be changed without significantly changing the distance to the substrate to be processed on the susceptor. The size of the surface can be increased, the electric field strength can be increased while maintaining the uniformity of the plasma, and the plasma density can be improved, and the increased active species contributes effectively to the surface treatment. Can be made. In addition, by applying high-frequency power to the susceptor that holds the substrate to be processed, it is possible to independently control the ion energy that reaches the substrate to be processed, causing damage to the substrate while generating high-density plasma. You can avoid it.
【0014】また、分割電極をドーム状壁面に形成した
電極装着窓に嵌め込んで配置するとともに真空容器内に
臨む面を凸球面にすると、電極間の電界を均一にでき、
凹球面にするとプラズマの容積を最大にできるとともに
クリーニングが容易となり、平面にすると分割電極の製
作が容易となる。Further, by disposing the divided electrodes by fitting them into the electrode mounting window formed on the dome-shaped wall surface and by forming the surface facing the vacuum container into a convex spherical surface, the electric field between the electrodes can be made uniform,
The concave spherical surface maximizes the plasma volume and facilitates cleaning, and the flat surface facilitates production of the divided electrodes.
【0015】また、分割電極をドーム状壁面の外面に配
置すると、位置調整にてプラズマ分布の調整が可能とな
り、また分割電極がスパッタリングされず、クリーンな
プラズマを生成することができる。When the divided electrodes are arranged on the outer surface of the dome-shaped wall surface, the plasma distribution can be adjusted by adjusting the position, and the divided electrodes are not sputtered, so that clean plasma can be generated.
【0016】[0016]
【実施例】以下、本発明の一実施例の真空プラズマ処理
装置について、図1、図2を参照して説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A vacuum plasma processing apparatus according to an embodiment of the present invention will be described below with reference to FIGS.
【0017】真空容器1は、下部の本体壁面10の上部
に絶縁体から成るドーム状の壁面11を接合して構成さ
れている。真空容器1の下部には真空ポンプ2が配設さ
れ、ドーム状壁面11の頂部には反応ガス供給口3が設
けられている。真空容器1内の下部には被処理基板4を
保持するサセプタ5が配設されている。サセプタ5には
イオンエネルギーを制御するための高周波電源6が接続
されている。The vacuum container 1 is constructed by joining a dome-shaped wall surface 11 made of an insulator to the upper part of the lower body wall surface 10. A vacuum pump 2 is provided below the vacuum container 1, and a reaction gas supply port 3 is provided at the top of the dome-shaped wall surface 11. A susceptor 5 that holds the substrate 4 to be processed is disposed in the lower portion of the vacuum container 1. A high frequency power source 6 for controlling ion energy is connected to the susceptor 5.
【0018】ドーム状壁面11には、3つの分割電極7
a、7b、7cが、互いに120°の間隔で配設されて
いる。これら分割電極7a、7b、7cは、ドーム状壁
面11に形成した電極装着窓11aに嵌め込んで装着さ
れ、かつ真空容器1内に臨む面が凸球面に形成されてい
る。また、分割電極7a、7b、7cにはプラズマ9を
生起させるための高周波電源8a、8b、8cに接続さ
れている。これら高周波電源8a、8b、8cは互いに
位相が略120°異なっている。The dome-shaped wall 11 has three divided electrodes 7
a, 7b, 7c are arranged at an interval of 120 ° from each other. These divided electrodes 7a, 7b, 7c are fitted by being fitted into an electrode fitting window 11a formed on the dome-shaped wall surface 11, and the surface facing the vacuum container 1 is formed as a convex spherical surface. Further, the divided electrodes 7a, 7b, 7c are connected to high frequency power supplies 8a, 8b, 8c for generating plasma 9. The high frequency power supplies 8a, 8b and 8c are out of phase with each other by about 120 °.
【0019】次に、以上の構成の真空プラズマ処理装置
の動作について説明する。真空容器1内は真空ポンプ2
により真空排気されつつ、反応ガス供給口3から反応ガ
スが導入され、適当な圧力に保持される。次いで、分割
電極7a、7b、7cに各々の高周波電源8a、8b、
8cよりそれぞれ約120°位相の異なる高周波電力が
印加され、ドーム状壁面11で囲まれた真空容器1の上
部空間内にプラズマ9が発生される。その際、真空容器
1のサセプタ5と対向する部分が絶縁体から成るドーム
状壁面11にて構成されているので、分割電極7a、7
b、7cと真空容器1との間の局部的な放電を防ぐこと
ができてプラズマの均一性の悪化を防ぐことができ、ま
た分割電極7a、7b、7cがドーム状壁面11に配設
されているので、サセプタ5上の被処理基板4に対する
距離を大きく変化させずに各分割電極7a、7b、7c
の電極面の大きさを大きくすることができ、プラズマの
均一性を維持しながら電界強度を高めてプラズマ密度を
向上することができ、かつそれによって増加した活性種
を表面処理に有効に寄与させ、高速にて均一な処理を行
うことができる。Next, the operation of the vacuum plasma processing apparatus having the above configuration will be described. Vacuum pump 2 inside the vacuum container 1
While being evacuated, the reaction gas is introduced from the reaction gas supply port 3 and maintained at an appropriate pressure. Then, the divided electrodes 7a, 7b, 7c are respectively provided with high frequency power supplies 8a, 8b,
High-frequency powers having different phases of about 120 ° are applied from 8c, and plasma 9 is generated in the upper space of the vacuum container 1 surrounded by the dome-shaped wall surface 11. At that time, since the portion of the vacuum container 1 facing the susceptor 5 is formed by the dome-shaped wall surface 11 made of an insulator, the divided electrodes 7a, 7
b, 7c and the vacuum vessel 1 can be prevented from being locally discharged to prevent deterioration of plasma uniformity, and the divided electrodes 7a, 7b and 7c are disposed on the dome-shaped wall surface 11. Therefore, the divided electrodes 7a, 7b, 7c can be formed on the susceptor 5 without significantly changing the distance to the substrate 4 to be processed.
The size of the electrode surface can be increased, the electric field strength can be increased while maintaining plasma uniformity, and the plasma density can be improved, and the increased active species can be effectively contributed to the surface treatment. Therefore, uniform processing can be performed at high speed.
【0020】また、サセプタ5に高周波電源6より高周
波電力が任意に印加されることによりプラズマ9の被処
理基板4に入射するイオンエネルギーが制御され、最適
な真空プラズマ処理を行うことができる。Further, by arbitrarily applying high-frequency power from the high-frequency power source 6 to the susceptor 5, the ion energy of the plasma 9 incident on the substrate 4 to be processed is controlled, and optimum vacuum plasma processing can be performed.
【0021】また、分割電極7a、7b、7cのドーム
状壁面11内に臨む面が凸球面であり、これは電極間の
電界を均一にする効果がある。The surfaces of the divided electrodes 7a, 7b, 7c facing the dome-shaped wall surface 11 are convex spherical surfaces, which has the effect of making the electric field between the electrodes uniform.
【0022】次に、本発明の第2実施例について、図3
を参照して説明する。なお、第1実施例と共通の構成要
素については同一の参照番号を付して説明を省略し、相
違点のみについて説明する。以下の実施例についても同
様である。この実施例では分割電極7a、7b、7cに
代えて、真空容器1内に臨む面が凹球面に形成された分
割電極12a、12b、12cが配設されている。この
実施例によれば、プラズマの容積を最大にでき、かつ真
空容器1内面のクリーニングが容易である。Next, the second embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. The same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted. Only different points will be described. The same applies to the following examples. In this embodiment, instead of the divided electrodes 7a, 7b, 7c, divided electrodes 12a, 12b, 12c whose surfaces facing the inside of the vacuum chamber 1 are formed into concave spherical surfaces are provided. According to this embodiment, the volume of plasma can be maximized and the inner surface of the vacuum container 1 can be easily cleaned.
【0023】次に、本発明の第3実施例について、図4
を参照して説明する。この実施例では分割電極7a、7
b、7cに代えて、真空容器1内に臨む面が平面に形成
された分割電極13a、13b、13cが配設されてい
る。この実施例によれば、分割電極の製作が容易であ
る。Next, the third embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. In this embodiment, the divided electrodes 7a, 7
Instead of b and 7c, split electrodes 13a, 13b and 13c are provided, the surfaces of which face the interior of the vacuum container 1 are formed flat. According to this embodiment, the divided electrodes can be easily manufactured.
【0024】次に、本発明の第4実施例について、図5
を参照して説明する。この実施例ではドーム状壁面11
に形成した電極装着窓11aに嵌め込んで装着した分割
電極7a、7b、7cに代えて、ドーム状壁面11の外
面に分割電極14a、14b、14cが配設されてい
る。この実施例によれば、分割電極14a、14b、1
4cを任意の位置に配置することができてプラズマ分布
の調整が可能となり、また真空容器1内への分割電極1
4a、14b、14cのスパッタリングが無く、クリー
ンなプラズマ9を生成することができる。Next, a fourth embodiment of the present invention will be described with reference to FIG.
Will be described with reference to. In this embodiment, the dome-shaped wall surface 11
Instead of the divided electrodes 7a, 7b, 7c fitted into the electrode mounting window 11a formed in the above, the divided electrodes 14a, 14b, 14c are provided on the outer surface of the dome-shaped wall surface 11. According to this embodiment, the divided electrodes 14a, 14b, 1
4c can be arranged at any position to adjust the plasma distribution, and the split electrode 1 into the vacuum chamber 1
Clean plasma 9 can be generated without the sputtering of 4a, 14b, and 14c.
【0025】[0025]
【発明の効果】本発明の真空プラズマ処理装置によれ
ば、以上の説明から明らかなように、真空容器のサセプ
タと対向する部分をドーム状の絶縁体から成る壁面にて
構成しているので、局部的な放電を防ぐことができてプ
ラズマの均一性の悪化を防ぐことができ、またサセプタ
上の被処理基板に対する距離を大きく変化させずに各分
割電極の電極面の大きさを大きくすることができ、プラ
ズマの均一性を維持しながらプラズマ密度を向上するこ
とができ、かつそれによって増加した活性種を表面処理
に有効に寄与させることができるので、高速にて均一な
表面処理が可能となる。また、被処理基板を保持するサ
セプタに高周波電力を印加することで、被処理基板に到
達するイオンエネルギーを独立制御することが可能であ
り、高密度プラズマを発生しながら被処理基板にダメー
ジを与えないようにできる。According to the vacuum plasma processing apparatus of the present invention, as is clear from the above description, the portion of the vacuum container facing the susceptor is formed by the wall surface made of a dome-shaped insulator. It is possible to prevent local discharge and prevent deterioration of plasma uniformity, and to increase the size of the electrode surface of each divided electrode without greatly changing the distance to the substrate to be processed on the susceptor. As a result, the plasma density can be improved while maintaining the plasma uniformity, and the increased active species can be effectively contributed to the surface treatment, which enables uniform surface treatment at high speed. Become. In addition, by applying high-frequency power to the susceptor that holds the substrate to be processed, it is possible to independently control the ion energy that reaches the substrate to be processed, causing damage to the substrate while generating high-density plasma. You can avoid it.
【0026】また、分割電極をドーム状壁面に形成した
電極装着窓に嵌め込んで配置するとともに真空容器内に
臨む面を凸球面にすると、電極間の電界を均一にでき、
凹球面にするとプラズマの容積を最大にできるとともに
クリーニングが容易となり、平面にすると分割電極の製
作が容易となる。Further, when the divided electrodes are fitted into the electrode mounting window formed on the dome-shaped wall and arranged, and the surface facing the vacuum container is formed into a convex spherical surface, the electric field between the electrodes can be made uniform,
The concave spherical surface maximizes the plasma volume and facilitates cleaning, and the flat surface facilitates production of the divided electrodes.
【0027】また、分割電極をドーム状壁面の外面に配
置すると、位置調整にてプラズマ分布の調整が可能とな
り、また分割電極がスパッタリングされず、クリーンな
プラズマを生成することができる。Further, when the divided electrodes are arranged on the outer surface of the dome-shaped wall surface, the plasma distribution can be adjusted by adjusting the positions, and the divided electrodes are not sputtered, so that clean plasma can be generated.
【図1】本発明の第1実施例の真空プラズマ処理装置の
概略構成を示す縦断正面図である。FIG. 1 is a vertical sectional front view showing a schematic configuration of a vacuum plasma processing apparatus according to a first embodiment of the present invention.
【図2】同実施例の平面図である。FIG. 2 is a plan view of the embodiment.
【図3】本発明の第2実施例の真空プラズマ処理装置の
概略構成を示す縦断正面図である。FIG. 3 is a vertical sectional front view showing a schematic configuration of a vacuum plasma processing apparatus according to a second embodiment of the present invention.
【図4】本発明の第3実施例の真空プラズマ処理装置の
概略構成を示す縦断正面図である。FIG. 4 is a vertical sectional front view showing a schematic configuration of a vacuum plasma processing apparatus according to a third embodiment of the present invention.
【図5】本発明の第3実施例の真空プラズマ処理装置の
概略構成を示す縦断正面図である。FIG. 5 is a vertical sectional front view showing a schematic configuration of a vacuum plasma processing apparatus according to a third embodiment of the present invention.
【図6】従来例の真空プラズマ処理装置の概略構成を示
す縦断正面図である。FIG. 6 is a vertical sectional front view showing a schematic configuration of a conventional vacuum plasma processing apparatus.
【図7】同従来例の横断平面図である。FIG. 7 is a cross-sectional plan view of the conventional example.
【図8】他の従来例の真空プラズマ処理装置の概略構成
を示す縦断正面図である。FIG. 8 is a vertical sectional front view showing a schematic configuration of another conventional vacuum plasma processing apparatus.
【図9】同従来例の横断平面図である。FIG. 9 is a cross-sectional plan view of the conventional example.
1 真空容器 2 真空ポンプ 3 反応ガス供給口 4 被処理基板 5 サセプタ 6 高周波電源 7a〜7c 分割電極 8a〜8c 高周波電源 11 ドーム状壁面 11a 電極装着窓 12a〜12c 分割電極 13a〜13c 分割電極 14a〜14c 分割電極 DESCRIPTION OF SYMBOLS 1 vacuum container 2 vacuum pump 3 reaction gas supply port 4 processed substrate 5 susceptor 6 high frequency power source 7a to 7c split electrode 8a to 8c high frequency power source 11 dome-shaped wall surface 11a electrode mounting window 12a to 12c split electrode 13a to 13c split electrode 14a to 14c split electrode
───────────────────────────────────────────────────── フロントページの続き (72)発明者 玉置 徳彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tokuhiko Tamaki 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (5)
手段と、真空容器内に反応ガスを供給する手段と、真空
容器内で被処理基板を保持するサセプタと、サセプタに
対して高周波電力を印加する手段と、被処理基板に対向
して配置された分割電極と、分割電極に各々位相の異な
る高周波電力を印加する電源装置とを備えた真空プラズ
マ処理装置において、真空容器のサセプタに対向する部
分を絶縁体から成るドーム状壁面にて構成し、分割電極
をドーム状壁面に配設したことを特徴とする真空プラズ
マ処理装置。1. A vacuum vessel, a means for evacuating the inside of the vacuum vessel, a means for supplying a reaction gas into the vacuum vessel, a susceptor for holding a substrate to be processed in the vacuum vessel, and high-frequency power for the susceptor. In a vacuum plasma processing apparatus including a means for applying a voltage, a split electrode arranged to face the substrate to be processed, and a power supply device for applying high-frequency power having different phases to the split electrode, facing the susceptor of the vacuum container. A vacuum plasma processing apparatus, characterized in that a portion to be formed is formed by a dome-shaped wall made of an insulator, and the divided electrodes are arranged on the dome-shaped wall.
極装着窓に嵌め込んで配置し、真空容器内に臨む面を凸
球面としたことを特徴とする請求項1記載の真空プラズ
マ処理装置。2. The vacuum plasma processing apparatus according to claim 1, wherein the divided electrodes are arranged by being fitted into an electrode mounting window formed on a dome-shaped wall surface, and a surface facing the vacuum container is a convex spherical surface. .
極装着窓に嵌め込んで配置し、真空容器内に臨む面を凹
球面としたことを特徴とする請求項1記載の真空プラズ
マ処理装置。3. The vacuum plasma processing apparatus according to claim 1, wherein the divided electrodes are arranged by being fitted into an electrode mounting window formed on a dome-shaped wall surface, and a surface facing the vacuum container is a concave spherical surface. .
極装着窓に嵌め込んで配置し、真空容器内に臨む面を平
面としたことを特徴とする請求項1記載の真空プラズマ
処理装置。4. The vacuum plasma processing apparatus according to claim 1, wherein the divided electrodes are fitted in an electrode mounting window formed on a dome-shaped wall surface and arranged so that the surface facing the vacuum container is a flat surface.
たことを特徴とする請求項1記載の真空プラズマ処理装
置。5. The vacuum plasma processing apparatus according to claim 1, wherein the divided electrodes are arranged on the outer surface of the dome-shaped wall surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26470094A JPH08124864A (en) | 1994-10-28 | 1994-10-28 | Vacuum plasma treating apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26470094A JPH08124864A (en) | 1994-10-28 | 1994-10-28 | Vacuum plasma treating apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08124864A true JPH08124864A (en) | 1996-05-17 |
Family
ID=17406976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26470094A Pending JPH08124864A (en) | 1994-10-28 | 1994-10-28 | Vacuum plasma treating apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08124864A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001075187A1 (en) * | 2000-04-04 | 2001-10-11 | Advanced Energy Industries, Inc. | System for driving multiple magnetrons with multiple phase ac |
WO2006120239A1 (en) * | 2005-05-11 | 2006-11-16 | Dublin City University | Hf- plasma source with plurality of out - of- phase electrodes |
JP2007046160A (en) * | 2005-08-03 | 2007-02-22 | Tokyo Electron Ltd | Segmented biassed peripheral electrode in plasma processing method and apparatus |
US7342361B2 (en) | 2005-05-11 | 2008-03-11 | Dublin City University | Plasma source |
JP2012142584A (en) * | 2006-10-12 | 2012-07-26 | Internatl Business Mach Corp <Ibm> | By-product collecting processes and manufacturing devices for cleaning processes |
-
1994
- 1994-10-28 JP JP26470094A patent/JPH08124864A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001075187A1 (en) * | 2000-04-04 | 2001-10-11 | Advanced Energy Industries, Inc. | System for driving multiple magnetrons with multiple phase ac |
WO2006120239A1 (en) * | 2005-05-11 | 2006-11-16 | Dublin City University | Hf- plasma source with plurality of out - of- phase electrodes |
US7342361B2 (en) | 2005-05-11 | 2008-03-11 | Dublin City University | Plasma source |
US7886690B2 (en) | 2005-05-11 | 2011-02-15 | Dublin City University | Plasma source |
JP2007046160A (en) * | 2005-08-03 | 2007-02-22 | Tokyo Electron Ltd | Segmented biassed peripheral electrode in plasma processing method and apparatus |
JP2012142584A (en) * | 2006-10-12 | 2012-07-26 | Internatl Business Mach Corp <Ibm> | By-product collecting processes and manufacturing devices for cleaning processes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3953247B2 (en) | Plasma processing equipment | |
KR100841118B1 (en) | Plasma processing apparatus and plasma processing method | |
US6380684B1 (en) | Plasma generating apparatus and semiconductor manufacturing method | |
JP5702968B2 (en) | Plasma processing apparatus and plasma control method | |
US20050115677A1 (en) | Plasma etching apparatus | |
JP2927211B2 (en) | Wafer processing equipment | |
JP2000156370A (en) | Method of plasma processing | |
JP2000331995A (en) | Flat plate gas introduction device of ccp reaction vessel | |
JPH08124864A (en) | Vacuum plasma treating apparatus | |
JP4003305B2 (en) | Plasma processing method | |
JPH0529270A (en) | Magnetron plasma processing device | |
JPH0774115A (en) | Plasma treatment system | |
JP2761875B2 (en) | Deposition film forming equipment by bias sputtering method | |
JPH0781187B2 (en) | Vacuum process equipment | |
JPH06291064A (en) | Plasma treatment device | |
JPS62188777A (en) | Bias sputtering device | |
JP2862088B2 (en) | Plasma generator | |
JPH0425017A (en) | Vacuum film formation equipment | |
JPS61174726A (en) | Formation of thin film | |
JPH05102036A (en) | Sputtering system | |
JPS63186429A (en) | Drying processor | |
JPH09202965A (en) | Electron beam vapor deposition apparatus | |
JP2001291704A (en) | Processing device, plasma processing device, and method of cleaning them | |
WO2022259368A1 (en) | Bias application device | |
JP4087674B2 (en) | Semiconductor manufacturing equipment |