JPH078474B2 - Carbide abrasive wheel for high speed grinding - Google Patents
Carbide abrasive wheel for high speed grindingInfo
- Publication number
- JPH078474B2 JPH078474B2 JP1217074A JP21707489A JPH078474B2 JP H078474 B2 JPH078474 B2 JP H078474B2 JP 1217074 A JP1217074 A JP 1217074A JP 21707489 A JP21707489 A JP 21707489A JP H078474 B2 JPH078474 B2 JP H078474B2
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- grinding
- grinding wheel
- layer
- outer peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は内面研削加工のための高速研削用超硬砥粒砥
石に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to a cemented carbide grindstone for high speed grinding for inner surface grinding.
一般に取付け穴を有し回転する研削砥石においては、穴
の周辺に最大の作用応力がかかるため、穴の内壁で砥石
材料の破壊強度に達すれば、砥石は破壊する。Generally, in a grinding wheel that has a mounting hole and rotates, the maximum working stress is applied to the periphery of the hole, and therefore, when the breaking strength of the grindstone material reaches the inner wall of the hole, the wheel breaks.
そこで、高速回転するビトリファイド研削砥石の穴の周
辺を研削砥石材料よりも強度の高い材料とすることによ
って、砥石破壊周速度は高められることになる。具体的
方法としては、つぎのようなものがある。すなわち、 (A)高速回転をするビトリファイド研削砥石の補強方
法: 砥石穴に金属内輪を貼り付ける〔E.O.Kienzel,H.J.Gr
asemann,K.Grning;Wege zur Erhhung der Umfangsg
eschwindigkeit von shleifschei-ben,VDI-Z,105,26(1
963)1201〕。Therefore, by setting the periphery of the hole of the vitrified grinding wheel rotating at a high speed to a material having a higher strength than the grinding wheel material, the grinding wheel breaking peripheral speed can be increased. Specific methods include the following. That is, (A) Reinforcing method of vitrified grinding wheel that rotates at high speed: Attach a metal inner ring to the wheel hole [EOKienzel, HJGr
asemann, K.Grning; Wege zur Erhhung der Umfangsg
eschwindigkeit von shleifschei-ben, VDI-Z, 105,26 (1
963) 1201].
砥石穴内周部をエポキシ樹脂により含浸補強する〔井
上英夫;ビトリファイド研削砥石の遠心破壊強さの推定
について、精密機械37巻2号(1971)〕。The inner circumference of the grindstone hole is impregnated and reinforced with epoxy resin [Hideo Inoue; For estimation of centrifugal fracture strength of vitrified grinding wheel, Precision Machinery Vol. 37, No. 2 (1971)].
砥石内周部を細粒高結合度砥石とする〔山本明;補強
砥石の設計、精密機械38巻9号(1972)〕。The inner circumference of the grindstone is a fine-grained, high-coupling grindstone [Akira Yamamoto; Reinforcement grindstone design, Precision Machinery Vol. 38, No. 9 (1972)].
(B)立方晶窒化ほう素(以下これをCBNと略記する)
またはダイヤモンド等の超硬砥粒ビトリファイド砥石の
補強方法: 砥石周速度45〜80m/sでは前記補強形式で砥石内周部
を金属輪とした場合に類似して砥石コアー(中心核)を
金属材料とし、その外周縁に研削層を配位させる。(B) Cubic boron nitride (hereinafter abbreviated as CBN)
Reinforcing method for cemented carbide vitrified grindstones such as diamond: At a grinding wheel peripheral speed of 45 to 80 m / s, the grinding wheel core (central core) is made of a metal material, similar to the case where the inner circumference of the grinding wheel is a metal ring in the above-mentioned reinforcement type. And the grinding layer is coordinated to the outer peripheral edge.
砥石周速度が80m/sを起える場合または少なくとも100
m/sを越える場合は、鋼製の円板周上に超硬砥粒を電着
配位する。If the wheel peripheral speed can reach 80 m / s or at least 100
If it exceeds m / s, cemented carbide grains are electrodeposited on the circumference of the steel disk.
などである。And so on.
いま、前記したビトリファイド砥石における砥石コアー
または電着砥石の台金部などに鋼材料(たとえばJIS−G
4401、炭素工具鋼鋼材に規定するSK3もしくはJIS−G405
1機械構造用炭素鋼鋼材に規定するS45など)を使用する
と、鋼の比重値は約7.8gf/cm2であるから砥石重量は大
きくなる。砥石重量が大きくなれば、それに比例して遠
心力は増加し、通常、高速度で回転する砥石強度は遠心
力の増加に伴って減少するので、高速回転砥石の安全度
を高めるためには単位体積当りの重量を軽くすることが
必要になる。Now, a steel material (for example, JIS-G) is used for the whetstone core of the above-mentioned vitrified whetstone or the base metal part of the electrodeposition whetstone.
4401, SK3 or JIS-G405 specified for carbon tool steel
1 When using carbon steel for machine structural purposes such as S45), the specific gravity of the steel is about 7.8 gf / cm 2 , and the weight of the grindstone increases. As the weight of the grindstone increases, the centrifugal force increases in proportion to it, and the strength of the grindstone rotating at a high speed usually decreases with the increase of the centrifugal force. It is necessary to reduce the weight per volume.
また、高速研削用として電着砥石を使用する場合、電着
砥石は超硬砥粒が単一で円盤状台金部表面上に結合剤で
電着され、砥石作用面は砥粒とその間隙空間からなり、
かつ、砥粒間隔と狭い砥石間空間とは最初から固定され
たものとなる。したがって、有気孔で砥石の多層からな
るビトリファイドボンド研削砥石に比べて電着砥石は、
精密研削において、砥石形状の精度に必要なツルーイン
グ、ドレッシングは非常に困難なものとなり、加工精
度、能率および寿命の点で劣ることが知られている。ま
た、焼入れ鋼などの比較的長い切屑の出る被削材の研削
加工においては、目詰まりを起こしやすいので、空隙を
大きくした粗粒度砥石を用いると研削目は粗いものとな
る。さらに、電着砥石半径方向での実砥石使用量は、適
用砥粒径の約1/2で制限される結果、1個当りの砥石寿
命は短いものとなる。When using an electro-deposition grindstone for high-speed grinding, the electro-deposition grindstone is composed of a single cemented carbide grain that is electrodeposited on the surface of the disk-shaped base metal with a binder, and the grindstone working surface is the grain and its gap. Consists of space,
Moreover, the interval between the abrasive grains and the narrow space between the grindstones are fixed from the beginning. Therefore, compared with the vitrified bond grinding wheel consisting of a multi-layered grinding wheel with air holes, the electrodeposition grinding wheel is
In precision grinding, it is known that the truing and dressing required for the precision of the shape of the grindstone become very difficult, and the processing precision, efficiency and life are inferior. Further, when grinding a work material such as hardened steel in which relatively long chips are generated, clogging is likely to occur. Therefore, if a coarse-grained grindstone with large voids is used, the grind will be coarse. Further, the amount of the actual grindstone used in the radial direction of the electrodeposition grindstone is limited to about 1/2 of the applied grindstone, and as a result, the life of each grindstone becomes short.
以上述べたように、高速研削用超硬砥粒砥石に関する従
来の技術においては、高速度の回転に耐え得る強度を有
し軽量であって、加工精度、能率および寿命において満
足できる内面研削砥石が未だ開発されていないとう問題
点があり、これを解決することが課題であった。As described above, in the conventional technique related to the cemented carbide grindstone for high-speed grinding, the inner grinding wheel that has sufficient strength to withstand high-speed rotation and is lightweight and that is satisfactory in processing accuracy, efficiency and life is There is a problem that it has not been developed yet, and it was a problem to solve it.
上記の課題を解決するため見掛け気孔率が15〜25%、曲
が強度が室温下10kgf/mm2以上、熱膨張系数が室温〜100
0℃間において(2.5〜3.5)×10-6/℃である窒化けい素
セラミックスよりなる砥石本体の外周表面に、立方晶窒
化ほう素またはダイヤモンド等の超硬砥粒とビトリファ
イド結合剤とかなる多気孔型研削層を設けた高速研削用
超硬砥粒砥石とする手段を採用したものであり、以下そ
の詳細を述べる。In order to solve the above problems, the apparent porosity is 15 to 25%, the bending strength is 10 kgf / mm 2 or more at room temperature, and the thermal expansion coefficient is from room temperature to 100.
On the outer surface of the grinding wheel body made of silicon nitride ceramics, which is (2.5〜3.5) × 10 -6 / ℃ at 0 ℃, the cemented carbide grains such as cubic boron nitride or diamond and the vitrified binder are often used. A means for making a cemented carbide grindstone for high speed grinding provided with a pore type grinding layer is adopted, and its details will be described below.
まず、この発明は、窒化けい素セラミックス材を砥石本
体とし、この外周表面に超硬砥粒を含む均等な厚みの研
削層を被覆した方式の研削砥石であり、成形、乾燥後に
おいても、また焼成後においても砥石本体と研削層とは
充分な固着力によって強固に融着結合する必要がある。
そのために、窒化けい素セラミックス材の素材に多気孔
性のビトリファイドボンド砥石材を適宜選択し、このセ
ラミックス材からなる砥石本体の熱膨張係数が小さく、
研削層の熱膨張係数を上回ることなく、両者の差がある
限度を越えて大きくならないようにし、しかも高強度で
あることが肝要である。First, the present invention is a grinding wheel of a method in which a silicon nitride ceramics material is used as a grinding wheel main body, and an outer peripheral surface of the grinding wheel is coated with a grinding layer having a uniform thickness containing cemented carbide grains, even after molding and drying, Even after firing, the grindstone body and the grinding layer must be firmly fused and bonded with a sufficient fixing force.
Therefore, a multi-pore vitrified bond grindstone material is appropriately selected as the material of the silicon nitride ceramic material, and the coefficient of thermal expansion of the grindstone body made of this ceramic material is small,
It is essential that the coefficient of thermal expansion of the grinding layer does not exceed, the difference between the two does not exceed a certain limit, and the strength is high.
すなわち、この発明における高速(少なくとも周速80m/
sを越える)研削用超硬砥粒砥石は、従来の内面研削砥
石の直径に殆んど等しい外径寸法を有する砥石コアー金
属材料の代わりに高強度、低膨張性の窒化けい素セラミ
ックス材を用いたことに特徴があり、砥石本体(研削層
支持体)の有する熱膨張係数および強度の具体的な値
は、熱膨張係数(室温から1000℃の間)が(2.5〜3.5)
×10-6/℃、曲げ強度(室温)が10kgf/mm2以上である。
なお、従来の種々の補強形式の中で、砥石内周縁の材料
を細粒高結合度としたもの、もしくは高強度とした砥石
類似物について見ると、熱膨張係数が室温から1000℃に
おいて、3.5×10-6/℃以下の特性を満足する材料の曲げ
強度は、種々の試験範囲では概ね6.0×10-6/℃以下であ
った。That is, the high speed (at least the peripheral speed of 80 m /
The cemented carbide grindstone for grinding is a high strength, low expansion silicon nitride ceramics material instead of the metal material of the grinding wheel core that has an outer diameter almost equal to the diameter of the conventional inner grinding wheel. It is characterized by being used, and the specific values of the thermal expansion coefficient and strength of the grinding wheel body (grinding layer support) are that the thermal expansion coefficient (between room temperature and 1000 ° C) is (2.5 to 3.5).
× 10 -6 / ° C, flexural strength (room temperature) is 10 kgf / mm 2 or more.
In addition, among various conventional reinforcement types, when looking at the material of the inner periphery of the grindstone with fine grain high degree of bonding, or a grindstone similar to high strength, the coefficient of thermal expansion is from room temperature to 1000 ° C, 3.5 The bending strength of materials satisfying the properties of × 10 -6 / ° C or less was generally 6.0 × 10 -6 / ° C or less in various test ranges.
つぎにこの発明において、窒化けい素セラミックス材で
構成される砥石本体の外周面上に、超硬砥粒を含む均等
な厚みの研削層を被覆する方法としては、たとえば超硬
砥粒を含むペースト状もしくはクリーム状の流粘体を調
製し、これを塗布し、乾燥固化した後に焼成する方法が
好ましい。ここで、使用する液粘体は、たとえばつぎの
ようにして得られる。すなわち、前記したCBNまたはダ
イヤモンドなどの超硬砥粒(以下砥粒と略記する)を上
記の砥石本体の外周面に均等な厚みの被覆層にして付着
させるためのものであり、砥粒とビトリファイド結合剤
または人工気孔剤などからなり、各混合成分が均一分散
系を維持できるまでに充分な粘性を有し、しかも回転す
る砥石本体の外周面に容易に付着して滴下しない程度に
までペースト状、クリーム状またはプラスチゾル状を保
ち、適度の高粘度であることが必要である。このような
状態を維持させるためには、可塑性に富むビトリファイ
ド結合剤の選択と、さらに有機結合剤、たとえば、各種
澱粉、トラガントガム、アルギン酸塩、ゼラチンなどの
天然高分子、カルボキシルメチルセルローズ(CMC)の
ような半合成高分子、またはポリビニルアルコール、ポ
リエチレンオキサイド、ポリエチレングリコール等の合
成高分子など、を適宜選択使用することが必要である
が、さらに粘性の微調整のために、各種の無機もしくは
有機の解膠剤を随時使用することも出来る。要するにこ
のような結合剤等を用いて調整される流粘体の粘度は、
具体的には10000〜15000cP(mPa・s)であることが望
ましい。なぜならば、粘度が10000cP未満の場合には、
流粘体の砥石本体外周面の付着量が不充分で、均等な厚
みの被覆層が得られず、また15000cPを超える高粘度で
は、スリップ現象による層分離などを生じ易くなり、付
着量は返って減少し、被覆層の厚みが不均一となる傾向
が見られるようになるからである。したがって、このよ
うな粘度の流粘体を得るためには、たとえば砥粒の結合
剤に、特公昭57−49351号公報に示されるつぎの(イ)
または(ロ)の組成(モル%)、すなわち、 (イ) (ロ) SiO2 71.7、 71.6 Al2O3 17.2、 16.4 MgO 0.3、 1.3 CaO 0.9、 0.5 Na2O 2.1、 2.3 K2O 2.1、 2.1 Fe2O3 0.2、 0.2 FeO − 0.1 LiF 5.5、 5.5 のビトリファイドボンドと有機結合剤、たとえば冷水に
は難溶で温水に易溶の澱粉もしくはデキストリン、とを
用いて所望の粘度の流粘体を調製するためには、澱粉も
しくはデキストリンの粘度約4000cPの糊化水溶液(約10
゜ボーメ)を流粘体の2〜5重量%になるように添加す
ば、均一分散系のクリーム状組成物が得られることにな
る。Next, in the present invention, as a method for coating the outer peripheral surface of the grindstone body made of a silicon nitride ceramics material with a grinding layer of uniform thickness containing cemented carbide grains, for example, a paste containing cemented carbide grains is used. A preferred method is to prepare a fluid or creamy viscous substance, apply the dried viscous substance, and dry and solidify the viscous substance, followed by firing. The liquid viscous body used here is obtained as follows, for example. That is, the above-mentioned cemented carbide grains such as CBN or diamond (hereinafter abbreviated as "abrasive grains") are intended to be attached to the outer peripheral surface of the above-mentioned grindstone body as a coating layer having a uniform thickness. Consisting of a binder or artificial porosity agent, each mixed component has sufficient viscosity to maintain a uniform dispersion system, and is in paste form to the extent that it does not easily adhere to the outer peripheral surface of the rotating wheel body and drip. It must be creamy or plastisol-like and have an appropriate high viscosity. In order to maintain such a state, selection of a vitrified binder having high plasticity, and further organic binders such as various starches, tragacanth gum, alginate, natural polymers such as gelatin, and carboxymethyl cellulose (CMC) It is necessary to appropriately select and use such a semi-synthetic polymer, or a synthetic polymer such as polyvinyl alcohol, polyethylene oxide, or polyethylene glycol. For further fine adjustment of the viscosity, various inorganic or organic A peptizer can also be used at any time. In short, the viscosity of the flow viscous body adjusted using such a binder is
Specifically, it is preferably 10,000 to 15,000 cP (mPa · s). Because, when the viscosity is less than 10000 cP,
The amount of adhesion of the viscous body on the outer peripheral surface of the grindstone body is insufficient, a coating layer of uniform thickness cannot be obtained, and at a high viscosity of more than 15000 cP, layer separation due to slip phenomenon tends to occur, and the amount of adhesion returns This is because the thickness tends to decrease and the thickness of the coating layer tends to be non-uniform. Therefore, in order to obtain a flow viscous body having such a viscosity, for example, the following (a) shown in JP-B-57-49351 is used as a binder for abrasive grains.
Or (b) composition (mol%), that is, (b) (b) SiO 2 71.7, 71.6 Al 2 O 3 17.2, 16.4 MgO 0.3, 1.3 CaO 0.9, 0.5 Na 2 O 2.1, 2.3 K 2 O 2.1, 2.1 Fe 2 O 3 0.2, 0.2 FeO − 0.1 LiF 5.5, 5.5 with a vitrified bond and an organic binder, such as starch or dextrin, which is sparingly soluble in cold water and easily soluble in hot water, to obtain a flow viscous body having a desired viscosity. For the preparation, a gelatinized aqueous solution of starch or dextrin with a viscosity of about 4000 cP (about 10
(Baume) is added in an amount of 2 to 5% by weight of the viscous body to obtain a cream composition having a uniform dispersion system.
以上述べたような流粘体を砥石本体の外周面に被覆する
には、塗布または浸漬等通常用いられる塗装方法を利用
すればよいが、たとえば砥石本体を垂直にして回転(た
とえば、周速を毎分1.5〜2.5m)し、外周面を流粘体の
層中に浸漬(深さ0.3〜0.5mm程度でよい)しながら通過
させる方法は実用的で好ましい方法といえる。そして、
このような浸漬塗装を終えた砥石本体を流粘体から引き
揚げた直後に、砥石本体外周面に流粘体が確実に安定粘
着し、砥粒からなる研削層が安定して形成されるために
は、引き続いて砥石本体の外周面を、たとえば赤外線照
射のような方法で加熱(たとえば30〜40℃)し、乾燥で
きるようにしておくとよい。In order to cover the outer peripheral surface of the grindstone body with the above-mentioned flow viscous body, a commonly used coating method such as coating or dipping may be used. For example, the grindstone body is rotated vertically (for example, the peripheral speed is It is a practical and preferable method to allow the outer peripheral surface to pass while being immersed in the layer of the flow viscous body (the depth is about 0.3 to 0.5 mm). And
Immediately after lifting the whetstone body that has been subjected to such immersion coating from the flow viscous body, the flow viscous body is reliably and stably adhered to the outer peripheral surface of the whetstone body, in order for the grinding layer consisting of abrasive grains to be stably formed, Subsequently, the outer peripheral surface of the main body of the grindstone may be heated (for example, 30 to 40 ° C.) by a method such as infrared irradiation so that it can be dried.
なお、乾燥、さらに焼成の工程を終えて形成される砥粒
からなる研削層が、砥石本体の外周面に確実に固着し
て、剥離、脱落を起こさないためには、砥石本体と同様
に低膨張性であることは勿論好ましいことであるが、別
途耐熱性のある無機接着剤などを適宜選択して、たとえ
ば砥石本体の接着表面に80〜100μm程度の厚みに耐熱
性無機接着剤の皮膜を形成した後、流粘体を被覆するな
どの方法を採ることもできる。In addition, in order to ensure that the grinding layer formed of the abrasive grains formed after the drying and firing steps are firmly fixed to the outer peripheral surface of the grindstone body and do not separate or fall off, it is as low as the grindstone body. Of course, it is preferable to be expansive, but separately select a heat-resistant inorganic adhesive or the like as appropriate to form a heat-resistant inorganic adhesive film with a thickness of about 80 to 100 μm on the bonding surface of the grindstone body. After forming, it is also possible to adopt a method such as coating the flow viscous body.
砥石本体の外周表面に、通常の場合、流粘体層を0.3〜
0.5mm程度浸漬付着させればよいことは前記したとおり
であるが、このことによって、その後の乾燥および焼成
工程を通て形成される研削層が、砥石本体に対してより
強固な接着を達成することが可能となるので、流粘体に
外周表面を浸漬しながら回転する砥石本体を僅かずつ引
き上げて行くと、流粘体は次第に付着量を増し推積す
る。しかし、乾燥後の研削層の厚みは、通常の場合、最
大2mmを目安として浸漬処理を操作することが望まし
い。On the outer peripheral surface of the main body of the grindstone, normally, a flow viscous layer is
As described above, it may be applied by dipping about 0.5 mm, but by this, the grinding layer formed through the subsequent drying and firing steps achieves stronger adhesion to the grindstone body. Therefore, when the rotating grindstone body is pulled up little by little while immersing the outer peripheral surface in the flow viscous body, the flow viscous body gradually increases the adhesion amount and accumulates. However, it is usually desirable to operate the dipping treatment with a maximum thickness of 2 mm as a guideline for the dried grinding layer.
このように砥石本体を構成する窒化けい素セラミックス
の外周面に、流粘体を浸透付着させることが望ましいの
で、砥石本体の見掛け気孔率は15〜25%の範囲の多孔性
であることが好ましい。ここで、見掛け気孔率は、空気
中における試料の重さW1(g)、水中における試料の重
さW2(g)、そして飽水した試料の重さW3(g)、をそ
れぞれ測定し、次式 (JIS−R6210の5.2組織試験)によって求めた。Since it is desirable that the viscous body be permeated and adhered to the outer peripheral surface of the silicon nitride ceramics that constitutes the grindstone body as described above, it is preferable that the apparent porosity of the grindstone body is porous in the range of 15 to 25%. Here, the apparent porosity is measured by measuring the weight W 1 (g) of the sample in air, the weight W 2 (g) of the sample in water, and the weight W 3 (g) of the saturated sample. Then (JIS-R6210 5.2 microstructure test).
したがって、窒化けい素セラミックスを焼結させる方法
も、気孔率が減少する常圧法よりも、反応焼結法が好ま
しといえる。ここで、気孔率は前記数値より大き過ぎて
も小さ過ぎても、付着して形成される研削層が不均質層
になりやすくなり、不均質層になれば、たとえ流粘体乾
燥後において均一厚みを有していたとしても、焼成後に
おいて完全に均質な砥石になるという保証はなく、厚み
不同が生じ、その結果乾燥歪みまたは焼成歪となり、砥
石本体を研削層との間にマイクロラックなどが発生しや
すくなる。一方見掛け気孔率が25%を越えて大きくなる
と砥石本体の強度が著しく低下するという弊害が起こ
る。Therefore, it can be said that the reaction sintering method is also preferable as the method for sintering the silicon nitride ceramics rather than the atmospheric pressure method in which the porosity is reduced. Here, if the porosity is larger or smaller than the above value, the adhered grinding layer is likely to be a heterogeneous layer. Even if it has, there is no guarantee that it will become a completely homogeneous grindstone after firing, resulting in uneven thickness, resulting in drying strain or firing strain, such as microrack between the grindstone body and the grinding layer. It tends to occur. On the other hand, when the apparent porosity exceeds 25% and becomes large, the strength of the main body of the grindstone is remarkably reduced.
なお、この発明における砥石本体を構成する窒化けい素
セラミックスの熱膨張係数を室温〜1000℃において、
(2.5〜3.5)×10-6/℃とする理由は、この範囲外のも
のでは、研削層と一緒に焼成する際に、熱膨張係数の差
によって両者の接合力が低下するし、または、見掛け気
孔率との関係において適当な気孔率の範囲を満足させる
ことができず、または強度不足となるなどの多くの問題
が生ずるからである。Incidentally, the thermal expansion coefficient of the silicon nitride ceramics constituting the grinding wheel body in the present invention at room temperature to 1000 ℃,
The reason for setting (2.5 to 3.5) × 10 −6 / ° C. is that outside this range, the bonding force between the two decreases due to the difference in coefficient of thermal expansion when firing together with the grinding layer, or This is because many problems occur such that the appropriate porosity range cannot be satisfied in relation to the apparent porosity, or the strength becomes insufficient.
さらに、この発明における研削層に用いるビトリファイ
ドボンドは超硬砥粒の支持力が大きいことが重要である
ことはいうまでもなく、たとえば特公昭57−49351号公
報に開示された前記(イ)または(ロ)に示す組成のビ
トリファイドボンドなどを使用することができる。そし
て、このような結合剤で固結されたこの発明の研削層は
耐摩耗性と研削力とに優れた性質を有することが基本的
に重要であって、前記したセラミックス質砥石本体と合
体接合する必要性があることから、好ましい接合特性を
有するボンド材であることが大切である。たとえば、CB
N砥粒を含有する研削層の場合は熱膨張係数が室温から7
00℃の間において、(3.5〜4.5)×10-6/℃の範囲であ
ることが望ましい。なぜならば、膨張係数が3.5未満の
小さい値であるときは、ボンド耐火度は上昇し、砥粒結
合力は減少して砥石摩耗量が多く研削比は小さくなり、
砥石性能の低下が著しくなるし、また、4.5×10-6/℃を
越える大きい値のときは、砥石本体の熱膨張係数との差
を増大し、砥石本体と研削層との接合部分にマイクロク
ラック発生等の欠陥を生じ易くなって好ましくないから
である。したがって、窒化けい素セラミックス質の砥石
本体とCBNビトリファイドボンド研削層との熱膨張係数
との差は1.2×10-6/℃を越えないことが必要である。Further, it goes without saying that it is important that the vitrified bond used for the grinding layer in the present invention has a large supporting force of the cemented carbide grains, and for example, the above-mentioned (a) or (a) disclosed in Japanese Patent Publication No. 57-49351. A vitrified bond having the composition shown in (b) can be used. It is basically important that the grinding layer of the present invention solidified with such a binder has excellent properties in wear resistance and grinding force. Therefore, it is important that the bond material has preferable bonding characteristics. For example, CB
In the case of a grinding layer containing N abrasive grains, the coefficient of thermal expansion is from room temperature to 7
The range of (3.5 to 4.5) × 10 −6 / ° C. is desirable between 00 ° C. Because, when the expansion coefficient is a small value of less than 3.5, the bond fire resistance increases, the abrasive grain binding force decreases and the grinding wheel wear amount is large and the grinding ratio is small,
If the grinding wheel performance is significantly reduced, and if the value exceeds 4.5 × 10 -6 / ° C, the difference between the coefficient of thermal expansion of the grinding wheel body increases and the microscopic contact is made between the grinding wheel body and the grinding layer. This is because defects such as cracks are likely to occur, which is not preferable. Therefore, the difference in the coefficient of thermal expansion between the silicon nitride ceramics grinding wheel body and the CBN vitrified bond grinding layer must not exceed 1.2 × 10 -6 / ° C.
この発明の高速研削用超硬砥粒砥石は、砥石本体を、強
度が大きく、熱膨張係数が小さく、しかもある一定範囲
の気孔率を有する窒化けい素セラミックスで構成したこ
とによって、砥石本体とその外周表面に被覆された超硬
砥粒とビトリファイド結合剤とからなる多気孔型研削層
との接合力が高まり、砥石の重量は軽量化され、高速回
転に充分耐えられるようになった。The high-speed cemented carbide grindstone for high-speed grinding of the present invention comprises a grindstone body having a high strength, a small thermal expansion coefficient, and silicon nitride ceramics having a certain range of porosity. The bonding force between the cemented carbide grain coated on the outer peripheral surface and the multi-pore type grinding layer made of a vitrified binder was increased, the weight of the grindstone was reduced, and it became possible to sufficiently withstand high speed rotation.
実験1: 砥石本体は金属シリコン粉末と窒化けい素粉末との重量
比9:1からなる混合物を均質混合した後、噴霧乾燥より
造粒し、ついで金型成形をした。この際の圧力は、試料
の見掛け気孔率に対して、予め求めた焼結体密度および
見掛け気孔率から、成形体の密度を設定して10〜20kgf/
mm2の範囲とした。得られた各試料成形体は、1気圧窒
素ガス中で、昇温速度40±10℃/時間により、最高温度
1400〜1450℃で8時間保持した後冷却し試料とした。Experiment 1: The main body of the grindstone was prepared by homogenizing a mixture of a metal silicon powder and a silicon nitride powder in a weight ratio of 9: 1, followed by spray drying to granulate, followed by die molding. The pressure at this time was set to 10 to 20 kgf / by setting the density of the molded body from the sintered body density and the apparent porosity obtained in advance with respect to the apparent porosity of the sample.
The range was mm 2 . The maximum temperature of each of the obtained sample compacts was raised in nitrogen gas at 1 atmosphere at a heating rate of 40 ± 10 ° C / hour.
After holding at 1400-1450 ° C for 8 hours, it was cooled to obtain a sample.
このようにして得られた4種類の窒化けい素セラミック
スを砥石本体とするため、取付け穴内径16mm、外径115m
m、厚み10mm、外周面半径5mmの凸R面の円盤状に成形し
た。Since the four types of silicon nitride ceramics thus obtained are used as the grinding stone body, the mounting hole has an inner diameter of 16 mm and an outer diameter of 115 m.
It was formed into a disk shape with a convex R surface having m, a thickness of 10 mm, and an outer peripheral surface radius of 5 mm.
つぎに、このような砥石本体の外周面に研削層を形成す
るための流粘体を調製するに必要なCBN砥粒は、米国セ
ネラル・エレクトリック社製:商品名ボラゾンBORAZO
N、粒度#230/270を使用し、ビトリファイド結合剤には
第2表のCに示す組成のものを用いた。そして、CBN砥
粒とビトリファイド結合剤とを重量比で54:16の割合で
配合し、さらに、糊化開始が約73℃で糊化完了が約79℃
である澱粉の水溶援〔粘度約4000cP(mPa・s)〕を混
合物全量に対して3重量%になるよう加えて粘度約1250
0cP(mPa・s)の流粘体を調製した。このような流粘体
に、前記の円盤状の砥石本体を毎分6回転の速度で回転
させながら外周表面を0.4mm浸漬して、外周表面に流粘
体を付着させ、38℃、40秒乾燥させた後厚み2mmの被覆
を形成した。Next, CBN abrasive grains required for preparing a flow viscous body for forming a grinding layer on the outer peripheral surface of such a whetstone body are manufactured by US General Electric Co., Ltd .: trade name Borazon BORAZO
N, particle size # 230/270 was used, and the vitrified binder having the composition shown in C of Table 2 was used. Then, the CBN abrasive grains and the vitrified binder were mixed in a weight ratio of 54:16, and the gelatinization start was about 73 ° C and the gelatinization completion was about 79 ° C.
The water-soluble amount of starch [viscosity about 4000 cP (mPa · s)] is added to the mixture in an amount of 3% by weight, and the viscosity is about 1250.
A flowing mucilage of 0 cP (mPa · s) was prepared. The outer peripheral surface was immersed in 0.4 mm while rotating the disc-shaped grindstone body at a speed of 6 revolutions per minute in such a viscous body, and the viscous body was attached to the outer peripheral surface and dried at 38 ° C for 40 seconds. After that, a coating having a thickness of 2 mm was formed.
このようにして、流粘体の被膜が形成された窒化けい素
セラミックスからなる砥石本体は、被膜を安定化し、研
削層に仕上げるために、まず60℃、10時間の乾燥を行な
った後、平均昇温速度毎時80℃、最高温度1250℃、不活
性雰囲気を含む焼成サイクルの所要時間42時間の条件の
下で焼成した。得られた4種類の研削砥石の諸物性を一
括して第1表に示した。In this way, the wheel body made of silicon nitride ceramics on which the viscous coating is formed is first dried at 60 ° C for 10 hours in order to stabilize the coating and finish it as a grinding layer. Firing was performed under conditions of a temperature rate of 80 ° C./hour, a maximum temperature of 1250 ° C., and a firing cycle time of 42 hours including an inert atmosphere. Table 1 collectively shows the physical properties of the obtained four types of grinding wheels.
なお、諸物性のうち、見掛け気孔率、曲げ強度および熱
膨張係数の測定方法はそれぞれ前記したとおりである
が、砥石破壊回転およびCBN層の付着状態はそれぞれつ
ぎの方法によった。Among the various physical properties, the methods for measuring the apparent porosity, bending strength, and thermal expansion coefficient were as described above, but the grinding wheel breaking rotation and the adhered state of the CBN layer were as follows.
砥石破壊回転 rpm: 焼成を終わり、形状寸法を仕上げた試験砥石をTOYOホイ
ルヘッドを利用した砥石破壊試験装置にかけ、回転を上
げ砥石が破壊するときの回転数を求める。(試験数n=
3) CBN層の付着状態: 窒化けい素セラミックスからなる砥石本体の外周表面
に、流粘体を付着させ、60℃、10時間乾燥させた状態、
すなわち、焼成工程に入る前の状態において、付着状態
を観察し、厚み不同、不均質または付着不良などが認め
られるものを不良(×印)とし、均等の厚み均質、付着
良好のものを良(〇印)とした。Grindstone breaking rotation rpm: Apply the test grindstone with finished shape and dimensions to the grindstone breaking tester using TOYO wheel head, and increase the rotation to find the number of rotations when the grindstone breaks. (Number of tests n =
3) CBN layer adhesion state: A state in which a viscous substance is adhered to the outer peripheral surface of the grinding wheel body made of silicon nitride ceramics and dried at 60 ° C for 10 hours,
In other words, in the state before entering the firing step, the adhered state is observed, and if uneven thickness, inhomogeneity, or poor adhesion is recognized, it is regarded as a defect (X mark), and if uniform thickness is uniform and adhesion is good ( ◯).
第1表から、この発明の見掛け気孔率の範囲15〜25%を
越て30%である試料4および上記範囲未満の13%である
試料1においては窒化けい素セラミックスからなる砥石
本体の表面への研削層の付着状態は層厚さの不同または
付着不良などが認められた。また、室温下の3点曲げ強
度が10kgf/mm2未満の試料4においては3個の試験体
(n=3)のうち2個は他の試料と同じように33250rpm
以上の高速回転に耐えたのに対し、他の1個は31820rpm
で破壊した。すなわち、試料1、2および3(いずもn
=3)はいずれも33250rpm以上の高速回転に耐えている
ので、安全係数を2として最高使用周速度(JIS−R6241
「研削砥石の最高使用周速度」参照)100m/sにおける強
度を保証することが可能である。 From Table 1, in the sample 4 having an apparent porosity of 15% to 25% over the range of 30% and the sample porosity of 13% below the above range, the surface of the grinding wheel body made of silicon nitride ceramics Regarding the adhesion state of the grinding layer, unevenness of the layer thickness or poor adhesion was recognized. Further, in the sample 4 having a three-point bending strength at room temperature of less than 10 kgf / mm 2, two out of three test bodies (n = 3) were 33250 rpm as in the other samples.
It endured the above high-speed rotation, while the other one was 31820 rpm
Destroyed by. That is, samples 1, 2 and 3 (both n
= 3) withstands high-speed rotation of 33250 rpm or higher, so the safety factor is 2 and the maximum peripheral speed (JIS-R6241
See "Maximum peripheral speed of grinding wheel") It is possible to guarantee the strength at 100m / s.
実験2: 第2表に示す5種類の成分モル比(%)からなるビトリ
ファイド結合剤を用いて前記実験1におけるCBN砥粒を
含む研削層の形成方法と全く同じ操作で焼成した後、熱
膨張測定用の試料、縦5mm、横5mm、長さ40mmの角型試片
で採取できるよう研削層についてのみを鋳込み成形し
た。得られた焼成体から試料片を採取し、東京工業社製
の熱膨張率測定装置によって熱膨張係数を測定し、その
結果を第2表に併記した。Experiment 2: Using a vitrified binder composed of 5 kinds of component molar ratios (%) shown in Table 2, firing was performed in exactly the same manner as the method for forming a grinding layer containing CBN abrasive grains in Experiment 1, and then thermal expansion was performed. Only the grinding layer was cast-molded so that a square sample having a length of 5 mm, a width of 5 mm, and a length of 40 mm could be sampled for measurement. A sample piece was taken from the obtained fired body, and the coefficient of thermal expansion was measured by a thermal expansion coefficient measuring device manufactured by Tokyo Kogyo Co., Ltd., and the results are also shown in Table 2.
さらにこのようにして得られた5種類A、B、C、Dお
よびEのビトリファイド結合剤とCBN砥粒とからなる研
削層の研削砥石としての性能を試験した。研削試験の方
法はつぎのとおりである。すなわち、材質がベアリング
鋼(SUJ2、硬さHRC58/60)であり、毎406回転するリ
ング状加工物(外径45mm、内径22mm)の端面に角型砥石
(砥石振動方向の長さ10mm、加工物回転方向の幅4mm)
を加工面に押付けて、砥石に毎1140回の振動と両側2.1m
mの振幅を与えながら、2間プランジカット平面超仕上
げを行なう方法に準拠するものであり、加工油は硫化脂
肪油5部と油95部との混合油を使用し、前加工はいずれ
もWA#320砥石により超仕上げをして、最大高さでほぼ
1.0μmRmaxで一定の条件とした。この超仕上げ条件下の
加工物表面上における砥粒の運動軌跡である正弦波の切
削方向角(最大傾斜角)は10゜であり、また砥石押付け
圧力は15kgf/cm2で一定とした。このようにして得られ
た結果を第3表にまとめた。 Further, the performance of the thus obtained grinding layer composed of the five kinds of vitrified binders A, B, C, D and E and CBN abrasive grains as a grinding wheel was tested. The method of the grinding test is as follows. That is, the material is bearing steel (SUJ2, hardness H R C58 / 60), and a square grindstone (length 10 mm in the vibration direction of the grindstone) is attached to the end face of the ring-shaped workpiece (outer diameter 45 mm, inner diameter 22 mm) that rotates every 406 times. , Width of workpiece rotation direction 4mm)
Pressing on the machined surface, vibrating every 1140 times on the grindstone and 2.1 m on both sides
This is based on the method of performing plunge cut flat superfinishing between 2 while giving an amplitude of m. The processing oil is a mixed oil of 5 parts of sulfurized fatty oil and 95 parts of oil, and the preprocessing is WA The # 320 grindstone makes it super-finished, making it almost the maximum height.
The constant condition was 1.0 μm R max . The cutting direction angle (maximum tilt angle) of the sine wave, which is the movement trajectory of the abrasive grains on the surface of the workpiece under the superfinishing conditions, was 10 °, and the pressing force of the grindstone was constant at 15 kgf / cm 2 . The results thus obtained are summarized in Table 3.
第3表から明らかなように、5種のビトリファイド結合
剤をそれぞれ個別に使用した研削層に対応して作製した
試験体において、試料Aの砥石摩耗量が特に大きく、切
削量も少なく、研削比が非常に小さい。したがって、こ
のような高価なCBN砥粒を使用した超硬砥粒研削砥石で
は、経済性の面できわめて不利であることは明白であ
る。As is clear from Table 3, in the test bodies prepared corresponding to the grinding layers in which five kinds of vitrified binders were individually used, the grindstone wear amount of the sample A was particularly large, the cutting amount was small, and the grinding ratio was Is very small. Therefore, it is obvious that the cemented carbide grinding wheel using such expensive CBN abrasive grains is extremely disadvantageous in terms of economy.
実験3: 前記実験1において高速研削用砥石本体として好ましい
ものと判断された試料2および3の窒化けい素セラミッ
クスと、前記実験2において使用可能と判断された結合
剤、試料B、C、DおよびEとをそれぞれ組み合わせ、
実験1で行なったと全く同一方法でCBN砥粒を含む研削
層を砥石本体の外周面に設けた高速研削砥石を作製(各
種それぞれ3個、n=3)した。砥石の形状寸法その他
に条件はすべて実験1と同じである。そして、砥石本体
の窒化けい素セラミックスと研削層との接合状態を調べ
た。その結果を、正常である(◎印)、接合面にマイク
ロラックが認められる(△印)および明瞭なクラックが
認められる(×印)の3段階に評価し、第4表にまとめ
た。 Experiment 3: Silicon nitride ceramics of Samples 2 and 3 which were determined to be preferable as a grinding wheel body for high speed grinding in Experiment 1 above, and binders which were determined to be usable in Experiment 2 above, Samples B, C, D and Combining E and
A high-speed grinding wheel having a grinding layer containing CBN abrasive grains provided on the outer peripheral surface of the wheel body was prepared in exactly the same manner as in Experiment 1 (3 for each type, n = 3). All the conditions such as the shape and size of the grindstone are the same as in Experiment 1. Then, the bonding state between the silicon nitride ceramics of the wheel body and the grinding layer was examined. The results are evaluated in three levels: normal (marked with ⊚), microrack is recognized on the bonded surface (marked with Δ), and clear cracks are recognized (marked with x), and summarized in Table 4.
第4表から明らかなように熱膨張係数において砥石本体
と結合剤との間の大きい差がある2とE(3個中1個)
および3とD(3個中2個)の組み合わせにマイクロラ
ックが、さらに3とEの組み合わせにおいては明瞭なク
ラックが確認されているので、砥石本体と結合剤との間
には熱膨張係数に大きい差のないことが望ましく、両者
の熱膨張係数の差が1.2×10-6/℃以下である他の組み合
わせには接合面の異常が認められないことがわかった。 As is clear from Table 4, there is a large difference in the coefficient of thermal expansion between the grinding wheel body and the binder 2 and E (1 out of 3)
Since a microrack was confirmed in the combination of 3 and D (2 out of 3), and a clear crack was confirmed in the combination of 3 and E, the coefficient of thermal expansion between the grindstone body and the binder was increased. It is desirable that there is no large difference, and it was found that no abnormality in the joint surface was observed in other combinations in which the difference in thermal expansion coefficient between the two was 1.2 × 10 -6 / ℃ or less.
この発明は、以上説明したように、砥石本体を所定の見
掛け気孔率、曲げ強度、熱膨張係数の窒化けい素セラミ
ックスで形成し、かつ砥石外周表面に超硬砥粒とビトリ
ファイド結合剤とからなる多気孔型研削層を設けたの
で、砥石本体とビトリファイド研削層の接合力が高ま
り、高速回転に充分耐え、かつ軽量、加工精度、能率お
よび寿命において満足できる高速研削用超硬砥粒砥石と
る利点がある。As described above, the present invention forms the main body of the grindstone with silicon nitride ceramics having a predetermined apparent porosity, bending strength, and thermal expansion coefficient, and includes cemented carbide grains and a vitrified binder on the outer peripheral surface of the grindstone. Since a multi-pore type grinding layer is provided, the bonding force between the grinding wheel body and the vitrified grinding layer is increased, it can withstand high-speed rotation sufficiently, and it is lightweight, and has the advantages of a super-hard grinding wheel for high-speed grinding that is satisfactory in machining accuracy, efficiency and life. There is.
また、砥石本体に鋼より遥に低比重の窒化けい素セラミ
ックスを採用したので、高速回転時の遠心力は低減して
破壊され難くなり、安全性が高いという利点もある。In addition, since silicon nitride ceramics having a much lower specific gravity than steel is used for the main body of the grindstone, centrifugal force during high speed rotation is reduced and it is less likely to be destroyed, which is also an advantage of high safety.
さらにまた、この発明の砥石は、その表層が超硬砥粒を
含んだビトリファイド砥石であるので、ツルーイング、
ドレッシングはより一層容易になり、高速研削加工にお
いて発生する多量の研削熱に対しても容易に研削焼けま
たは目詰まりを起こすことはなく、低研削抵抗を実現さ
せることができる。さらにこの発明においては砥粒の多
層構造からなるビトリファイド研削砥石のため、研削層
の被覆厚みを制御することによって寿命の長い砥石とす
ることも可能である。したがって、この発明の意義はき
わめて大きいということができる。Furthermore, since the surface of the grindstone of the present invention is a vitrified grindstone containing cemented carbide grains, the truing,
Dressing becomes easier, and even if a large amount of grinding heat is generated during high-speed grinding, grinding burn or clogging does not easily occur, and low grinding resistance can be realized. Further, in the present invention, since it is a vitrified grinding wheel having a multi-layered structure of abrasive grains, it is possible to obtain a grinding wheel having a long life by controlling the coating thickness of the grinding layer. Therefore, the significance of the present invention can be said to be extremely great.
Claims (1)
下10kgf/mm2以上、熱膨張係数が室温〜1000℃間におい
て(2.5〜3.5)×10-6/℃である窒化けい素セラミック
スよりなる砥石本体の外周表面に、立方晶窒化ほう素ま
たはダイヤモンド等の超硬砥粒とビトリファイド結合剤
とからなる多気孔型研削層を設けたことを特徴とする高
速研削用超硬砥粒砥石。1. Nitrided silicon having an apparent porosity of 15 to 25%, a bending strength of 10 kgf / mm 2 or more at room temperature, and a thermal expansion coefficient of (2.5 to 3.5) × 10 −6 / ° C. between room temperature and 1000 ° C. A super hard abrasive for high speed grinding characterized in that a multi-pore type grinding layer made of a super hard abrasive grain such as cubic boron nitride or diamond and a vitrified binder is provided on the outer peripheral surface of a grindstone body made of ceramics. Grain whetstone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217074A JPH078474B2 (en) | 1989-08-22 | 1989-08-22 | Carbide abrasive wheel for high speed grinding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217074A JPH078474B2 (en) | 1989-08-22 | 1989-08-22 | Carbide abrasive wheel for high speed grinding |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0379277A JPH0379277A (en) | 1991-04-04 |
JPH078474B2 true JPH078474B2 (en) | 1995-02-01 |
Family
ID=16698426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1217074A Expired - Fee Related JPH078474B2 (en) | 1989-08-22 | 1989-08-22 | Carbide abrasive wheel for high speed grinding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH078474B2 (en) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003231061A (en) * | 2002-02-12 | 2003-08-19 | Noritake Co Ltd | Segment type grinding wheel |
JP2011131368A (en) * | 2009-03-26 | 2011-07-07 | Kyocera Corp | Polishing machine |
US9604346B2 (en) | 2013-06-28 | 2017-03-28 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9676982B2 (en) | 2012-12-31 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US9676980B2 (en) | 2012-01-10 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
US9688893B2 (en) | 2012-05-23 | 2017-06-27 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9765249B2 (en) | 2011-12-30 | 2017-09-19 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US9771506B2 (en) | 2012-01-10 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9783718B2 (en) | 2013-09-30 | 2017-10-10 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9803119B2 (en) | 2014-04-14 | 2017-10-31 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9938440B2 (en) | 2015-03-31 | 2018-04-10 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Fixed abrasive articles and methods of forming same |
US10179391B2 (en) | 2013-03-29 | 2019-01-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10286523B2 (en) | 2012-10-15 | 2019-05-14 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10557067B2 (en) | 2014-04-14 | 2020-02-11 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10711171B2 (en) | 2015-06-11 | 2020-07-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US11091678B2 (en) | 2013-12-31 | 2021-08-17 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US11926019B2 (en) | 2019-12-27 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US11959009B2 (en) | 2016-05-10 | 2024-04-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US12129422B2 (en) | 2019-12-27 | 2024-10-29 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04322972A (en) * | 1991-04-24 | 1992-11-12 | Osaka Diamond Ind Co Ltd | Binder material for diamond abrasive grain |
JPH04322971A (en) * | 1991-04-24 | 1992-11-12 | Osaka Diamond Ind Co Ltd | Diamond grinding wheel |
JPH0691535A (en) * | 1992-09-08 | 1994-04-05 | Osaka Diamond Ind Co Ltd | Super abrasive grain grinding wheel |
AT408425B (en) * | 2000-02-29 | 2001-11-26 | Swarovski Tyrolit Schleif | GRINDING WHEEL |
JP3538360B2 (en) * | 2000-03-02 | 2004-06-14 | 株式会社ノリタケカンパニーリミテド | Resinoid grinding wheel for heavy grinding |
JP2007136559A (en) * | 2005-11-15 | 2007-06-07 | Kurenooton Kk | Vitrified grinding stone, and its manufacturing method |
US8795035B2 (en) * | 2008-06-26 | 2014-08-05 | Saint-Gobain Abrasives, Inc. | Chemical mechanical planarization pad conditioner and method of forming |
WO2013003831A2 (en) | 2011-06-30 | 2013-01-03 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
CN104411459B (en) | 2012-06-29 | 2018-06-15 | 圣戈本陶瓷及塑料股份有限公司 | The method of abrasive grain and this particle of formation with specific shape |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5917572U (en) * | 1982-07-23 | 1984-02-02 | ケル株式会社 | connector |
JPS5890466A (en) * | 1982-11-04 | 1983-05-30 | Toshiba Corp | Grinding wheel |
-
1989
- 1989-08-22 JP JP1217074A patent/JPH078474B2/en not_active Expired - Fee Related
Cited By (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003231061A (en) * | 2002-02-12 | 2003-08-19 | Noritake Co Ltd | Segment type grinding wheel |
US6846233B2 (en) | 2002-02-12 | 2005-01-25 | Noritake Co., Limited | Segmental type grinding wheel |
JP2011131368A (en) * | 2009-03-26 | 2011-07-07 | Kyocera Corp | Polishing machine |
US9765249B2 (en) | 2011-12-30 | 2017-09-19 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US10428255B2 (en) | 2011-12-30 | 2019-10-01 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US11649388B2 (en) | 2012-01-10 | 2023-05-16 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9676980B2 (en) | 2012-01-10 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US11859120B2 (en) | 2012-01-10 | 2024-01-02 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having an elongated body comprising a twist along an axis of the body |
US11142673B2 (en) | 2012-01-10 | 2021-10-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9771506B2 (en) | 2012-01-10 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US10364383B2 (en) | 2012-01-10 | 2019-07-30 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9688893B2 (en) | 2012-05-23 | 2017-06-27 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US10000676B2 (en) | 2012-05-23 | 2018-06-19 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US11148254B2 (en) | 2012-10-15 | 2021-10-19 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10286523B2 (en) | 2012-10-15 | 2019-05-14 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9676982B2 (en) | 2012-12-31 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US11590632B2 (en) | 2013-03-29 | 2023-02-28 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US12122017B2 (en) | 2013-03-29 | 2024-10-22 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US10179391B2 (en) | 2013-03-29 | 2019-01-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
US9604346B2 (en) | 2013-06-28 | 2017-03-28 | Saint-Gobain Cermaics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563106B2 (en) | 2013-09-30 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US9783718B2 (en) | 2013-09-30 | 2017-10-10 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
US11091678B2 (en) | 2013-12-31 | 2021-08-17 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
US10557067B2 (en) | 2014-04-14 | 2020-02-11 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US12122953B2 (en) | 2014-04-14 | 2024-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9803119B2 (en) | 2014-04-14 | 2017-10-31 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
US10351745B2 (en) | 2014-12-23 | 2019-07-16 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US11926780B2 (en) | 2014-12-23 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
US10358589B2 (en) | 2015-03-31 | 2019-07-23 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US9938440B2 (en) | 2015-03-31 | 2018-04-10 | Saint-Gobain Abrasives, Inc./Saint-Gobain Abrasifs | Fixed abrasive articles and methods of forming same |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US12084611B2 (en) | 2015-03-31 | 2024-09-10 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10711171B2 (en) | 2015-06-11 | 2020-07-14 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11959009B2 (en) | 2016-05-10 | 2024-04-16 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11932802B2 (en) | 2017-01-31 | 2024-03-19 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles comprising a particular toothed body |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US11549040B2 (en) | 2017-01-31 | 2023-01-10 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles having a tooth portion on a surface |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
US11926019B2 (en) | 2019-12-27 | 2024-03-12 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
US12129422B2 (en) | 2019-12-27 | 2024-10-29 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles and methods of forming same |
Also Published As
Publication number | Publication date |
---|---|
JPH0379277A (en) | 1991-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH078474B2 (en) | Carbide abrasive wheel for high speed grinding | |
CA2259682C (en) | High permeability grinding wheels | |
US6019668A (en) | Method for grinding precision components | |
TW393384B (en) | Abrasive tool | |
KR100359401B1 (en) | Abrasive Tools | |
CA2259340C (en) | Method for making high permeability grinding wheels | |
KR100335522B1 (en) | An abrasive wheel and a method of fabrication an abrasive tool | |
JP3373797B2 (en) | Resin-impregnated reinforced vitrified grinding wheel and method of manufacturing the same | |
EA003437B1 (en) | Method of manufacturing a diamond-silicon carbide-silicon composite and composite produced by this method | |
JP2001205566A (en) | Resin-impregnated vitrified grinding wheel and its manufacturing method | |
WO1997037815A1 (en) | Vitreous grinding tool containing metal coated abrasive | |
EP0204195B1 (en) | Method for making vitrified bonded grinding tools | |
JPH0716882B2 (en) | Superabrasive Vitrified Wheel with Ceramic Sintering Holder | |
JP3553810B2 (en) | Resin-impregnated vitrified grinding wheel containing solid lubricant | |
JPS60186376A (en) | Abrasive molded body | |
JPH0386465A (en) | Super finishing abrasive for super hard abrasive grain | |
JP2602073B2 (en) | Grinding wheel with ultra-thin superabrasive layer and its manufacturing method | |
JPS5834431B2 (en) | Composite whetstone and its manufacturing method | |
JP2002224963A (en) | Super abrasive vitrified bonded whetstone | |
JPS63200968A (en) | Manufacture for super-abrasive grain grindstone | |
JP2001071268A (en) | Super-abrasive grain grindstone | |
JPH0366569A (en) | Manufacture of grindstone grinding super hard abrasive grain | |
JP2002127020A (en) | Method for regenerating grinding wheel | |
JPH04348876A (en) | Diamond grinding wheel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090201 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |