JPH0768168B2 - Decomposition method of Michael adduct of acrylic acid ester - Google Patents
Decomposition method of Michael adduct of acrylic acid esterInfo
- Publication number
- JPH0768168B2 JPH0768168B2 JP3197333A JP19733391A JPH0768168B2 JP H0768168 B2 JPH0768168 B2 JP H0768168B2 JP 3197333 A JP3197333 A JP 3197333A JP 19733391 A JP19733391 A JP 19733391A JP H0768168 B2 JPH0768168 B2 JP H0768168B2
- Authority
- JP
- Japan
- Prior art keywords
- acrylic acid
- ester
- water
- michael adduct
- decomposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はアクリル酸エステルのミ
カエル付加物の分解方法に関するものであり、特に本発
明はアクリル酸エステルの製造工程より副生成されるア
クリル酸エステルのミカエル付加物を分解し、有用化合
物を回収することにより、産業廃棄物の量を削減し、か
つ高収率で工業的に有利にアクリル酸エステルを製造す
る方法に寄与するものであり、アクリル酸エステルを製
造する化学業界で利用されるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for decomposing Michael adducts of acrylic acid esters, and more particularly, the present invention decomposes Michael adducts of acrylic acid esters by-produced in the acrylic ester production process. , Which contributes to a method for producing an acrylate ester industrially with a high yield by reducing the amount of industrial waste by recovering a useful compound. Is used in.
【0002】[0002]
【従来の技術】アクリル酸エステルのミカエル付加物の
分解方法としては、ルイス酸もしくはルイス塩基の存在
下に加熱する分解方法、更には水を共存させたうえでの
分解方法が一般的に採用されている。2. Description of the Related Art As a method for decomposing Michael adducts of acrylic acid esters, a decomposition method of heating in the presence of a Lewis acid or a Lewis base and a decomposition method in the presence of water are generally adopted. ing.
【0003】[0003]
【発明が解決しようとする課題】上記した従来方法には
以下の様な問題が存在している。まず、ルイス酸を用い
る方法は、分解によって生成したアルコールが分子内脱
水反応もしくは分子間脱水反応を起こし、アルケンやエ
ーテルなどの副生成物ができやすいため、工業化する場
合にはアルケンやエーテルを除去するための設備を設け
なければならない。また、ルイス塩基を用いる方法は、
アクリル酸エステルへのアルコールのミカエル付加物の
分解性は優れているが、アクリル酸エステルへのアクリ
ル酸のミカエル付加物が存在する状況下では、極端に分
解が悪くなるという欠点を有する。The above-mentioned conventional method has the following problems. First, the method using Lewis acid is that the alcohol produced by decomposition causes an intramolecular dehydration reaction or an intermolecular dehydration reaction and easily produces by-products such as alkenes and ethers. Must be equipped with facilities to do so. The method using a Lewis base is
Although the degradability of Michael adduct of alcohol to acrylic ester is excellent, it has a drawback that the decomposition is extremely poor in the presence of the Michael adduct of acrylic acid to acrylic ester.
【0004】本発明の目的は、このような従来法の欠点
を解消することにある。すなわち、本発明はアクリル酸
エステルへのアクリル酸のミカエル付加物が存在する場
合でも、その分解に際して副生成物の生成を抑えたり、
副生成物を除去するための設備が不要で、かつ高収率で
工業的に有利なアクリル酸エステルの製造方法を可能に
するアクリル酸エステルのミカエル付加物の分解方法を
提供することにある。An object of the present invention is to eliminate the drawbacks of such conventional methods. That is, the present invention suppresses the formation of by-products during the decomposition thereof even when a Michael adduct of acrylic acid to an acrylic ester is present,
It is an object of the present invention to provide a method for decomposing a Michael adduct of an acrylate ester, which does not require equipment for removing a by-product and enables an industrially advantageous method for producing an acrylate ester with a high yield.
【0005】[0005]
【課題を解決するための手段】本発明者らは、アクリル
酸エステルのミカエル付加物の分解を行う際に、アルケ
ンやエーテルの生成を抑制し、しかもアクリル酸エステ
ルへのアルコールのミカエル付加物ばかりでなく、アク
リル酸エステルへのアクリル酸のミカエル付加物が存在
する系においても、効率よく分解する方法の検討を重ね
た結果、本発明を完成するに至った。Means for Solving the Problems The present inventors suppress the formation of alkenes and ethers when decomposing Michael adducts of acrylic acid esters, and further, not only Michael adducts of alcohols to acrylic acid esters. In addition, the present invention has been completed as a result of repeated studies of a method of efficiently decomposing even in a system in which a Michael adduct of acrylic acid to an acrylic ester is present.
【0006】すなわち、本発明は生成するアクリル酸エ
ステル、アクリル酸およびアルコールを水と共に蒸留す
ることによって系外に留出させながら、ルイス酸を触媒
として分解量に相当するモル数を越える水の存在下に加
熱分解することを特徴とするアクリル酸エステルのミカ
エル付加物の分解方法に関するものとアクリル酸エステ
ルのミカエル付加物をルイス酸を触媒として加熱分解す
るに際して、生成するアクリル酸エステル、アクリル酸
およびアルコールを水と共に蒸留により反応系外に留出
させるとともに留出量以上の水を反応系内へ供給するこ
とを特徴とするアクリル酸エステルのミカエル付加物の
分解方法に関するものである。That is, according to the present invention, while the produced acrylic acid ester, acrylic acid and alcohol are distilled out of the system by distillation with water, the presence of water in excess of the number of moles corresponding to the decomposition amount using Lewis acid as a catalyst. A method for decomposing a Michael adduct of an acrylic acid ester, which is characterized by thermally decomposing below, and an acrylic acid ester, an acrylic acid, and an acrylic acid produced when thermally decomposing a Michael adduct of an acrylic acid ester with a Lewis acid as a catalyst. The present invention relates to a method for decomposing a Michael adduct of an acrylate ester, which comprises distilling alcohol together with water out of the reaction system and supplying water in excess of the distillate amount into the reaction system.
【0007】以下に本発明をさらに詳しく説明する。本
発明の対象物であるアクリル酸エステルのミカエル付加
物は、例えば炭素数が2〜8のアルキルエステルまたは
シクロアルキルエステル等のアクリル酸エステルへのア
クリル酸のミカエル付加物、具体的にはβ−アクリロキ
シプロピオン酸エステル等、およびアルコールのミカエ
ル付加物、具体的にはβ−アルコキシプロピオン酸エス
テル等がある。またこれらはアクリル酸とアルコ−ルと
の反応によりアクリル酸エステルを製造する際に多く副
成されるものであるが、本発明はそれらの副生するミカ
エル付加物自体、さらには上記したアクリル酸エステル
の製造工程において副生するその他の副生成物や原料を
含み廃棄物として処理されていたもの、すなわちアクリ
ル酸エステルのミカエル付加物は勿論、原料のアクリル
酸エステル、アクリル酸エステルの重合体その他の種々
の成分を含む混合物にも適用可能である。The present invention will be described in more detail below. The Michael adduct of acrylic acid ester which is the object of the present invention is, for example, Michael adduct of acrylic acid with acrylic acid ester such as alkyl ester or cycloalkyl ester having 2 to 8 carbon atoms, specifically β- Examples thereof include acryloxypropionic acid ester and the like, and Michael adduct of alcohol, specifically β-alkoxypropionic acid ester. Further, these are mostly by-produced when the acrylic ester is produced by the reaction of acrylic acid and alcohol, but in the present invention, the by-product Michael adduct itself, and further the above-mentioned acrylic acid are used. Those that have been treated as waste containing other by-products and raw materials by-produced in the ester production process, that is, Michael adducts of acrylic acid esters, as well as acrylic acid esters of raw materials, polymers of acrylic acid esters, etc. It is also applicable to a mixture containing various components of.
【0008】本発明において、アクリル酸エステルのミ
カエル付加物は、分解量に相当するモル数を越える水の
存在下に加熱分解される必要がある。In the present invention, the Michael adduct of acrylic acid ester needs to be thermally decomposed in the presence of water in a molar amount exceeding the amount of decomposition.
【0009】本発明において使用される水の量は、アク
リル酸エステルのミカエル付加物の分解量に相当するモ
ル数を越える量であって、分解反応により生成したアク
リル酸エステル、アクリル酸およびアルコールと共に蒸
留によって系外に留出する水量を充足することが出来る
水量である。従って、具体的な水量は分解させるアクリ
ル酸エステルのミカエル付加物の種類によって異なる
が、重量比で言えば、分解させるアクリル酸エステルの
ミカエル付加物に対して、好ましくは0.2〜2倍であ
り、より好ましくは0.3〜1倍である。The amount of water used in the present invention is an amount exceeding the number of moles corresponding to the decomposition amount of the Michael adduct of acrylic acid ester, and together with the acrylic acid ester, acrylic acid and alcohol produced by the decomposition reaction. It is the amount of water that can satisfy the amount of water distilled out of the system by distillation. Therefore, the specific amount of water varies depending on the kind of the Michael adduct of the acrylic acid ester to be decomposed, but in terms of weight ratio, it is preferably 0.2 to 2 times that of the Michael adduct of the acrylic acid ester to be decomposed. Yes, and more preferably 0.3 to 1 times.
【0010】反応系に供給される水は、冷水でも熱水で
も良く、工程から排出される排水の量を減らす目的で、
蒸留により留出した蒸気を凝縮し、二相に分離した凝縮
液の水層側の液を水として再使用することも可能であり
好ましい方法である。水は、分解反応開始時に全量存在
させ或いは反応中に間欠的にという方法で反応系に添加
されても良いが、供給すべき水を連続的に添加するとい
う方法が、反応温度を急激に低下させずに分解反応を安
定に行わせることができ、本発明にとり好ましい方法で
ある。The water supplied to the reaction system may be cold water or hot water, and for the purpose of reducing the amount of waste water discharged from the process,
It is also possible and preferable to condense the vapor distilled by distillation and reuse the liquid on the water layer side of the condensed liquid separated into two phases as water. Water may be added to the reaction system in such a manner that the entire amount of water is present at the start of the decomposition reaction or intermittently during the reaction, but the method of continuously adding water to be supplied lowers the reaction temperature sharply. This is a preferred method for the present invention, because the decomposition reaction can be carried out stably without being carried out.
【0011】本発明で触媒として用いられるルイス酸の
具体例としては、硫酸、塩化鉄およびp-トルエンスルホ
ン酸などの無機酸および有機酸が挙げられる。触媒の好
ましい使用量は、アクリル酸エステルのミカエル付加物
に対して重量比で2〜20%である。Specific examples of the Lewis acid used as the catalyst in the present invention include inorganic acids and organic acids such as sulfuric acid, iron chloride and p-toluenesulfonic acid. The preferable amount of the catalyst used is 2 to 20% by weight based on the Michael adduct of acrylic acid ester.
【0012】本発明における加熱分解は、分解させるア
クリル酸エステルのミカエル付加物の種類や反応圧力に
よって異なるが、通常温度が50〜150℃の範囲で行
われる。好ましい条件としては、工業化する際の設備面
や操作性の面から考えると常圧で110〜130℃の温
度である。The thermal decomposition in the present invention is usually carried out at a temperature in the range of 50 to 150 ° C., though it varies depending on the kind of Michael adduct of acrylic acid ester to be decomposed and the reaction pressure. A preferable condition is a temperature of 110 to 130 ° C. under normal pressure in view of equipment and operability in industrialization.
【0013】本発明の分解方法において、生成するアク
リル酸エステルやアクリル酸の重合を防止するために、
重合禁止剤を併用することが好ましく、併用される重合
禁止剤としては、アクリル酸エステル製造工程で一般的
に広く使われている重合禁止剤を用いることができる。
具体的には、例えば、ハイドロキノン、メトキシハイド
ロキノン、フェノチアジン、ヒドロキシルアミンなどが
挙げられる。また、分子状酸素の存在下で分解反応を行
うと重合禁止剤の効果を高めることが可能である。In the decomposition method of the present invention, in order to prevent polymerization of acrylic acid ester and acrylic acid produced,
A polymerization inhibitor is preferably used in combination, and as the polymerization inhibitor used in combination, a polymerization inhibitor generally widely used in the acrylic ester production process can be used.
Specific examples include hydroquinone, methoxyhydroquinone, phenothiazine, and hydroxylamine. Further, the effect of the polymerization inhibitor can be enhanced by carrying out the decomposition reaction in the presence of molecular oxygen.
【0014】本発明は、回分式でも連続式でも行うこと
が可能である。回分式の方法では、槽型反応器、塔型反
応器のいずれも使用することが可能である。さらに、反
応器に段を有する蒸留塔や反応器と蒸留塔を組み合わせ
た装置を設置することで、アクリル酸エステルのミカエ
ル付加物の留出を抑制する方法をとることは有効な方法
である。連続式の方法では、アクリル酸エステルのミカ
エル付加物の分解速度とアクリル酸エステルのミカエル
付加物の供給速度が釣り合うようにすることが望まし
い。The present invention can be carried out batchwise or continuously. In the batch method, both a tank reactor and a tower reactor can be used. Furthermore, it is an effective method to install a distillation column having stages in the reactor or an apparatus combining the reactor and the distillation column to suppress the distillation of the Michael adduct of acrylic ester. In the continuous method, it is desirable that the decomposition rate of the Michael adduct of acrylic ester and the feed rate of the Michael adduct of acrylic ester are balanced.
【0015】[0015]
【作用】本発明は、ルイス酸の存在下で加熱するという
過酷な条件下で分解を行うために、アルケンやエーテル
の生成が起こる可能性が高いが、 分解してすぐに水との蒸留によって分解物が系外へ
除去されること。 大量の水とルイス酸が存在するためにアルケンやエ
ーテルが生成したとしても、再び水加反応や加水分解反
応が起こりアルコールに戻る。 という2つの作用により、アルケンやエーテルの生成が
極端に少ないという顕著な効果が奏されるものと思われ
る。In the present invention, since the decomposition is carried out under the harsh conditions of heating in the presence of a Lewis acid, it is highly likely that an alkene or an ether will be formed. Decomposition products should be removed from the system. Even if an alkene or an ether is produced due to the presence of a large amount of water and a Lewis acid, a water addition reaction or a hydrolysis reaction occurs again to return to an alcohol. It is thought that the remarkable effect that the generation of alkenes and ethers is extremely small is exerted by the two actions.
【0016】[0016]
【実施例】以下に、本発明をより具体的に説明するため
に、実施例および比較例を挙げて詳細に説明する。な
お、本明細書において用いる分解率および低沸率の定義
は次のとおりである。 有効成分 = アルコール、アクリル酸、アクリル酸エ
ステル 低沸成分 = アルケン、エーテルEXAMPLES In order to describe the present invention more specifically, examples and comparative examples will be described in detail below. The definitions of the decomposition rate and the low boiling rate used in the present specification are as follows. Active ingredient = Alcohol, acrylic acid, acrylic ester Low boiling point ingredient = Alkene, ether
【0017】実施例1 連続滴定装置、温度計、攪拌機、空塔および冷却器を備
えた500mlのフラスコにβ−ブトキシプロピオン酸ブ
チルエステルを183.1g、硫酸を16.3gおよびフェ
ノチアジンを0.2g(1000ppm 対全体量)を加え、
大気圧下で攪拌しながら加熱を開始した。反応温度を1
20±5℃に維持できるように、室温の蒸留水155.0
gを5時間かけて連続的に供給し、分解を行なった。留
出液は、室温で上層と下層に分離し、重量を測定した結
果上層が60.9gと下層が125.7gとなった。それぞ
れをガスクロマトグラフィーで分析し、分解率および低
沸率を計算すると次のようになった。 分解率=30.6%、 低沸率=0.10%Example 1 183.1 g of β-butoxypropionic acid butyl ester, 16.3 g of sulfuric acid and 0.2 g of phenothiazine were placed in a 500 ml flask equipped with a continuous titrator, thermometer, stirrer, empty column and condenser. (1000ppm vs. total amount),
Heating was started with stirring under atmospheric pressure. Reaction temperature is 1
Room temperature distilled water 155.0 so that it can be maintained at 20 ± 5 ℃
g was continuously fed over 5 hours for decomposition. The distillate was separated into an upper layer and a lower layer at room temperature and weighed to find that the upper layer was 60.9 g and the lower layer was 125.7 g. Each was analyzed by gas chromatography, and the decomposition rate and low boiling point were calculated as follows. Decomposition rate = 30.6%, low boiling rate = 0.10%
【0018】実施例2 実施例1と同様の装置にβ−ブトキシプロピオン酸ブチ
ルエステルを142.0g、β−アクリロキシプロピオン
酸ブチルエステルを35.6g、アクリル酸ブチルエステ
ルを3.1g、硫酸を15.2gおよびフェノチアジンを0.
2g(1000ppm 対全体量)を加え、大気圧下で攪拌
しながら加熱を開始した。反応温度を120±5℃に維
持できるように、室温の蒸留水140.0gを6時間かけ
て連続的に供給し、分解を行なった。留出液は、室温で
上層と下層に分離し、重量を測定した結果上層が66.5
gと下層が117.4gとなった。それぞれをガスクロマ
トグラフィーで分析し、分解率および低沸率を計算する
と次のようになった。 分解率=34.7%、 低沸率=0.11%Example 2 In the same apparatus as in Example 1, 142.0 g of β-butoxypropionic acid butyl ester, 35.6 g of β-acryloxypropionic acid butyl ester, 3.1 g of acrylic acid butyl ester and sulfuric acid were added. 15.2 g and phenothiazine at 0.
2 g (1000 ppm vs. total amount) was added and heating was started under atmospheric pressure with stirring. Decomposition was carried out by continuously supplying 140.0 g of room temperature distilled water over 6 hours so that the reaction temperature could be maintained at 120 ± 5 ° C. The distillate was separated into an upper layer and a lower layer at room temperature, and the weight was measured. As a result, the upper layer was 66.5.
g and the lower layer became 117.4 g. Each was analyzed by gas chromatography, and the decomposition rate and low boiling point were calculated as follows. Decomposition rate = 34.7%, low boiling rate = 0.11%
【0019】比較例1 実施例1と同様の装置にβ−ブトキシプロピオン酸ブチ
ルエステルを182.0g、硫酸を15.6gおよびフェノ
チアジンを0.2g(1000ppm 対全体量)を加え、6
0mmHgで攪拌しながら加熱を開始した。反応温度は12
0〜130℃で留出開始後5時間で留出が停止したの
で、実験を終了した。留出液は41.7gとなった。ガス
クロマトグラフィーで分析し、分解率および低沸率を計
算すると次のようになった。 分解率=22.7%, 低沸率=0.18%Comparative Example 1 182.0 g of β-butoxypropionic acid butyl ester, 15.6 g of sulfuric acid and 0.2 g of phenothiazine (1000 ppm relative to the total amount) were added to the same apparatus as in Example 1, and 6
Heating was started with stirring at 0 mmHg. Reaction temperature is 12
The distillation was stopped 5 hours after the distillation was started at 0 to 130 ° C., so the experiment was terminated. The distillate amounted to 41.7 g. Analysis by gas chromatography and calculation of the decomposition rate and low boiling rate gave the following. Decomposition rate = 22.7%, Low boiling rate = 0.18%
【0020】比較例2 実施例1と同様の装置にβ−ブトキシプロピオン酸ブチ
ルエステルを141.6g、β−アクリロキシプロピオン
酸ブチルエステルを35.5g、アクリル酸ブチルエステ
ルを3.1g、水酸化ナトリウムを6.8gおよびフェノチ
アジンを0.2g(1000ppm 対全体量)を加え、50
mmHgで攪拌しながら加熱を開始した。反応温度は120
〜130℃で留出開始後4時間で留出が停止したので、
実験を終了した。留出液は7.9gとなった。ガスクロマ
トグラフィーで分析し、分解率および低沸率を計算する
と次のようになった。 分解率=4.5%, 低沸率=0.00%Comparative Example 2 In the same apparatus as in Example 1, 141.6 g of β-butoxypropionic acid butyl ester, 35.5 g of β-acryloxypropionic acid butyl ester, 3.1 g of acrylic acid butyl ester and hydroxylated. Add 6.8 g of sodium and 0.2 g of phenothiazine (1000 ppm to total amount), 50
Heating was started with stirring at mmHg. Reaction temperature is 120
Since the distillation stopped 4 hours after starting distillation at ~ 130 ° C,
The experiment was completed. The distillate amounted to 7.9 g. Analysis by gas chromatography and calculation of the decomposition rate and low boiling rate gave the following. Decomposition rate = 4.5%, Low boiling rate = 0.00%
【0021】比較例3 実施例1と同様の装置にβ−ブトキシプロピオン酸ブチ
ルエステルを141.6g、β−アクリロキシプロピオン
酸ブチルエステルを36.1g、アクリル酸ブチルエステ
ルを3.1g、硫酸を15.4gおよびフェノチアジンを0.
2g(1000ppm 対全体量)を加え、50mmHgで攪拌
しながら加熱を開始した。反応温度は120〜130℃
で留出開始後3時間で留出が停止したので、実験を終了
した。留出液は42.4gとなった。ガスクロマトグラフ
ィーで分析し、分解率および低沸率を計算すると次のよ
うになった。 分解率=23.0%, 低沸率=0.15%Comparative Example 3 In the same equipment as in Example 1, 141.6 g of β-butoxypropionic acid butyl ester, 36.1 g of β-acryloxypropionic acid butyl ester, 3.1 g of acrylic acid butyl ester and sulfuric acid were added. 15.4 g and phenothiazine at 0.
2 g (1000 ppm relative to the total amount) was added, and heating was started while stirring at 50 mmHg. Reaction temperature is 120-130 ℃
Since the distillation stopped 3 hours after the start of distillation, the experiment was terminated. The distillate amounted to 42.4 g. Analysis by gas chromatography and calculation of the decomposition rate and low boiling rate gave the following. Decomposition rate = 23.0%, Low boiling rate = 0.15%
【0022】[0022]
【発明の効果】アクリル酸エステルの製造工程より副生
成されるアクリル酸エステルのミカエル付加物を分解
し、回収することにより、産業廃棄物の量を削減し、か
つ高収率で工業的に有利なアクリル酸エステルの製造を
可能にするという優れた効果を本発明は奏するのであ
る。EFFECTS OF THE INVENTION By decomposing and recovering the Michael adduct of acrylic acid ester, which is a by-product of the acrylic acid ester production process, the amount of industrial waste is reduced, and it is industrially advantageous in high yield. The present invention has an excellent effect of enabling the production of various acrylic acid esters.
Claims (2)
ル酸およびアルコールを水と共に蒸留することによって
系外に留出させながら、ルイス酸を触媒として分解量に
相当するモル数を越える水の存在下に加熱分解すること
を特徴とするアクリル酸エステルのミカエル付加物の分
解方法。1. The produced acrylic acid ester, acrylic acid and alcohol are distilled out of the system by distillation with water and heated in the presence of water in excess of the number of moles corresponding to the decomposition amount using Lewis acid as a catalyst. A method for decomposing a Michael adduct of an acrylic ester, which comprises decomposing.
をルイス酸を触媒として加熱分解するに際して、生成す
るアクリル酸エステル、アクリル酸およびアルコールを
水と共に蒸留により反応系外に留出させるとともに留出
量以上の水を反応系内へ供給することを特徴とするアク
リル酸エステルのミカエル付加物の分解方法。2. When thermally decomposing a Michael adduct of an acrylate ester with a Lewis acid as a catalyst, the produced acrylate ester, acrylic acid and alcohol are distilled out of the reaction system together with water and the amount of the distillate or more The method for decomposing Michael adducts of acrylic acid ester, characterized in that the water of the above is supplied into the reaction system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3197333A JPH0768168B2 (en) | 1991-07-12 | 1991-07-12 | Decomposition method of Michael adduct of acrylic acid ester |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3197333A JPH0768168B2 (en) | 1991-07-12 | 1991-07-12 | Decomposition method of Michael adduct of acrylic acid ester |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9103902A Division JP2861983B2 (en) | 1997-04-07 | 1997-04-07 | Decomposition method of Michael adduct of acrylic acid ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0525086A JPH0525086A (en) | 1993-02-02 |
JPH0768168B2 true JPH0768168B2 (en) | 1995-07-26 |
Family
ID=16372727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3197333A Expired - Lifetime JPH0768168B2 (en) | 1991-07-12 | 1991-07-12 | Decomposition method of Michael adduct of acrylic acid ester |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0768168B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2311789A1 (en) | 2001-12-04 | 2011-04-20 | Mitsubishi Chemical Corporation | Process for producing (meth)acrylic acids |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19536183A1 (en) * | 1995-09-28 | 1997-04-03 | Basf Ag | Process for the preparation of alkyl esters of (meth) acrylic acid |
DE19536184A1 (en) | 1995-09-28 | 1997-04-03 | Basf Ag | Process for the esterification of (meth) acrylic acid with an alkanol |
DE19536191A1 (en) * | 1995-09-28 | 1997-04-03 | Basf Ag | Process for the esterification of (meth) acrylic acid with an alkanol |
DE19547485A1 (en) | 1995-12-19 | 1996-05-09 | Basf Ag | Methacrylic] acid esterification with alkanol for alkyl methacrylate] |
DE19547459A1 (en) | 1995-12-19 | 1996-07-25 | Basf Ag | Esterifying (meth)acrylic acid with alkanol in presence of esterification catalyst |
CN1252030C (en) | 2001-12-26 | 2006-04-19 | 三菱化学株式会社 | Method of decomposing by-product of (meth)acrylic ester production |
JP5002905B2 (en) * | 2005-04-05 | 2012-08-15 | 東亞合成株式会社 | Method for removing volatile substances in (meth) acrylic acid ester |
JP4706982B2 (en) | 2006-02-24 | 2011-06-22 | セイコーインスツル株式会社 | Pressure regulating valve, fuel cell system using the same, and hydrogen generation facility |
BRPI0915932B1 (en) * | 2008-11-19 | 2020-12-29 | Lg Chem, Ltd | method for recovery of an (meth) acrylic acid ester |
JP6036402B2 (en) * | 2013-02-26 | 2016-11-30 | 三菱化学株式会社 | Method for producing (meth) acrylic acid ester |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955614A (en) * | 1972-08-03 | 1974-05-30 |
-
1991
- 1991-07-12 JP JP3197333A patent/JPH0768168B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4955614A (en) * | 1972-08-03 | 1974-05-30 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2311789A1 (en) | 2001-12-04 | 2011-04-20 | Mitsubishi Chemical Corporation | Process for producing (meth)acrylic acids |
EP2311791A1 (en) | 2001-12-04 | 2011-04-20 | Mitsubishi Chemical Corporation | Process for producing (meth)acrylic acids |
EP2311790A1 (en) | 2001-12-04 | 2011-04-20 | Mitsubishi Chemical Corporation | Process for producing (meth)acrylic acids |
Also Published As
Publication number | Publication date |
---|---|
JPH0525086A (en) | 1993-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5485501B2 (en) | Dehydration method | |
JPH0768168B2 (en) | Decomposition method of Michael adduct of acrylic acid ester | |
CA1062647A (en) | Purification of formic acid | |
JP2861983B2 (en) | Decomposition method of Michael adduct of acrylic acid ester | |
JP2907043B2 (en) | Method for decomposing Michael adduct of acrylic acid or methacrylic acid ester | |
JP3502523B2 (en) | Continuous production of alkyl halides. | |
JPH0511101B2 (en) | ||
JP2943523B2 (en) | Method for producing useful compound from Michael adduct of acrylic acid ester | |
JPH05503948A (en) | Azeotropically assisted transvinylation technology | |
JP3608927B2 (en) | Method for producing saturated aliphatic carboxylic acid amide | |
US2373583A (en) | Conversion of methyl formate to formic acid | |
US5536873A (en) | Preparation of pentenoic acid | |
EP0074162B1 (en) | Process for producing p-cresol | |
US6235924B1 (en) | Continuous process for preparing benzoic acid esters | |
JP4182300B2 (en) | Method for separating cis / trans isomer mixture of 2-fluorocyclopropanecarboxylic acid | |
US4477384A (en) | Preparation of α-substituted acrylic acids | |
JP3466904B2 (en) | Method for producing alkylamino (meth) acrylate | |
JP2756373B2 (en) | Method for producing 1,1,1-trifluoro-3-nitro-2-propene | |
JP3175334B2 (en) | Method for producing N- (α-alkoxyethyl) -carboxylic acid amide | |
JP3454494B2 (en) | Process for producing O-alkyl-N-cyanoimidate | |
JP2024531463A (en) | Improved process for producing high purity butyl acrylate | |
JPH07309805A (en) | Method for producing (meth)acrylic acid ester | |
JP3324820B2 (en) | Method for producing α-methylene aldehyde compound | |
JP2002080423A (en) | Method for synthesizing ethyl trifluoroacetate | |
JPH0579655B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080726 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080726 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090726 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100726 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100726 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110726 Year of fee payment: 16 |
|
EXPY | Cancellation because of completion of term |