JPH07287168A - Zoom lens with high power variation rate - Google Patents

Zoom lens with high power variation rate

Info

Publication number
JPH07287168A
JPH07287168A JP6080503A JP8050394A JPH07287168A JP H07287168 A JPH07287168 A JP H07287168A JP 6080503 A JP6080503 A JP 6080503A JP 8050394 A JP8050394 A JP 8050394A JP H07287168 A JPH07287168 A JP H07287168A
Authority
JP
Japan
Prior art keywords
lens
lens group
zoom
negative
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6080503A
Other languages
Japanese (ja)
Inventor
Atsushi Shibayama
敦史 芝山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6080503A priority Critical patent/JPH07287168A/en
Priority to US08/418,768 priority patent/US5585970A/en
Publication of JPH07287168A publication Critical patent/JPH07287168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain a zoom lens small in size and superior in image forming performance by employing four-group constitution and satisfying specific conditions. CONSTITUTION:The zoom lens consists of a 1st negative lens group G1, a 2nd positive lens group G2, a 3rd negative lens group G3, and a 4th positive lens group 4. Then conditions 2<f4/fW<6, 0.03<T4/fT<0.10, 1<f1-3T/f1, etc., are satisfied, where fW is the focal length of the zoom lens at the wide-angle end, fT the focal length of the zoom lens at the telephoto end, f1 the focal length of the 1st lens group, f4 the focal length of the 4th lens group, f1-3T the composite focal length of the 1st lens group, 2nd lens group, and 3rd lens group at the telephoto end of the zoom lens, and T4 the on-axis thickness from the most object side lens surface to the most image side lens surface of the 4th lens group.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一眼レフレックスカメ
ラ、コンパクトカメラ、ビデオカメラ等に適した高変倍
率のズームレンズ、特に80゜程度以上の広画角を含
み、4倍程度以上のズーム比を有する高変倍率ズームレ
ンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens having a high zoom ratio suitable for single-lens reflex cameras, compact cameras, video cameras, etc. The present invention relates to a high variable power zoom lens having a ratio.

【0002】[0002]

【従来の技術】従来から、70゜程度の広画角を含み、
3倍程度のズーム比を有するズームレンズは数多く提案
されており、その多くは負の第1レンズ群と正の第2レ
ンズ群と負の第3レンズ群と正の第4レンズ群を有する
構成である。最も物体側に負レンズ群を配置することに
より広角化を可能とし、4群構成とすることで収差補正
の自由度を確保し、高変倍化を可能としている。このよ
うなズームレンズの一例として、特開昭62−6390
9号公報がある。
2. Description of the Related Art Conventionally, a wide angle of view of about 70 ° is included,
Many zoom lenses having a zoom ratio of about 3 have been proposed, most of which have a negative first lens group, a positive second lens group, a negative third lens group, and a positive fourth lens group. Is. By arranging the negative lens group closest to the object side, it is possible to widen the angle of view, and by forming the four-group structure, the degree of freedom of aberration correction is secured and high zooming is possible. As an example of such a zoom lens, Japanese Patent Application Laid-Open No. 62-6390
There is No. 9 publication.

【0003】[0003]

【発明が解決しようとする課題】特開昭62−6390
9号公報で提案されているズームレンズの広角端での画
角は70゜程度であり、ズーム比は3倍程度である。し
かし、近年、一眼レフレックスカメラ用の標準ズームレ
ンズとして、より広角化、より高変倍化の要求が高まっ
ており、特開昭62−63909号公報で提案されたズ
ームレンズではこの要求に十分応えることができなかっ
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention JP-A-62-6390
The angle of view at the wide-angle end of the zoom lens proposed in Japanese Patent No. 9 is about 70 °, and the zoom ratio is about 3 times. However, in recent years, as a standard zoom lens for a single-lens reflex camera, there is an increasing demand for a wider angle and a higher zoom ratio, and the zoom lens proposed in Japanese Patent Laid-Open No. 62-63909 is sufficient for this requirement. I couldn't answer.

【0004】そこで、広角化の要求に対しては、特開平
5−173071号公報で、80゜以上の広画角を含む
ズームレンズが提案されているが、ズーム比が2倍以下
と小さく、高変倍化の要求には応えることができなかっ
た。また、高変倍化の要求に対しては、特開平5−31
3065号公報で、4倍を越えるズーム比を有するズー
ムレンズが提案されているが、広角端での画角は70゜
程度であり、広角化の要求に十分応えるものではなかっ
た。
Therefore, in order to meet the demand for a wide angle, Japanese Patent Laid-Open No. 5-173071 proposes a zoom lens including a wide angle of view of 80 ° or more, but the zoom ratio is as small as 2 times or less. We were unable to meet the demand for high zoom ratio. Further, in response to a request for high zoom ratio, Japanese Patent Application Laid-Open No. 5-31
Japanese Patent No. 3065 proposes a zoom lens having a zoom ratio of more than 4 times, but the angle of view at the wide-angle end is about 70 °, which does not sufficiently meet the requirement for widening.

【0005】本発明の目的は、広角端での画角が80°
以上であり、4倍以上のズーム比を有し、さらに小型で
結像性能の優れたズームレンズを提供することにある。
The object of the present invention is to obtain a field angle of 80 ° at the wide-angle end.
As described above, it is to provide a zoom lens having a zoom ratio of 4 times or more, a smaller size, and excellent image forming performance.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明のズームレンズでは、物体側より順に、負の
屈折力を持つ第1レンズ群と、正の屈折力を持つ第2レ
ンズ群と、負の屈折力を持つ第3レンズ群と、正の屈折
力を持つ第4レンズ群を有し、前記第1レンズ群と前記
第2レンズ群との空気間隔を縮小させ、前記第2レンズ
群と前記第3レンズ群との空気間隔を拡大させ、前記第
3レンズ群と前記第4レンズ群との空気間隔を縮小させ
ることにより広角端から望遠端への変倍を行なう構成と
し、さらに、広角端におけるズームレンズの焦点距離を
fW 、望遠端におけるズームレンズの焦点距離をfT 、
前記第1レンズ群の焦点距離をf1 、前記第3レンズ群
の焦点距離をf3 、前記第4レンズ群の焦点距離をf4
とするとき、以下の条件を満足するような構成である。
To achieve the above object, in a zoom lens according to the present invention, a first lens group having a negative refractive power and a second lens group having a positive refractive power are arranged in order from the object side. And a third lens group having a negative refracting power and a fourth lens group having a positive refracting power, and reducing an air gap between the first lens group and the second lens group, By expanding the air distance between the lens group and the third lens group and reducing the air distance between the third lens group and the fourth lens group, it is possible to perform zooming from the wide-angle end to the telephoto end. Further, the focal length of the zoom lens at the wide-angle end is fW, the focal length of the zoom lens at the telephoto end is fT,
The focal length of the first lens group is f1, the focal length of the third lens group is f3, and the focal length of the fourth lens group is f4.
Then, the configuration satisfies the following conditions.

【0007】 −0.45 < f1 /fT < −0.20 −3.0 < f3 /fW < −1.2 2.0 < f4 /fW < 6.0-0.45 <f1 / fT <-0.20-3.0 <f3 / fw <-1.22.0 <f4 / fw <6.0

【0008】[0008]

【作用】本発明の如き負の第1レンズ群と正の第2レン
ズ群と負の第3レンズ群と正の第4レンズ群とを有する
ズームレンズでは、広角端において正の第2レンズ群と
負の第3レンズ群の間隔を狭くし、負の第3レンズ群と
正の第4レンズ群の間隔を広くし、第2レンズ群から第
4レンズ群までの合成主点を相対的に像面寄りに位置せ
しめ、反対に望遠端においては、正の第2レンズ群と負
の第3レンズ群の間隔を広くし、負の第3レンズ群と正
の第4レンズ群の間隔を狭くし、第2レンズ群から第4
レンズ群までの合成主点を相対的に物体寄りに位置せし
めることにより、負の第1レンズ群の主点と、第2レン
ズ群から第4レンズ群までの合成主点との距離の変化を
大きくすることが可能となり、高変倍化を図ることがで
きる。さらに、このように第2レンズ群と第3レンズ
群、および第3レンズ群と第4レンズ群の間隔を変化さ
せることにより、広角端から望遠端にわたって像面湾曲
を良好に補正することができ、高変倍化を図った場合で
も良好な結像性能を得ることができる。
In the zoom lens having the negative first lens group, the positive second lens group, the negative third lens group and the positive fourth lens group as in the present invention, the positive second lens group at the wide angle end. And the negative third lens group are narrowed, the distance between the negative third lens group and the positive fourth lens group is widened, and the composite principal points from the second lens group to the fourth lens group are relatively At the telephoto end, on the contrary, the distance between the positive second lens group and the negative third lens group is widened, and the distance between the negative third lens group and the positive fourth lens group is narrowed at the telephoto end. From the second lens group to the fourth
By locating the composite principal point up to the lens group relatively closer to the object, the change in the distance between the negative principal point of the first lens group and the composite principal point from the second lens group to the fourth lens group It is possible to increase the size, and it is possible to achieve a high zoom ratio. Further, by changing the distances between the second lens group and the third lens group and between the third lens group and the fourth lens group in this way, it is possible to satisfactorily correct the field curvature from the wide-angle end to the telephoto end. Good image forming performance can be obtained even when a high zoom ratio is achieved.

【0009】そして本発明では、ズームレンズの高変倍
化と広角化を同時に達成するために、以下の条件(1)
〜(3)を見出した。 (1) −0.45 < f1 /fT < −0.
20 (2) −3.0 < f3 /fW < −1.
2 (3) 2.0 < f4 /fW < 6.0 但し、fW :ズームレンズの広角端の焦点距離、fT
:ズームレンズの望遠端の焦点距離、f1 :前記第
1レンズ群の焦点距離、f3 :前記第3レンズ群の焦
点距離、f4 :前記第4レンズ群の焦点距離である。
In the present invention, in order to achieve high zooming and widening of the zoom lens at the same time, the following condition (1) is satisfied.
~ (3) was found. (1) -0.45 <f1 / fT <-0.
20 (2) -3.0 <f3 / fw <-1.
2 (3) 2.0 <f4 / fw <6.0 where fW is the focal length at the wide-angle end of the zoom lens, fT
Is the focal length of the zoom lens at the telephoto end, f1 is the focal length of the first lens group, f3 is the focal length of the third lens group, and f4 is the focal length of the fourth lens group.

【0010】条件式(1)は第1レンズ群の最適な焦点
距離の範囲を規定している。条件式(1)の下限を越え
ると、第1レンズ群の負の屈折力が小さくなり、高変倍
比を得ることが困難となる。反対に、条件式(1)の上
限を越えると、第1レンズ群の負の屈折力が大きくな
り、第1レンズ群で発生する広角端での負の歪曲収差が
過大となり、特に広角化を図る際に補正が困難となる。
Conditional expression (1) defines the range of the optimum focal length of the first lens group. When the lower limit of conditional expression (1) is exceeded, the negative refractive power of the first lens group becomes small, and it becomes difficult to obtain a high zoom ratio. On the other hand, if the upper limit of conditional expression (1) is exceeded, the negative refracting power of the first lens group will increase, and the negative distortion at the wide-angle end that occurs in the first lens group will become excessive, and in particular widening of the angle of view will occur. It becomes difficult to correct when trying.

【0011】条件式(2)は第3レンズ群の最適な焦点
距離の範囲を規定している。条件式(2)の下限を越え
ると、第3レンズ群の負の屈折力が小さくなり、ズーミ
ングの際の第2レンズ群から第4レンズ群までの合成主
点位置の変化が小さくなり高変倍化を図るのが困難とな
る。反対に、条件式(2)の上限を越えると、第3レン
ズ群の負の屈折力が大きくなり、ズームレンズの全長
(最も物体側のレンズ面から像面までの距離)が大きく
なり、小型化に反する。
Conditional expression (2) defines an optimum range of the focal length of the third lens group. When the lower limit of conditional expression (2) is exceeded, the negative refractive power of the third lens group becomes small, and the change of the position of the combined principal point from the second lens group to the fourth lens group during zooming becomes small, resulting in a high variation. It is difficult to double. On the other hand, if the upper limit of conditional expression (2) is exceeded, the negative refractive power of the third lens group will increase, and the total length of the zoom lens (the distance from the lens surface closest to the object side to the image surface) will increase, resulting in a small size. Against.

【0012】条件式(3)は第4レンズ群の最適な焦点
距離の範囲を規定している。条件式(3)の上限を越え
ると、第4レンズ群の正の屈折力が小さくなり、広角端
におけるバックフォーカスが小さくなる。この結果、1
眼レフレックスカメラ用のズームレンズにおいてはミラ
ーと干渉し、また、バックフォーカスの制約の少ないコ
ンパクトカメラ等においては、第4レンズ群のレンズ径
が大きくなり小型化に反するという問題が起こる。反対
に、条件式(3)の下限を越えると、第4レンズ群の正
の屈折力が過大となり、収差補正のために第4レンズ群
の構成を複雑化する必要が生ずる。このため、ズームレ
ンズの全長が大きくなり、小型化に反する。
Conditional expression (3) defines the range of the optimum focal length of the fourth lens group. If the upper limit of conditional expression (3) is exceeded, the positive refractive power of the fourth lens group becomes small, and the back focus at the wide-angle end becomes small. As a result, 1
In a zoom lens for an eye reflex camera, it interferes with a mirror, and in a compact camera or the like having less restrictions on back focus, the lens diameter of the fourth lens group becomes large, which is a problem against miniaturization. On the contrary, when the lower limit of conditional expression (3) is exceeded, the positive refractive power of the fourth lens group becomes excessive, and it becomes necessary to complicate the configuration of the fourth lens group for aberration correction. Therefore, the total length of the zoom lens becomes large, which is against the downsizing.

【0013】また、さらに好ましい条件として、以下の
条件式(4)〜(8)を見出した。 (4) 0.7 < f3/f1 < 2.0 (5) 2.8 < B2T/B2W < 5.0 (6) 0.5 < f1-3W/fW < 5 (7) 1 < f1-3T/f1 (8) 0.03 < T4 /fT < 0.10 但し、B2W :広角端における前記第2レンズ群の結
像倍率、B2T :望遠端における前記第2レンズ群の
結像倍率、f1ー3W :広角端における前記第1レンズ群
と前記第2レンズ群と前記第3レンズ群の合成焦点距
離、f1ー3T :望遠端における前記第1レンズ群と前記
第2レンズ群と前記第3レンズ群の合成焦点距離、T4
:第4レンズ群の最も物体側のレンズ面から最も像
側のレンズ面までの軸上厚である。
As more preferable conditions, the following conditional expressions (4) to (8) have been found. (4) 0.7 <f3 / f1 <2.0 (5) 2.8 <B2T / B2W <5.0 (6) 0.5 <f1-3W / fW <5 (7) 1 <f1-3T / F1 (8) 0.03 <T4 / fT <0.10, where B2W is the imaging magnification of the second lens group at the wide-angle end, B2T is the imaging magnification of the second lens group at the telephoto end, f1− 3W: Composite focal length of the first lens group, the second lens group, and the third lens group at the wide-angle end, f1-3T: The first lens group, the second lens group, and the third lens at the telephoto end Group focal length, T4
: It is the axial thickness from the lens surface closest to the object to the lens surface closest to the image in the fourth lens group.

【0014】条件式(4)は第3レンズ群と第1レンズ
群の焦点距離の比の適切な範囲を規定している。条件式
(4)の上限を越えると、第1レンズ群の屈折力が相対
的に大きくなり、広角端での歪曲収差をはじめとする諸
収差の補正が困難となる。反対に、条件式(4)の下限
を越えると、第1レンズ群の屈折力が相対的に小さくな
り、高変倍化が困難となる。
Conditional expression (4) defines an appropriate range of the ratio of the focal lengths of the third lens group and the first lens group. When the upper limit of conditional expression (4) is exceeded, the refractive power of the first lens group becomes relatively large, and it becomes difficult to correct various aberrations such as distortion at the wide-angle end. On the contrary, when the value goes below the lower limit of the conditional expression (4), the refractive power of the first lens group becomes relatively small, which makes it difficult to achieve high zoom ratio.

【0015】条件式(5)は望遠端と広角端での第2レ
ンズ群の結像倍率の比の適切な範囲を規定している。条
件式(5)の上限を越えると、第2レンズ群の結像倍率
の変化が大きくなり、変倍に伴う諸収差の変化、特に球
面収差、コマ収差の変化が大きくなり補正が困難とな
る。反対に、条件式(5)の下限を越えると、第2レン
ズ群の結像倍率の変化が小さくなり高変倍化が困難とな
る。
Conditional expression (5) defines an appropriate range of the ratio of the imaging magnification of the second lens group at the telephoto end and the wide-angle end. If the upper limit of conditional expression (5) is exceeded, the change in the imaging magnification of the second lens group will become large, and the changes in various aberrations due to zooming, especially the changes in spherical aberration and coma will become large, making correction difficult. . On the other hand, when the value goes below the lower limit of the conditional expression (5), the change in the image forming magnification of the second lens group becomes small and it becomes difficult to achieve a high zoom ratio.

【0016】ところで、本発明においては、第3レンズ
群と第4レンズ群の間を通る軸上光束は、広角端では弱
い収斂、望遠端では弱い発散となっており、ズームレン
ズの全長の小型化と、広角端におけるバックフォーカス
の確保を両立させるのに好ましい構成となっている。条
件式(6)と条件式(7)は、このような構成とする場
合の望ましい条件である。
By the way, in the present invention, the axial light flux passing between the third lens group and the fourth lens group has a weak convergence at the wide-angle end and a weak divergence at the telephoto end, so that the overall length of the zoom lens is small. This is a preferable configuration for satisfying both the improvement of the image quality and the securing of the back focus at the wide-angle end. Conditional expressions (6) and (7) are desirable conditions for such a configuration.

【0017】条件式(6)は広角端での第1レンズ群か
ら第3レンズ群までの合成焦点距離の適切な範囲を規定
している。条件式(6)の下限を越えると、広角端にお
いて第3レンズ群と第4レンズ群の間を通る軸上光束が
強い収斂光となり、バックフォーカスの確保が困難とな
る。反対に、条件式(6)の上限を越えると、広角端に
おいて第3レンズ群と第4レンズ群の間を通る軸上光束
が平行光束に近くなり、ズームレンズの全長が大きくな
り、小型化に反する。
Conditional expression (6) defines an appropriate range of the combined focal length from the first lens group to the third lens group at the wide-angle end. When the lower limit of conditional expression (6) is exceeded, the axial light flux passing between the third lens group and the fourth lens group becomes a strong convergent light at the wide-angle end, and it becomes difficult to secure the back focus. On the other hand, if the upper limit of conditional expression (6) is exceeded, the axial light flux passing between the third lens group and the fourth lens group at the wide-angle end will be close to a parallel light flux, and the overall length of the zoom lens will increase, resulting in size reduction. Against.

【0018】条件式(7)は望遠端での第1レンズ群か
ら第3レンズ群までの合成焦点距離の適切な範囲を規定
している。条件式(7)の下限を越えると、望遠端にお
いて第3レンズ群と第4レンズ群の間を通る軸上光束が
強い発散光となり、ズームレンズの全長が大きくなり、
小型化に反する。条件式(8)は第4レンズ群の厚さの
適切な範囲を規定している。条件式(8)の下限を越え
ると、第4レンズ群を構成するレンズの中心厚、およ
び、レンズ外周部の厚さ(コバ厚)を十分確保できなく
なる。反対に条件式(8)の上限を越えると、第4レン
ズ群の厚さが大きくなり、ズームレンズの大型化やバッ
クフォーカスの不足をまねき好ましくない。 さらに、
条件式(8)のもとで、球面収差、および色収差を良好
に補正するためには、第4レンズ群を、1枚の負レンズ
と1枚の正レンズから構成するのが望ましく、その際、
組立調整を容易にするには、前記の負レンズと正レンズ
とを接合するのが望ましい。さらに、以下の条件式
(9)、(10)を満足するのが望ましい。
Conditional expression (7) defines an appropriate range of the combined focal length from the first lens group to the third lens group at the telephoto end. If the lower limit of conditional expression (7) is exceeded, the axial light flux passing between the third lens group and the fourth lens group at the telephoto end becomes a strong divergent light, and the total length of the zoom lens increases.
It is against miniaturization. Conditional expression (8) defines an appropriate range of the thickness of the fourth lens group. If the lower limit of conditional expression (8) is exceeded, it becomes impossible to sufficiently secure the center thickness of the lens forming the fourth lens group and the thickness (edge thickness) of the lens outer peripheral portion. On the other hand, if the upper limit of conditional expression (8) is exceeded, the thickness of the fourth lens unit becomes large, which is not preferable because the zoom lens becomes large and back focus becomes insufficient. further,
Under the conditional expression (8), in order to satisfactorily correct spherical aberration and chromatic aberration, it is desirable that the fourth lens group be composed of one negative lens and one positive lens. ,
In order to facilitate assembly adjustment, it is desirable to cement the negative lens and the positive lens described above. Furthermore, it is desirable to satisfy the following conditional expressions (9) and (10).

【0019】(9) nN −nP > 0 (10) νP−νN > 10 但し、nN :前記第4レンズ群を構成する負レンズの
屈折率、nP :前記第4レンズ群を構成する正レンズ
の屈折率、νN :前記第4レンズ群を構成する負レン
ズのアッベ数、νP :前記第4レンズ群を構成する正
レンズのアッベ数である。
(9) nN-nP> 0 (10) νP-νN> 10 where nN is the refractive index of the negative lens forming the fourth lens group, and nP is the positive lens forming the fourth lens group. Refractive index, ν N: Abbe number of the negative lens forming the fourth lens group, and ν P: Abbe number of the positive lens forming the fourth lens group.

【0020】条件式(9)は前記第4レンズ群を構成す
る負レンズと正レンズの屈折率の差の適切な範囲を規定
している。条件式(9)の下限を越えると、前記第4レ
ンズ群内での球面収差の発生が大きくなり好ましくな
い。条件式(10)は前記第4レンズ群を構成する負レ
ンズと正レンズのアッベ数の差の適切な範囲を規定して
いる。条件式(10)の下限を越えると、前記第4レン
ズ群内での色収差の発生が大きくなり好ましくない。
Conditional expression (9) defines an appropriate range of the difference in refractive index between the negative lens and the positive lens which form the fourth lens group. If the lower limit of conditional expression (9) is exceeded, spherical aberration will occur in the fourth lens group, which is not preferable. Conditional expression (10) defines an appropriate range of the difference between the Abbe numbers of the negative lens and the positive lens which form the fourth lens group. When the value goes below the lower limit of the conditional expression (10), chromatic aberration is largely generated in the fourth lens unit, which is not preferable.

【0021】さらに、前記第4レンズ群で発生しがちな
球面収差、歪曲収差をバランスよく補正するには、前記
第4レンズ群中に非球面を設けることが望ましい。その
際、非球面を空気との境界面に設け、周辺部にいくほど
正の屈折力が小さくなるような非球面形状とするのが望
ましい。ここで、光軸から垂直方向の高さhにおける、
非球面の頂点の接平面からの光軸方向に沿った距離をX
(h)とし、近軸曲率半径をrとするとき、非球面量A
(h)を以下の式で定義する。
Further, in order to correct spherical aberration and distortion that tend to occur in the fourth lens group in a well-balanced manner, it is desirable to provide an aspherical surface in the fourth lens group. At that time, it is desirable that an aspherical surface is provided on the boundary surface with the air, and the aspherical shape is such that the positive refractive power becomes smaller toward the peripheral portion. Here, at a height h in the vertical direction from the optical axis,
X is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface.
(H) and the paraxial radius of curvature is r, the aspheric amount A
(H) is defined by the following formula.

【0022】A(h)=X(h)−(h2 /r)/〔1
+(1−h2 /r2 1/2 〕 このとき、最大像高をYとし、非球面の物体側の屈折率
をnF 、非球面の像側の屈折率をnR とするとき、第4
レンズ群中の非球面形状が以下の条件式(11)、(1
2)を満足することが望ましい。 (11) (nF −nR )・A(Y/3)>0 (12) A(Y/3)/A(Y/4)>2 条件式(11)、条件式(12)の範囲を外れると、球
面収差と歪曲収差のバランス良い補正が困難となる。
A (h) = X (h)-(h 2 / r) / [1
+ (1-h 2 / r 2 ) 1/2 ] At this time, when the maximum image height is Y, the refractive index on the object side of the aspherical surface is nF, and the refractive index on the image side of the aspherical surface is nR, Four
The aspherical shape in the lens group is expressed by the following conditional expressions (11) and (1
It is desirable to satisfy 2). (11) (nF-nR) A (Y / 3)> 0 (12) A (Y / 3) / A (Y / 4)> 2 Conditional expressions (11) and (12) are out of the range. Therefore, it becomes difficult to correct spherical aberration and distortion in a good balance.

【0023】さらに、ズームレンズの小型化と良好な収
差補正を両立させるためには、前記第1レンズ群中に非
球面を設けることが望ましい。その際、周辺部にいくほ
ど負の屈折力が小さくなるような非球面形状とするのが
望ましい。
Further, in order to achieve both compactness of the zoom lens and good aberration correction, it is desirable to provide an aspherical surface in the first lens group. At that time, it is desirable to have an aspherical shape such that the negative refractive power becomes smaller toward the periphery.

【0024】[0024]

【実施例】図1〜図8はそれぞれ本発明の実施例1〜実
施例8のレンズ構成図である。以下において、本発明に
よる各実施例について説明する。各実施例の諸元表中の
fは焦点距離、FはFナンバー、 2ωは画角を表す。そ
して、左端の数字は物体側からの順序を表し、rはレン
ズ面の曲率半径、dはレンズ面間隔、n及びνはd線
(波長λ=587.6nm)に対する屈折率及びアッベ数の値で
ある。また、左端の数字に* 印を付した面は非球面であ
り、非球面形状は、光軸から垂直方向の高さhにおけ
る、非球面の頂点の接平面からの光軸方向に沿った距離
をX(h)とし、近軸曲率半径をr、円錐定数をk、n
次の非球面係数をCn とするとき、 X(h)=(h2 /r)/〔1+(1−kh2 /r2
1/2 〕+C4 h4 +C6 h6 +C8 h8 +C10h10 で表現する。なお、各実施例とも最大像高はY=21.
6である。 〔実施例1〕実施例1は図1に示される如く、負の第1
レンズ群G1 は、物体側から順に、物体側に凸面を向け
た負メニスカスレンズと、物体側面が非球面で像側に凹
面を向けた負レンズと、物体側に凸面を向けた正メニス
カスレンズからなり、正の第2レンズ群G2は、物体側
から順に、物体側に凸面を向けた正レンズと、両凸正レ
ンズと、両凸正レンズと両凹負レンズの接合レンズから
なり、負の第3レンズ群G3 は、物体側から順に、物体
側に凹面を向けた正メニスカスレンズと両凹負レンズの
接合レンズと、両凹負レンズからなり、正の第4レンズ
群G4 は、物体側から順に、物体側面が非球面の負レン
ズと両凸正レンズの接合レンズからなる。また、絞りS
は第2レンズ群G2 と第3レンズ群G3 の間に位置し、
ズーミングに際しては第3レンズ群G3 と一体で移動す
る。
Embodiments FIGS. 1 to 8 are lens configuration diagrams of Embodiments 1 to 8 of the present invention, respectively. Each embodiment according to the present invention will be described below. In the specifications of each embodiment, f is the focal length, F is the F number, and 2ω is the angle of view. The leftmost number represents the order from the object side, r is the radius of curvature of the lens surface, d is the lens surface spacing, and n and ν are the values of the refractive index and Abbe number for the d line (wavelength λ = 587.6 nm). is there. The surface marked with * at the left end is an aspherical surface, and the aspherical shape is the distance along the optical axis from the tangent plane of the vertex of the aspherical surface at the height h in the vertical direction from the optical axis. Is X (h), the paraxial radius of curvature is r, the conic constant is k, n
When the next non-spherical coefficient Cn, X (h) = ( h 2 / r) / [1+ (1-kh 2 / r 2)
1/2] + C4 is expressed by h 4 + C6 h 6 + C8 h 8 + C10h 10. In each embodiment, the maximum image height is Y = 21.
It is 6. [Embodiment 1] In Embodiment 1, as shown in FIG.
The lens group G1 includes, in order from the object side, a negative meniscus lens having a convex surface directed to the object side, a negative lens having an aspherical object side surface and a concave surface directed to the image side, and a positive meniscus lens having a convex surface directed to the object side. The positive second lens group G2 is composed of, in order from the object side, a positive lens having a convex surface directed toward the object side, a biconvex positive lens, and a cemented lens of a biconvex positive lens and a biconcave negative lens. The third lens group G3 is composed of, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a biconcave negative lens, and the positive fourth lens group G4 is composed of an object side. In order from, the object side surface consists of a cemented lens of a negative lens having an aspherical surface and a biconvex positive lens. Also, the aperture S
Is located between the second lens group G2 and the third lens group G3,
During zooming, it moves together with the third lens group G3.

【0025】以下に、実施例1の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of the first embodiment are listed.

【0026】[0026]

【表1】 実施例1の諸元値 f=24.73 〜101.91 F=3.61〜5.74 2ω=85.0〜2
3.9゜ 第3面非球面係数 k=1.000 C4 =0.2523×10-5 C6 =0.3865×10-8 C8 =-0.7973 ×10-11 C10=0.1805×10-13 第20面非球面係数 k=1.000 C4 =-0.9256 ×10-5 C6 =-0.5305 ×
10-8 C8=-0.1131×10-9 C10=0.3622×10-12 変倍における間隔の変化f 24.7270 49.0112 1
01.9078 D6 56.6702 18.6000 2.0000 D13 2.5000 7.4960 8.6983 D19 16.2000 7.9000 2.0000 Bf 38.0015 57.3333 107.5903 条件対応数値 (1) f1 /fT = −0.383 (2) f3 /fW = −1.878 (3) f4/fW = 3.088 (4) f3 /f1 = 1.189 (5) B2T/B2W = 3.398 (6) f1-3W/fW = 2.028 (7) f1-3T/f1 = 6.240 (8) T4 /fT = 0.051 (9) nN −nP = 0.23794 (10) νP −νN = 34.02 (11) (nF −nR )・A(Y/3) = 0.
0226 (12) A(Y/3)/A(Y/4) = 3.2
54 〔実施例2〕実施例2は図2に示される如く、負の第1
レンズ群G1 は、物体側から順に、物体側に凸面を向け
た負メニスカスレンズと、物体側面が非球面の両凹負レ
ンズと、物体側に凸面を向けた正メニスカスレンズから
なり、正の第2レンズ群G2は、物体側から順に、物体
側面が非球面の両凸正レンズと、両凸正レンズと物体側
に凹面を向けた負メニスカスレンズの接合レンズからな
り、負の第3レンズ群G3 は、物体側から順に、物体側
に凹面を向けた正メニスカスレンズと両凹負レンズの接
合レンズと、両凹負レンズからなり、正の第4レンズ群
G4 は、物体側から順に、物体側面が非球面の負レンズ
と両凸正レンズの接合レンズからなる。また、絞りSは
第2レンズ群G2 と第3レンズ群G3 の間に位置し、ズ
ーミングに際しては第3レンズ群G3 と一体で移動す
る。
[Table 1] Specifications of Example 1 f = 24.73 to 101.91 F = 3.61 to 5.74 2ω = 85.0 to 2
3.9 ° Third surface aspherical coefficient k = 1.000 C4 = 0.2523 × 10 -5 C6 = 0.3865 × 10 -8 C8 = -0.7973 × 10 -11 C10 = 0.1805 × 10 -13 20th surface aspherical coefficient k = 1.000 C4 =- 0.9256 x 10 -5 C6 = -0.5305 x
10 -8 C8 = -0.1131 × 10 -9 C10 = 0.3622 × 10 -12 Change in spacing during zooming f 24.7270 49.0112 1
01.9078 D6 56.6702 18.6000 2.0000 D13 2.5000 7.4960 8.6983 D19 16.2000 7.9000 2.0000 Bf 38.0015 57.3333 107.5903 Condition corresponding numerical value (1) f1 / fT = -0.383 (2) f3 / fw = -1.878 (3) f4 / fw = 3 0.088 (4) f3 / f1 = 1.189 (5) B2T / B2W = 3.398 (6) f1-3W / fw = 2.028 (7) f1-3T / f1 = 6.240 (8) T4 /FT=0.051 (9) nN-nP = 0.23794 (10) vP-vN = 34.02 (11) (nF-nR) * A (Y / 3) = 0.
0226 (12) A (Y / 3) / A (Y / 4) = 3.2
54 [Embodiment 2] In Embodiment 2, as shown in FIG.
The lens group G1 comprises, in order from the object side, a negative meniscus lens having a convex surface directed toward the object side, a biconcave negative lens having an aspherical object side surface, and a positive meniscus lens having a convex surface directed toward the object side. The second lens group G2 is composed of, in order from the object side, a biconvex positive lens having an aspherical object side surface, and a cemented lens composed of a biconvex positive lens and a negative meniscus lens having a concave surface facing the object side. G3 comprises, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a biconcave negative lens. The positive fourth lens group G4 comprises an object in order from the object side. It consists of a cemented lens composed of a negative lens whose side surface is aspheric and a positive biconvex lens. The diaphragm S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 during zooming.

【0027】以下に、実施例2の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of the second embodiment are listed.

【0028】[0028]

【表2】 実施例2の諸元値 f=24.70〜101.90 F=3.59〜5.76 2ω=85.1〜23.
9゜ 第3面非球面係数 k=1.000 C4 =0.2119×10-5 C6 =0.3738×10-8 C8 =-0.8468 ×10-11 C10=0.1897×10-13 第7面非球面係数 k=1.000 C4 =-0.3464 ×10-5 C6=-0.2286 ×10
-8 C8 =0.6150×10-11 C10=-0.3735 ×10-14 第18面非球面係数 k=1.000 C4 =-0.7748 ×10-5 C6 =-0.1290 ×
10-8 C8 =-0.1497 ×10-9 C10=0.4915 ×10-12 変倍における間隔の変化 f 24.7000 49.0001 101.9008 D6 58.6530 19.0236 2.0000 D11 2.5000 7.1476 7.8945 D17 17.0970 8.6575 2.0000 Bf 38.0934 57.4602 108.0300 条件対応数値 (1) f1 /fT = −0.391 (2) f3 /fW = −1.781 (3) f4 /fW = 3.002 (4) f3 /f1 = 1.104 (5) B2T/B2W = 3.392 (6) f1-3W/fW = 2.052 (7) f1-3T/f1 = 5.608 (8) T4 /fT = 0.054 (9) nN −nP = 0.09390 (10) νP −νN = 23.78 (11) (nF −nR )・A(Y/3) = 0.
0189 (12) A(Y/3)/A(Y/4) = 3.2
59 〔実施例3〕実施例3は図3に示される如く、負の第1
レンズ群G1 は、物体側から順に、物体側に凸面を向け
た負メニスカスレンズと、物体側面が非球面で像側に凹
面を向けた負メニスカスレンズと、物体側に凸面を向け
た正メニスカスレンズからなり、正の第2レンズ群G2
は、物体側から順に、物体側に凸面を向けた負メニスカ
スレンズと両凸正レンズの接合レンズと、物体側に凸面
を向けた正レンズと、物体側に凸面を向けた正メニスカ
スレンズからなり、負の第3レンズ群G3 は、物体側か
ら順に、物体側に凹面を向けた正メニスカスレンズと両
凹負レンズの接合レンズと、両凹負レンズからなり、正
の第4レンズ群G4 は、物体側から順に、物体側面が非
球面の負レンズと両凸正レンズの接合レンズからなる。
また、絞りSは第2レンズ群G2と第3レンズ群G3の間
に位置し、ズーミングに際しては第3レンズ群G3 と一
体で移動する。
[Table 2] Specifications of Example 2 f = 24.70 to 10.90 F = 3.59 to 5.76 2ω = 85.1 to 23.
9 ° 3rd surface aspherical surface coefficient k = 1.000 C4 = 0.2119 × 10 -5 C6 = 0.3738 × 10 -8 C8 = -0.8468 × 10 -11 C10 = 0.1897 × 10 -13 7th surface aspherical surface coefficient k = 1.000 C4 =- 0.3464 × 10 -5 C6 = -0.2286 × 10
-8 C8 = 0.6150 × 10 -11 C10 = -0.3735 × 10 -14 18th surface aspherical coefficient k = 1.000 C4 = -0.7748 × 10 -5 C6 = -0.1290 ×
10 -8 C8 = -0.1497 × 10 -9 C10 = 0.4915 × 10 -12 Change in spacing during zooming f 24.7000 49.0001 101.9008 D6 58.6530 19.0236 2.0000 D11 2.5000 7.1476 7.8945 D17 17.0970 8.6575 2.0000 Bf 38.0934 57.4602 108.0300 Condition corresponding value (1) f1 / fT = -0.391 (2) f3 / fw = -1.781 (3) f4 / fw = 3.002 (4) f3 / f1 = 1.104 (5) B2T / B2W = 3.392 (4) 6) f1-3W / fw = 2.052 (7) f1-3T / f1 = 5.608 (8) T4 / fT = 0.054 (9) nN -nP = 0.09390 (10) νP -νN = 23.78 (11) (nF-nR) .A (Y / 3) = 0.
0189 (12) A (Y / 3) / A (Y / 4) = 3.2
59 [Embodiment 3] As shown in FIG.
The lens group G1 includes, in order from the object side, a negative meniscus lens having a convex surface directed to the object side, a negative meniscus lens having an aspherical object side surface and a concave surface directed to the image side, and a positive meniscus lens having a convex surface directed to the object side. G2, which consists of a positive second lens group
Consists of a cemented lens of a negative meniscus lens with a convex surface facing the object side and a biconvex positive lens in order from the object side, a positive lens with a convex surface facing the object side, and a positive meniscus lens with a convex surface facing the object side. , The negative third lens group G3 comprises, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a biconcave negative lens, and the positive fourth lens group G4 is In order from the object side, the object side surface is composed of a cemented lens of a negative lens having an aspherical surface and a biconvex positive lens.
Further, the diaphragm S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 during zooming.

【0029】以下に、実施例3の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of the third embodiment are listed.

【0030】[0030]

【表3】 実施例3の諸元値 f=24.70 〜101.89 F=3.60〜5.75 2ω=85.2〜2
3.7゜ 第3面非球面係数 k=1.000 C4 =0.3093×10-5 C6 =0.5745×10-8 C8 =-0.9632 ×10-11 C10=0.1871×10-13 第20面非球面係数 k=1.000 C4 =-0.1008 ×10-4 C6 =-.1253×10
-7 C8 =-0.1030 ×10-9 C10=0.3724×10-12 変倍における間隔の変化 f 24.7046 49.0058 101.8905 D6 58.2502 19.3312 2.0000 D13 2.7899 8.1882 12.0878 D19 17.1900 9.5718 2.0000 Bf 37.9972 55.1959 98.7309 条件対応数値 (1) f1 /fT = −0.378 (2) f3 /fW = −1.791 (3) f4 /fW = 3.658 (4) f3 /f1 = 1.149 (5) B2T/B2W = 3.326 (6) f1-3W/fW = 1.730 (7) f1-3T/f1 = 28.09 (8) T4/fT = 0.054 (9) nN −nP = 0.03082 (10) νP −νN = 22.71 (11) (nF −nR )・A(Y/3) = 0.
0249 (12) A(Y/3)/A(Y/4) = 3.2
89 〔実施例4〕実施例4は図4に示される如く、負の第1
レンズ群G1 は、物体側から順に、物体側面が非球面で
像側に凹面を向けた負レンズと、物体側に凸面を向けた
負メニスカスレンズと物体側に凸面を向けた正メニスカ
スレンズの接合レンズからなり、正の第2レンズ群G2
は、物体側から順に、物体側に凸面を向けた負メニスカ
スレンズと両凸正レンズの接合レンズと、物体側に凸面
を向けた正メニスカスレンズと、物体側に凸面を向けた
正メニスカスレンズからなり、負の第3レンズ群G3
は、物体側から順に、物体側に凹面を向けた正メニスカ
スレンズと両凹負レンズの接合レンズと、両凹負レンズ
からなり、正の第4レンズ群G4 は、物体側から順に、
物体側面が非球面の負レンズと両凸正レンズの接合レン
ズからなる。また、絞りSは第2レンズ群G2 と第3レ
ンズ群G3 の間に位置し、ズーミングに際しては第3レ
ンズ群G3 と一体で移動する。
[Table 3] Specifications of Example 3 f = 24.70 to 101.89 F = 3.60 to 5.75 2ω = 85.2 to 2
3.7 ° 3rd surface aspherical coefficient k = 1.000 C4 = 0.3093 × 10 -5 C6 = 0.5745 × 10 -8 C8 = -0.9632 × 10 -11 C10 = 0.1871 × 10 -13 20th surface aspherical coefficient k = 1.000 C4 =- 0.1008 x 10 -4 C6 = -.1253 x 10
-7 C8 = -0.1030 × 10 -9 C10 = 0.3724 × 10 -12 Change in spacing during zooming f 24.7046 49.0058 101.8905 D6 58.2502 19.3312 2.0000 D13 2.7899 8.1882 12.0878 D19 17.1900 9.5718 2.0000 Bf 37.9972 55.1959 98.7309 Condition corresponding value (1) f1 / FT = -0.378 (2) f3 / fw = -1.791 (3) f4 / fw = 3.658 (4) f3 / f1 = 1.149 (5) B2T / B2W = 3.326 (6) ) F1-3W / fw = 1.730 (7) f1-3T / f1 = 28.09 (8) T4 / fT = 0.054 (9) nN-nP = 0.03082 (10) νP-νN = 22 .71 (11) (nF-nR) .A (Y / 3) = 0.
0249 (12) A (Y / 3) / A (Y / 4) = 3.2
89 [Embodiment 4] In Embodiment 4, as shown in FIG.
The lens group G1 is composed of, in order from the object side, a negative lens having an aspherical object side surface and a concave surface facing the image side, a negative meniscus lens having a convex surface facing the object side, and a positive meniscus lens having a convex surface facing the object side. G2, which is a positive second lens group
Is a cemented lens of a negative meniscus lens with a convex surface facing the object side and a biconvex positive lens in order from the object side, a positive meniscus lens with a convex surface facing the object side, and a positive meniscus lens with a convex surface facing the object side. Negative third lens group G3
Is a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a biconcave negative lens in order from the object side. The positive fourth lens group G4 is, in order from the object side,
The object side surface is composed of a cemented lens composed of a negative lens having an aspherical surface and a biconvex positive lens. The diaphragm S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 during zooming.

【0031】以下に、実施例4の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of the fourth embodiment are listed.

【0032】[0032]

【表4】 実施例4の諸元値 f=24.70 〜101.86 F=3.67〜5.99 2ω=85.3〜2
3.8゜ 第1面非球面係数 k=1.000 C4 =0.2175×10-5 C6 =-0.6822 ×10
-9 C8=-0.2754×10-12 C10=0.4061×10-15 第19面非球面係数 k=1.000 C4 =-0.1234 ×10-4 C6 =-0.2421 ×
10-7 C8 =0.6472×10-10 C10=-0.3629 ×10-12 変倍における間隔の変化 f 24.6964 48.9891 101.8551 D5 52.2024 16.9518 1.0000 D12 1.0000 5.1699 9.0763 D18 14.9309 7.5126 1.0000 Bf 38.0891 56.5842 97.5573 条件対応数値 (1) f1 /fT = −0.370 (2) f3 /fW = −1.611 (3) f4 /fW = 3.087 (4) f3 /f1 = 1.057 (5) B2T/B2W = 3.281 (6) f1-3W/fW = 2.033 (7) f1-3T/f1 = 9.389 (8) T4 /fT = 0.064 (9) nN −nP = 0.35917 (10) νP −νN = 46.62 (11) (nF −nR )・A(Y/3) = 0.
0306 (12) A(Y/3)/A(Y/4) = 3.2
76 〔実施例5〕実施例5は図5に示される如く、負の第1
レンズ群G1は、物体側から順に、物体側に凸面を向け
た負メニスカスレンズと、物体側面が非球面で像側に凹
面を向けた負メニスカスレンズと物体側に凸面を向けた
正メニスカスレンズの接合レンズからなり、正の第2レ
ンズ群G2 は、物体側から順に、物体側に凸面を向けた
負メニスカスレンズと両凸正レンズの接合レンズと、物
体側に凸面を向けた正レンズと、物体側に凸面を向けた
正メニスカスレンズからなり、負の第3レンズ群G3
は、物体側から順に、物体側に凹面を向けた正メニスカ
スレンズと物体側に凹面を向けた負レンズの接合レンズ
と、両凹負レンズからなり、正の第4レンズ群G4 は、
物体側から順に、物体側面が非球面の負レンズと両凸正
レンズの接合レンズからなる。また、絞りSは第2レン
ズ群G2 と第3レンズ群G3 の間に位置し、ズーミング
に際しては第3レンズ群G3 と一体で移動する。
[Table 4] Specifications of Example 4 f = 24.70 to 101.86 F = 3.67 to 5.99 2ω = 85.3 to 2
3.8 ° First surface aspherical surface coefficient k = 1.000 C4 = 0.2175 × 10 -5 C6 = -0.6822 × 10
-9 C8 = -0.2754 x 10 -12 C10 = 0.4061 x 10 -15 19th surface aspherical coefficient k = 1.000 C4 = -0.1234 x 10 -4 C6 = -0.2421 x
10 -7 C8 = 0.6472 × 10 -10 C10 = -0.3629 × 10 -12 Change in spacing during zooming f 24.6964 48.9891 101.8551 D5 52.2024 16.9518 1.0000 D12 1.0000 5.1699 9.0763 D18 14.9309 7.5126 1.0000 Bf 38.0891 56.5842 97.5573 Condition corresponding numerical value (1) f1 / fT = -0.370 (2) f3 / fw = -1.611 (3) f4 / fw = 3.087 (4) f3 / f1 = 1.057 (5) B2T / B2W = 3.281 ( 6) f1-3W / fw = 2.033 (7) f1-3T / f1 = 9.389 (8) T4 / fT = 0.064 (9) nN -nP = 0.35917 (10) νP -νN = 46.62 (11) (nF-nR) .A (Y / 3) = 0.
0306 (12) A (Y / 3) / A (Y / 4) = 3.2
76 [Embodiment 5] As shown in FIG.
The lens group G1 includes, in order from the object side, a negative meniscus lens having a convex surface facing the object side, a negative meniscus lens having an aspherical object side surface and a concave surface facing the image side, and a positive meniscus lens having a convex surface facing the object side. The positive second lens group G2 is composed of a cemented lens, and in order from the object side, a cemented lens of a negative meniscus lens having a convex surface facing the object side and a biconvex positive lens, and a positive lens having a convex surface facing the object side. It consists of a positive meniscus lens with a convex surface facing the object side, and has a negative third lens group G3.
Is a cemented lens of, in order from the object side, a positive meniscus lens having a concave surface facing the object side, a negative lens having a concave surface facing the object side, and a biconcave negative lens. The positive fourth lens group G4 is
In order from the object side, the object side surface is composed of a cemented lens of a negative lens having an aspherical surface and a biconvex positive lens. The diaphragm S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 during zooming.

【0033】以下に、実施例5の諸元値及び条件対応数
値を掲げる。
The specifications and numerical values corresponding to the conditions of the fifth embodiment will be listed below.

【0034】[0034]

【表5】 実施例5の諸元値 f=24.70 〜101.86 F=3.60〜5.75 2ω=85.2〜2
3.8゜ 第3面非球面係数 k=1.000 C4 =0.4748×10-5 C6=0.1037×10-7 C8 =-0.1861 ×10-10 C10=0.3579×10-13 第19面非球面係数 k=1.000 C4 =-0.1022 ×10-4 C6 =-0.1679 ×
10-7 C8 =0.1558×10-10 C10=-0.1542 ×10-12 変倍における間隔の変化 f 24.6961 48.9889 101.8571 D5 54.1778 18.1640 2.0000 D12 2.5000 7.3623 10.5888 D18 14.9439 8.3828 2.0000 Bf 38.0902 55.7969 100.0880 条件対応数値 (1) f1 /fT = −0.374 (2) f3 /fW = −1.701 (3) f4 /fW = 3.023 (4) f3/f1 = 1.103 (5) B2T/B2W = 3.301 (6) f1-3W/fW = 2.144 (7) f1-3T/f1 = 7.349 (8) T4 /fT = 0.061 (9) nN −nP = 0.05866 (10) νP −νN = 23.67 (11) (nF −nR )・A(Y/3) = 0.
0252 (12) A(Y/3)/A(Y/4) = 3.2
69 〔実施例6〕実施例6は図6に示される如く、負の第1
レンズ群G1 は、物体側から順に、像側面が非球面の両
凹負レンズと、両凸正レンズと両凹負レンズの接合レン
ズからなり、正の第2レンズ群G2は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズと両凸正
レンズの接合レンズと、両凸正レンズと物体側に凹面を
向けた負メニスカスレンズの接合レンズと、両凸正レン
ズからなり、負の第3レンズ群G3 は、物体側から順
に、物体側に凹面を向けた正メニスカスレンズと両凹負
レンズの接合レンズと、物体側に凹面を向けた負レンズ
からなり、正の第4レンズ群G4 は、物体側から順に、
像側面が非球面の両凸正レンズと、物体側に凹面を向け
た負メニスカスレンズからなる。また、絞りSは第2レ
ンズ群G2 と第3レンズ群G3 の間に位置し、ズーミン
グに際しては第3レンズ群G3 と一体で移動する。
Table 5 Specifications of Example 5 f = 24.70 to 101.86 F = 3.60 to 5.75 2ω = 85.2 to 2
3.8 ° 3rd surface aspherical coefficient k = 1.000 C4 = 0.4748 × 10 -5 C6 = 0.1037 × 10 -7 C8 = -0.1861 × 10 -10 C10 = 0.3579 × 10 -13 19th surface aspherical coefficient k = 1.000 C4 =- 0.1022 x 10 -4 C6 = -0.1679 x
10 -7 C8 = 0.1558 × 10 -10 C10 = -0.1542 × 10 -12 Change in spacing during zooming f 24.6961 48.9889 101.8571 D5 54.1778 18.1640 2.0000 D12 2.5000 7.3623 10.5888 D18 14.9439 8.3828 2.0000 Bf 38.0902 55.7969 100.0880 Condition corresponding value (1) f1 / fT = -0.374 (2) f3 / fw = -1.701 (3) f4 / fw = 3.023 (4) f3 / f1 = 1.103 (5) B2T / B2W = 3.301 (5) 6) f1-3W / fw = 2.144 (7) f1-3T / f1 = 7.349 (8) T4 / fT = 0.061 (9) nN -nP = 0.05866 (10) νP -νN = 23.67 (11) (nF-nR) .A (Y / 3) = 0.
0252 (12) A (Y / 3) / A (Y / 4) = 3.2
69 [Embodiment 6] In Embodiment 6, as shown in FIG.
The lens group G1 is composed of, in order from the object side, a biconcave negative lens having an aspherical image side surface, and a cemented lens composed of a biconvex positive lens and a biconcave negative lens. The second lens group G2 having positive refractive power is arranged in order from the object side. , A cemented lens of a negative meniscus lens with a convex surface facing the object side and a biconvex positive lens, a cemented lens of a biconvex positive lens and a negative meniscus lens with a concave surface facing the object side, and a biconvex positive lens, The third lens group G3 comprises, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a negative lens having a concave surface facing the object side. G4 is, in order from the object side,
It is composed of a biconvex positive lens having an aspherical image side surface and a negative meniscus lens having a concave surface facing the object side. The diaphragm S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 during zooming.

【0035】以下に、実施例6の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of the sixth embodiment are listed.

【0036】[0036]

【表6】 実施例6の諸元値 f=24.70 〜117.00 F=3.81〜5.83 2ω=85.8〜2
0.6゜ 第2面非球面係数 k=1.000 C4 =-0.8887 ×10-5 C6 =-0.6719 ×
10-8 C8 =0.1400×10-11 C10=-0.1320 ×10-13 第21面非球面係数 k=1.000 C4 =0.1593×10-4 C6 =0.1829×10-7 C8 =-0.1448 ×10-10 C10=0.1429×10-12 変倍における間隔の変化 f 24.6998 48.9994 116.9981 D5 47.9962 17.2434 0.8820 D13 0.8807 8.3246 27.0244 D19 19.6307 11.4171 0.9108 Bf 37.9344 56.4139 93.5704 条件対応数値 (1) f1 /fT = −0.276 (2) f3 /fW = −1.915 (3) f4 /fW = 3.157 (4) f3 /f1 = 1.467 (5) B2T/B2W = 4.133 (6) f1-3W/fW = 2.134 (7) f1-3T/f1 = 14.81 (8) T4 /fT = 0.052 (9) nN −nP = 0.31769 (10) νP −νN = 45.09 (11) (nF −nR )・A(Y/3) = 0.
0221 (12) A(Y/3)/A(Y/4) = 3.2
39 〔実施例7〕実施例7は図7に示される如く、負の第1
レンズ群G1 は、物体側から順に、像側面が非球面の両
凹負レンズと、両凸正レンズと両凹負レンズの接合レン
ズからなり、正の第2レンズ群G2 は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズと正レン
ズの接合レンズと、両凸正レンズと物体側に凹面を向け
た負メニスカスレンズの接合レンズと、物体側に凸面を
向けた正レンズからなり、負の第3レンズ群G3は、物
体側から順に、物体側に凹面を向けた正メニスカスレン
ズと両凹負レンズの接合レンズと、両凹負レンズからな
り、正の第4レンズ群G4 は、物体側から順に、物体面
が非球面の両凸正レンズと、物体側に凹面を向けた負メ
ニスカスレンズからなる。また、絞りSは第2レンズ群
G2 と第3レンズ群G3 の間に位置し、ズーミングに際
しては第3レンズ群G3 と一体で移動する。
[Table 6] Specifications of Example 6 f = 24.70 to 117.00 F = 3.81 to 5.83 2ω = 85.8 to 2
0.6 ° Second surface aspherical coefficient k = 1.000 C4 = -0.8887 × 10 -5 C6 = -0.6719 ×
10 -8 C8 = 0.1400 × 10 -11 C10 = -0.1320 × 10 -13 21st surface aspherical coefficient k = 1.000 C4 = 0.1593 × 10 -4 C6 = 0.1829 × 10 -7 C8 = -0.1448 × 10 -10 C10 = 0.1429 × 10 -12 Change in spacing during zooming f 24.6998 48.9994 116.9981 D5 47.9962 17.2434 0.8820 D13 0.8807 8.3246 27.0244 D19 19.6307 11.4171 0.9108 Bf 37.9344 56.4139 93.5704 Numerical value (1) f1 / fT = -0.276 (2) f3 / FW = -1.915 (3) f4 / fW = 3.157 (4) f3 / f1 = 1.467 (5) B2T / B2W = 4.133 (6) f1-3W / fW = 2.134 (5) 7) f1-3T / f1 = 14.81 (8) T4 / fT = 0.052 (9) nN -nP = 0.31769 (10) νP -νN = 45.09 (11) (nF -nR) ・A (Y / 3) = 0.
0221 (12) A (Y / 3) / A (Y / 4) = 3.2
39 [Embodiment 7] In Embodiment 7, as shown in FIG.
The lens group G1 is composed of, in order from the object side, a biconcave negative lens having an aspheric image side surface, and a cemented lens composed of a biconvex positive lens and a biconcave negative lens, and the second lens group G2 having positive power is arranged in order from the object side. , Consisting of a cemented lens of a negative meniscus lens and a positive lens with a convex surface facing the object side, a biconvex positive lens, a cemented lens of a negative meniscus lens with a concave surface facing the object side, and a positive lens with a convex surface facing the object side. The negative third lens group G3 is composed of, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a biconcave negative lens, and the positive fourth lens group G4 is , A biconvex positive lens having an aspherical object surface and a negative meniscus lens having a concave surface facing the object side, in that order from the object side. The diaphragm S is located between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 during zooming.

【0037】以下に、実施例7の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of the seventh embodiment are listed.

【0038】[0038]

【表7】 実施例7の諸元値 f=24.70 〜117.00 F=3.64〜5.71 2ω=85.7〜2
0.6゜ 第2面非球面係数 k=1.000 C4 =-0.7932 ×10-5 C6 =-0.7413 ×
10-8 C8 =0.9211×10-11 C10=-0.1430 ×10-13 第20面非球面係数 k=1.000 C4 =-0.1262 ×10-4 C6 =-0.4082 ×
10-9 C8 =-0.9722 ×10-10 C10=0.2199×10-12 変倍における間隔の変化 f 24.6998 48.9996 116.9986 D5 47.8760 17.1232 0.7618 D13 0.4945 7.9384 26.6382 D19 19.1580 10.9444 0.4381 Bf 37.8726 56.3523 93.5090 条件対応数値 (1) f1 /fT = −0.276 (2) f3 /fW = −1.915 (3) f4 /fW = 3.157 (4) f3 /f1 = 1.467 (5) B2T/B2W = 4.133 (6) f1-3W/fW = 2.134 (7) f1-3T/f1 = 14.81 (8) T4/fT = 0.067 (9) nN −nP = 0.31769 (10) νP −νN = 45.09 (11) (nF −nR )・A(Y/3) = 0.
0169 (12) A(Y/3)/A(Y/4) = 3.2
00 〔実施例8〕実施例8は図8に示される如く、負の第1
レンズ群G1 は、物体側から順に、像側面が非球面の両
凹負レンズと、両凸正レンズと両凹負レンズの接合レン
ズからなり、正の第2レンズ群G2 は、物体側から順
に、物体側に凸面を向けた負メニスカスレンズと両凸正
レンズの接合レンズと、両凸正レンズと物体側に凹面を
向けた負メニスカスレンズの接合レンズと、両凸正レン
ズからなり、負の第3レンズ群G3 は、物体側から順
に、物体側に凹面を向けた正メニスカスレンズと両凹負
レンズの接合レンズと、両凹負レンズからなり、正の第
4レンズ群G4は、物体側から順に、物体面が非球面の
両凸正レンズと、物体側に凹面を向けた負メニスカスレ
ンズからなる。また、絞りSは第2レンズ群G2 と第3
レンズ群G3の間に位置し、ズーミングに際しては第3
レンズ群G3 と一体で移動する。
Table 7 Specifications of Example 7 f = 24.70 to 117.00 F = 3.64 to 5.71 2ω = 85.7 to 2
0.6 ° Second surface aspherical coefficient k = 1.000 C4 = -0.7932 × 10 -5 C6 = -0.7413 ×
10 -8 C8 = 0.9211 × 10 -11 C10 = -0.1430 × 10 -13 20th surface aspherical surface coefficient k = 1.000 C4 = -0.1262 × 10 -4 C6 = -0.4082 ×
10 -9 C8 = -0.9722 × 10 -10 C10 = 0.2199 × 10 -12 Change in spacing during zooming f 24.6998 48.9996 116.9986 D5 47.8760 17.1232 0.7618 D13 0.4945 7.9384 26.6382 D19 19.1580 10.9444 0.4381 Bf 37.8726 56.3523 93.5090 Condition corresponding numerical value (1) f1 / fT = -0.276 (2) f3 / fw = -1.915 (3) f4 / fw = 3.157 (4) f3 / f1 = 1.467 (5) B2T / B2W = 4.133 ( 6) f1-3W / fw = 2.134 (7) f1-3T / f1 = 14.81 (8) T4 / fT = 0.067 (9) nN -nP = 0.31769 (10) νP -νN = 45.09 (11) (nF-nR) .A (Y / 3) = 0.
(12) A (Y / 3) / A (Y / 4) = 3.2
00 [Embodiment 8] As shown in FIG.
The lens group G1 is composed of, in order from the object side, a biconcave negative lens having an aspheric image side surface, and a cemented lens composed of a biconvex positive lens and a biconcave negative lens, and the second lens group G2 having positive power is arranged in order from the object side. , A cemented lens of a negative meniscus lens with a convex surface facing the object side and a biconvex positive lens, a cemented lens of a biconvex positive lens and a negative meniscus lens with a concave surface facing the object side, and a biconvex positive lens, The third lens group G3 is composed of, in order from the object side, a cemented lens of a positive meniscus lens having a concave surface facing the object side and a biconcave negative lens, and a biconcave negative lens, and the positive fourth lens group G4 is composed of an object side. In order from, a biconvex positive lens having an aspherical object surface and a negative meniscus lens having a concave surface facing the object side. Further, the diaphragm S is made up of the second lens group G2 and the third lens group G2.
It is located between the lens group G3, and it is the third for zooming.
It moves together with the lens group G3.

【0039】以下に、実施例8の諸元値及び条件対応数
値を掲げる。
Below, the specifications and numerical values corresponding to the conditions of Example 8 are listed.

【0040】[0040]

【表8】 実施例8の諸元値 f=24.70 〜116.99 F=3.53〜5.69 2ω=85.9〜2
0.6゜ 第2面非球面係数 k=1.000 C4 =-0.1073 ×10-4 C6 =-0.6607 ×
10-8 C8 =0.8487×10-11 C10=-0.1739 ×10-13 第20面非球面係数 k=1.000 C4 =-0.9966 ×10-5 C6 =-0.2058 ×
10-7 C8 =0.1242×10-9 C10=-0.2184 ×10-12 変倍における間隔の変化 f 24.6997 48.9995 116.9947 D5 47.8052 16.5638 1.0000 D13 1.0000 9.0924 27.4128 D19 20.9948 11.0192 1.0000 Bf 38.0994 56.5808 95.4826 条件対応数値 (1) f1 /fT = −0.269 (2) f3 /fW = −1.604 (3) f4 /fW = 2.494 (4) f3 /f1 = 1.260 (5) B2T/B2W = 4.172 (6) f1-3W/fW = 3.001 (7) f1-3T/f1 = 6.221 (8) T4 /fT = 0.081 (9) nN −nP = 0.31769 (10) νP−νN = 45.09 (11) (nF −nR )・A(Y/3) = 0.
0141 (12) A(Y/3)/A(Y/4) = 3.2
39 図9、図12、図15、図18、図21、図24、図2
7、図30は、それぞれ実施例1〜実施例8の広角端で
の諸収差図であり、図10、図13、図16、図19、
図22、図25、図28、図31は、それぞれ実施例1
〜実施例8の中間焦点距離状態での諸収差図であり、図
11、図14、図17、図20、図23、図26、図2
9、図32は、それぞれ実施例1〜実施例8の望遠端で
の諸収差図である。各収差図において、Hは入射光線
高、Yは像高、dはd線(λ=587.6nm)及びgはg線
(λ=435.8nm)を示し、非点収差図において点線はメリ
ジオナル像面を、実線はサジタル像面を示している。
[Table 8] Specifications of Example 8 f = 24.70 to 116.99 F = 3.53 to 5.69 2ω = 85.9 to 2
0.6 ° Second surface aspherical coefficient k = 1.000 C4 = -0.1073 × 10 -4 C6 = -0.6607 ×
10 -8 C8 = 0.8487 × 10 -11 C10 = -0.1739 × 10 -13 20th surface aspherical surface coefficient k = 1.000 C4 = -0.9966 × 10 -5 C6 = -0.2058 ×
10 -7 C8 = 0.1242 × 10 -9 C10 = -0.2184 × 10 -12 Change in spacing during zooming f 24.6997 48.9995 116.9947 D5 47.8052 16.5638 1.0000 D13 1.0000 9.0924 27.4128 D19 20.9948 11.0192 1.0000 Bf 38.0994 56.5808 95.4826 Condition corresponding value (1) f1 / fT = -0.269 (2) f3 / fw = -1.604 (3) f4 / fw = 2.494 (4) f3 / f1 = 1.260 (5) B2T / B2W = 4.172 (4) 6) f1-3W / fw = 3.001 (7) f1-3T / f1 = 6.221 (8) T4 / fT = 0.081 (9) nN-nP = 0.31769 (10) νP-νN = 45.09 (11) (nF-nR) .A (Y / 3) = 0.
0141 (12) A (Y / 3) / A (Y / 4) = 3.2
39 FIG. 9, FIG. 12, FIG. 15, FIG. 18, FIG. 21, FIG.
7 and 30 are graphs showing various aberrations at the wide-angle end of Examples 1 to 8, respectively, and FIGS. 10, 13, 16, and 19.
22, FIG. 25, FIG. 28, and FIG.
21 is a diagram of various types of aberration in the intermediate focal length state of Example 8, and FIGS. 11, 14, 17, 20, 20, 23, and 26.
9 and 32 are graphs showing various aberrations of Examples 1 to 8 at the telephoto end. In each aberration diagram, H is the incident ray height, Y is the image height, d is the d line (λ = 587.6 nm) and g is the g line (λ = 435.8 nm). In the astigmatism diagram, the dotted line is the meridional image plane. The solid line shows the sagittal image plane.

【0041】各収差図から、各実施例は諸収差が良好に
補正され、優れた結像性能を有していることが明らかで
ある。
From each aberration diagram, it is apparent that each embodiment has various aberrations well corrected and has excellent imaging performance.

【0042】[0042]

【発明の効果】このように本発明によれば、広角端での
画角が80°以上であり、4倍以上の変倍比を有し、小
型で、かつ結像性能の優れたズームレンズを提供するこ
とができる。また、第1レンズ群から第4レンズ群まで
のいずれかのレンズ群、またはレンズ群の一部を光軸と
垂直方向に移動させることにより画像を偏向させること
が可能であり、画像安定化光学系への適用が可能であ
る。フォーカシングは第1レンズ群を移動させて行うの
が好ましいが、第3レンズ群または第4レンズ群を移動
させてフォーカシングを行うことも可能である。
As described above, according to the present invention, the zoom lens having an angle of view at the wide-angle end of 80 ° or more, a zoom ratio of 4 × or more, a small size, and excellent image forming performance. Can be provided. Further, the image can be deflected by moving any one of the first to fourth lens groups or a part of the lens group in the direction perpendicular to the optical axis, and the image stabilizing optical system can be used. It can be applied to systems. Focusing is preferably performed by moving the first lens group, but it is also possible to perform focusing by moving the third lens group or the fourth lens group.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例1のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment according to the present invention.

【図2】本発明による実施例2のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment according to the present invention.

【図3】本発明による実施例3のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment according to the present invention.

【図4】本発明による実施例4のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment according to the present invention.

【図5】本発明による実施例5のレンズ構成図。FIG. 5 is a lens configuration diagram of a fifth embodiment according to the present invention.

【図6】本発明による実施例6のレンズ構成図。FIG. 6 is a lens configuration diagram of a sixth embodiment according to the present invention.

【図7】本発明による実施例7のレンズ構成図。FIG. 7 is a lens configuration diagram of a seventh embodiment according to the present invention.

【図8】本発明による実施例8のレンズ構成図。FIG. 8 is a lens configuration diagram of Example 8 according to the present invention.

【図9】本発明による実施例1の広角端での諸収差図。FIG. 9 is a diagram of various types of aberration at the wide-angle end of Example 1 according to the present invention.

【図10】本発明による実施例1の中間焦点距離状態で
の諸収差図。
FIG. 10 is a diagram of various types of aberration in an intermediate focal length state of Example 1 according to the present invention.

【図11】本発明による実施例1の望遠端での諸収差
図。
FIG. 11 is a diagram of various types of aberration at the telephoto end according to the first exemplary embodiment of the present invention.

【図12】本発明による実施例2の広角端での諸収差
図。
FIG. 12 is a diagram of various types of aberration at the wide-angle end according to Example 2 of the present invention.

【図13】本発明による実施例2の中間焦点距離状態で
の諸収差図。
FIG. 13 is a diagram of various types of aberration in the intermediate focal length state of Example 2 according to the present invention.

【図14】本発明による実施例2の望遠端での諸収差
図。
FIG. 14 is a diagram of various types of aberration at the telephoto end of Embodiment 2 according to the present invention.

【図15】本発明による実施例3の広角端での諸収差
図。
FIG. 15 is a diagram of various types of aberration at the wide-angle end according to Example 3 of the present invention.

【図16】本発明による実施例3の中間焦点距離状態で
の諸収差図。
FIG. 16 is a diagram of various types of aberration in the intermediate focal length state of Example 3 according to the present invention.

【図17】本発明による実施例3の望遠端での諸収差
図。
FIG. 17 is a diagram of various types of aberration at the telephoto end of Embodiment 3 according to the present invention.

【図18】本発明による実施例4の広角端での諸収差
図。
FIG. 18 is a diagram of various types of aberration at the wide-angle end of Example 4 according to the present invention.

【図19】本発明による実施例4の中間焦点距離状態で
の諸収差図。
FIG. 19 is a diagram of various types of aberration in the intermediate focal length state of Example 4 according to the present invention.

【図20】本発明による実施例4の望遠端での諸収差
図。
FIG. 20 is a diagram of various types of aberration at the telephoto end of Embodiment 4 according to the present invention.

【図21】本発明による実施例5の広角端での諸収差
図。
FIG. 21 is a diagram of various types of aberration at the wide-angle end of Example 5 according to the present invention.

【図22】本発明による実施例5の中間焦点距離状態で
の諸収差図。
FIG. 22 is a diagram of various types of aberration in the intermediate focal length state of Example 5 according to the present invention.

【図23】本発明による実施例5の望遠端での諸収差
図。
FIG. 23 is a diagram of various types of aberration at the telephoto end of Embodiment 5 according to the present invention.

【図24】本発明による実施例6の広角端での諸収差
図。
FIG. 24 is a diagram of various types of aberration at the wide-angle end of Example 6 according to the present invention.

【図25】本発明による実施例6の中間焦点距離状態で
の諸収差図。
FIG. 25 is a diagram of various types of aberration in the intermediate focal length state of Example 6 according to the present invention.

【図26】本発明による実施例6の望遠端での諸収差
図。
FIG. 26 is a diagram of various types of aberration at the telephoto end of Embodiment 6 according to the present invention.

【図27】本発明による実施例7の広角端での諸収差
図。
FIG. 27 is a diagram of various types of aberration at the wide-angle end of Example 7 according to the present invention.

【図28】本発明による実施例7の中間焦点距離状態で
の諸収差図。
FIG. 28 is a diagram of various types of aberration in the intermediate focal length state of Example 7 according to the present invention.

【図29】本発明による実施例7の望遠端での諸収差
図。
FIG. 29 is a diagram of various types of aberration at the telephoto end of Embodiment 7 according to the present invention.

【図30】本発明による実施例8の広角端での諸収差
図。
FIG. 30 is a diagram of various types of aberration at the wide-angle end of Example 8 according to the present invention.

【図31】本発明による実施例8の中間焦点距離状態で
の諸収差図。
FIG. 31 is a diagram of various types of aberration in the intermediate focal length state of Example 8 according to the present invention.

【図32】本発明による実施例8の望遠端での諸収差
図。
FIG. 32 is a diagram of various types of aberration at the telephoto end of Example 8 according to the present invention.

【主要部分の符合の説明】[Explanation of the sign of the main part]

G1 ・・・ 第1レンズ群 G2 ・・・ 第2レンズ群 G3 ・・・ 第3レンズ群 G4 ・・・ 第4レンズ群 S ・・・ 絞り G1 ・ ・ ・ First lens group G2 ・ ・ ・ Second lens group G3 ・ ・ ・ Third lens group G4 ・ ・ ・ Fourth lens group S ・ ・ ・ Aperture

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、負の屈折力を持つ第1レ
ンズ群と、正の屈折力を持つ第2レンズ群と、負の屈折
力を持つ第3レンズ群と、正の屈折力を持つ第4レンズ
群を有し、前記第1レンズ群と前記第2レンズ群との空
気間隔を縮小させ、前記第2レンズ群と前記第3レンズ
群との空気間隔を拡大させ、前記第3レンズ群と前記第
4レンズ群との空気間隔を縮小させることにより広角端
から望遠端への変倍を行なうズームレンズにおいて、 広角端におけるズームレンズの焦点距離をfW 、望遠端
におけるズームレンズの焦点距離をfT 、前記第1レン
ズ群の焦点距離をf1 、前記第3レンズ群の焦点距離を
f3 、前記第4レンズ群の焦点距離をf4 とするとき、
以下の条件を満足することを特徴とする高変倍率ズーム
レンズ。 −0.45 < f1/fT < −0.20 −3.0 < f3 /fW < −1.2 2.0 < f4 /fW < 6.0
1. A first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a positive refractive power in order from the object side. A fourth lens group having an air gap between the first lens group and the second lens group is reduced, and an air gap between the second lens group and the third lens group is enlarged, In a zoom lens that performs zooming from the wide-angle end to the telephoto end by reducing the air space between the third lens group and the fourth lens group, the focal length of the zoom lens at the wide-angle end is fW, and the zoom lens at the telephoto end is When the focal length is fT, the focal length of the first lens unit is f1, the focal length of the third lens unit is f3, and the focal length of the fourth lens unit is f4,
A high zoom ratio zoom lens characterized by satisfying the following conditions. -0.45 <f1 / fT <-0.20 -3.0 <f3 / fw <-1.2 2.0 <f4 / fw <6.0
【請求項2】さらに以下の条件式を満足することを特徴
とする請求項1記載の高変倍率ズームレンズ。 0.7 < f3 /f1 < 2.0
2. The high variable power zoom lens according to claim 1, further satisfying the following conditional expression. 0.7 <f3 / f1 <2.0
【請求項3】ズームレンズの広角端と望遠端における前
記第2レンズ群の結像倍率をそれぞれB2W、B2Tとする
とき、以下の条件式を満足することを特徴とする請求項
1記載の高変倍率ズームレンズ。 2.8 < B2T/B2W < 5.0
3. The high condition according to claim 1, wherein the following conditional expressions are satisfied when the image forming magnifications of the second lens group at the wide-angle end and the telephoto end of the zoom lens are B2W and B2T, respectively. Variable magnification zoom lens. 2.8 <B2T / B2W <5.0
【請求項4】ズームレンズの広角端における前記第1レ
ンズ群と前記第2レンズ群と前記第3レンズ群の合成焦
点距離をf1-3Wとするとき、以下の条件式を満足するこ
とを特徴とする請求項1記載の高変倍率ズームレンズ。 0.5 < f1-3W/fW < 5
4. When the combined focal length of the first lens group, the second lens group and the third lens group at the wide angle end of the zoom lens is f1-3W, the following conditional expression is satisfied. The high-magnification zoom lens according to claim 1. 0.5 <f1-3W / fw <5
【請求項5】ズームレンズの望遠端における前記第1レ
ンズ群と前記第2レンズ群と前記第3レンズ群の合成焦
点距離をf1-3Tとするとき、以下の条件式を満足するこ
とを特徴とする請求項1記載の高変倍率ズームレンズ。 1 < f1-3T/f1
5. When the combined focal length of the first lens group, the second lens group and the third lens group at the telephoto end of the zoom lens is f1-3T, the following conditional expression is satisfied. The high-magnification zoom lens according to claim 1. 1 <f1-3T / f1
【請求項6】前記第4レンズ群の最も物体側のレンズ面
から最も像側のレンズ面までの軸上厚をT4 とすると
き、以下の条件式を満足することを特徴とする請求項1
記載の高変倍率ズームレンズ。 0.03 < T4 /fT < 0.10
6. The following conditional expression is satisfied, where T4 is the axial thickness from the lens surface closest to the object to the lens surface closest to the image in the fourth lens group.
High magnification zoom lens described. 0.03 <T4 / fT <0.10
【請求項7】前記第4レンズ群は1枚の負レンズと1枚
の正レンズとからなることを特徴とする請求項1記載の
高変倍率ズームレンズ。
7. The high variable power zoom lens according to claim 1, wherein the fourth lens group includes one negative lens and one positive lens.
【請求項8】前記第4レンズ群は1枚の負レンズと1枚
の正レンズとの接合レンズからなることを特徴とする請
求項7記載の高変倍率ズームレンズ。
8. The high variable power zoom lens according to claim 7, wherein the fourth lens group comprises a cemented lens composed of one negative lens and one positive lens.
【請求項9】前記第4レンズ群を構成する負レンズと正
レンズの屈折率をそれぞれnN とnP とするとき、以下
の条件式を満足することを特徴とする請求項7記載の高
変倍率ズームレンズ。 nN −nP > 0
9. The high variable power according to claim 7, wherein the following conditional expressions are satisfied, when the refractive indices of the negative lens and the positive lens constituting the fourth lens group are nN and nP, respectively. Zoom lens. nN-nP> 0
【請求項10】前記第4レンズ群を構成する負レンズと
正レンズのアッベ数をそれぞれνN とνP とするとき、
以下の条件式を満足することを特徴とする請求項7記載
の高変倍率ズームレンズ。 νP −νN > 10
10. When the Abbe numbers of the negative lens and the positive lens constituting the fourth lens group are respectively ν N and ν P,
The high variable power zoom lens according to claim 7, wherein the following conditional expression is satisfied. ν P −ν N> 10
【請求項11】前記第4レンズ群中に非球面を少なくと
も1面含むことを特徴とする請求項7記載の高変倍率ズ
ームレンズ。
11. The high variable power zoom lens according to claim 7, wherein at least one aspherical surface is included in the fourth lens group.
【請求項12】さらに、光軸から垂直方向の高さhにお
ける非球面量をA(h)とし、最大像高をYとし、非球
面の物体側の屈折率をnF 、非球面の像側の屈折率をn
R とするとき、前記第4レンズ群中の非球面形状が以下
の条件を満足することを特徴とする請求項11記載の高
変倍率ズームレンズ。 (nF −nR )・A(Y/3)>0 A(Y/3)/A(Y/4)>2 ここで、非球面量A(h)は、非球面の頂点の接平面か
らの光軸方向に沿った距離をX(h)とし、近軸曲率半
径をrとするとき、以下の式で定義する。 A(h)=X(h)−(h2 /r)/〔1+(1−h2
/r2 1/2
12. The aspheric amount at height h in the direction perpendicular to the optical axis is A (h), the maximum image height is Y, the object side refractive index of the aspheric surface is nF, and the aspheric surface image side. The refractive index of n
The high variable power zoom lens according to claim 11, wherein, when R, the aspherical shape in the fourth lens group satisfies the following condition. (NF-nR) · A (Y / 3)> 0 A (Y / 3) / A (Y / 4)> 2 where the aspherical amount A (h) is from the tangent plane of the apex of the aspherical surface. When the distance along the optical axis direction is X (h) and the paraxial radius of curvature is r, it is defined by the following formula. A (h) = X (h ) - (h 2 / r) / [1+ (1-h 2
/ R 2 ) 1/2 ]
【請求項13】前記第1レンズ群中に非球面を少なくと
も1面含むことを特徴とする請求項1記載の高変倍率ズ
ームレンズ。
13. The high variable power zoom lens according to claim 1, wherein at least one aspherical surface is included in the first lens group.
【請求項14】物体側より順に、負の屈折力を持つ第1
レンズ群と、正の屈折力を持つ第2レンズ群と、負の屈
折力を持つ第3レンズ群と、正の屈折力を持つ第4レン
ズ群を有し、前記第1レンズ群と前記第2レンズ群との
空気間隔を縮小させ、前記第2レンズ群と前記第3レン
ズ群との空気間隔を拡大させ、前記第3レンズ群と前記
第4レンズ群との空気間隔を縮小させることにより広角
端から望遠端への変倍を行なうズームレンズにおいて、 広角端におけるズームレンズの焦点距離をfW 、望遠端
におけるズームレンズの焦点距離をfT 、前記第1レン
ズ群の焦点距離をf1 、前記第4レンズ群の焦点距離を
f4 、ズームレンズの望遠端における前記第1レンズ群
と前記第2レンズ群と前記第3レンズ群の合成焦点距離
をf1-3T、前記第4レンズ群の最も物体側のレンズ面か
ら最も像側のレンズ面までの軸上厚をT4 とするとき、
以下の条件を満足することを特徴とする高変倍率ズーム
レンズ。 2 < f4 /fW < 6 0.03 < T4 /fT < 0.10 1 < f1-3T/f1
14. A first lens element having a negative refractive power in order from the object side.
A first lens group, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens group having a positive refractive power; By reducing the air gap between the second lens group, the air gap between the second lens group and the third lens group, and reducing the air gap between the third lens group and the fourth lens group. In a zoom lens that performs zooming from the wide-angle end to the telephoto end, the focal length of the zoom lens at the wide-angle end is fW, the focal length of the zoom lens at the telephoto end is fT, the focal length of the first lens group is f1, and the first lens group is f1. The focal length of the four lens groups is f4, the combined focal length of the first lens group, the second lens group and the third lens group at the telephoto end of the zoom lens is f1-3T, and the most object side of the fourth lens group. Lens surface closest to the image side When the axial thickness up to is T4,
A high zoom ratio zoom lens characterized by satisfying the following conditions. 2 <f4 / fw <6 0.03 <T4 / fT <0.10 1 <f1-3T / f1
【請求項15】前記第4レンズ群は1枚の負レンズと1
枚の正レンズとからなることを特徴とする請求項14記
載の高変倍率ズームレンズ。
15. The fourth lens group includes one negative lens and one negative lens.
15. The high variable power zoom lens according to claim 14, comprising a positive lens.
【請求項16】前記第4レンズ群は1枚の負レンズと1
枚の正レンズとの接合レンズからなることを特徴とする
請求項15記載の高変倍率ズームレンズ。
16. The fourth lens group includes one negative lens and one negative lens.
The high-variation-magnification zoom lens according to claim 15, comprising a cemented lens with a positive lens.
【請求項17】前記第4レンズ群を構成する負レンズと
正レンズの屈折率をそれぞれnN とnP とするとき、以
下の条件式を満足することを特徴とする請求項15記載
の高変倍率ズームレンズ。 nN −nP > 0
17. The high variable power according to claim 15, wherein the following conditional expressions are satisfied when the refractive indices of the negative lens and the positive lens constituting the fourth lens group are nN and nP, respectively. Zoom lens. nN-nP> 0
【請求項18】前記第4レンズ群を構成する負レンズと
正レンズのアッベ数をそれぞれνN とνP とするとき、
以下の条件式を満足することを特徴とする請求項15記
載の高変倍率ズームレンズ。 νN−νP > 10
18. When the Abbe numbers of the negative lens and the positive lens constituting the fourth lens group are respectively νN and νP,
16. The high variable power zoom lens according to claim 15, wherein the following conditional expression is satisfied. νN-νP> 10
【請求項19】前記第4レンズ群中に非球面を少なくと
も1面含むことを特徴とする請求項14記載の高変倍率
ズームレンズ。
19. The high variable power zoom lens according to claim 14, wherein at least one aspherical surface is included in the fourth lens group.
【請求項20】さらに、光軸から垂直方向の高さhにお
ける非球面量をA(h)とし、最大像高をYとし、非球
面の物体側の屈折率をnF 、非球面の像側の屈折率をn
R とするとき、前記第4レンズ群中の非球面形状が以下
の条件を満足することを特徴とする請求項19記載の高
変倍率ズームレンズ。 (nF −nR )・A(Y/3)>0 A(Y/3)/A(Y/4)>2 ここで、非球面量A(h)は、非球面の頂点の接平面か
らの光軸方向に沿った距離をX(h)とし、近軸曲率半
径をrとするとき、以下の式で定義する。 A(h)=X(h)−(h2 /r)/〔1+(1−h2
/r2 1/2
20. Further, the amount of aspherical surface at a height h perpendicular to the optical axis is A (h), the maximum image height is Y, the refractive index on the object side of the aspherical surface is nF, and the aspherical surface on the image side. The refractive index of n
20. The high variable power zoom lens according to claim 19, wherein, when R, the aspherical shape in the fourth lens group satisfies the following condition. (NF-nR) · A (Y / 3)> 0 A (Y / 3) / A (Y / 4)> 2 where the aspherical amount A (h) is from the tangent plane of the apex of the aspherical surface. When the distance along the optical axis direction is X (h) and the paraxial radius of curvature is r, it is defined by the following formula. A (h) = X (h ) - (h 2 / r) / [1+ (1-h 2
/ R 2 ) 1/2 ]
JP6080503A 1994-04-19 1994-04-19 Zoom lens with high power variation rate Pending JPH07287168A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP6080503A JPH07287168A (en) 1994-04-19 1994-04-19 Zoom lens with high power variation rate
US08/418,768 US5585970A (en) 1994-04-19 1995-04-07 Zoom lens with high zoom ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6080503A JPH07287168A (en) 1994-04-19 1994-04-19 Zoom lens with high power variation rate

Publications (1)

Publication Number Publication Date
JPH07287168A true JPH07287168A (en) 1995-10-31

Family

ID=13720120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6080503A Pending JPH07287168A (en) 1994-04-19 1994-04-19 Zoom lens with high power variation rate

Country Status (1)

Country Link
JP (1) JPH07287168A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710931B1 (en) 1999-05-26 2004-03-23 Canon Kabushiki Kaisha Zoom lens, and image pickup apparatus and image projection apparatus using the same
US7075730B2 (en) 2004-06-25 2006-07-11 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the same
US7102829B2 (en) 2003-09-19 2006-09-05 Canon Kabushiki Kaisha Zoom lens system and image pickup device having zoom lens system
JP2007010913A (en) * 2005-06-29 2007-01-18 Pentax Corp Wide-angle zoom lens system
JP2008176271A (en) * 2006-12-19 2008-07-31 Nikon Corp Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
JP2009282554A (en) * 2009-09-03 2009-12-03 Canon Inc Zoom lens
JP2010282230A (en) * 2010-09-10 2010-12-16 Hoya Corp Wide-angle zoom lens system
JP2011033895A (en) * 2009-08-03 2011-02-17 Olympus Imaging Corp Variable magnification optical system and image pickup device
JP5498495B2 (en) * 2009-07-02 2014-05-21 パナソニック株式会社 Zoom lens system, imaging device and camera
WO2014097355A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
WO2016194775A1 (en) * 2015-05-29 2016-12-08 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2018013685A (en) * 2016-07-22 2018-01-25 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
CN113031204A (en) * 2019-12-09 2021-06-25 凤凰光学股份有限公司 High-resolution low-distortion easily-processed optical lens

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710931B1 (en) 1999-05-26 2004-03-23 Canon Kabushiki Kaisha Zoom lens, and image pickup apparatus and image projection apparatus using the same
US7102829B2 (en) 2003-09-19 2006-09-05 Canon Kabushiki Kaisha Zoom lens system and image pickup device having zoom lens system
US7196852B2 (en) 2003-09-19 2007-03-27 Canon Kabushiki Kaisha Zoom lens system and image pickup device having zoom lens system
US7075730B2 (en) 2004-06-25 2006-07-11 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus including the same
JP2007010913A (en) * 2005-06-29 2007-01-18 Pentax Corp Wide-angle zoom lens system
JP4612485B2 (en) * 2005-06-29 2011-01-12 Hoya株式会社 Wide-angle zoom lens system
US10437026B2 (en) 2006-07-21 2019-10-08 Nikon Corporation Zoom lens system, imaging apparatus, and method for zooming the zoom lens system
JP2008176271A (en) * 2006-12-19 2008-07-31 Nikon Corp Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
US9182575B2 (en) 2009-07-02 2015-11-10 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, imaging device and camera
JP5498495B2 (en) * 2009-07-02 2014-05-21 パナソニック株式会社 Zoom lens system, imaging device and camera
JP2011033895A (en) * 2009-08-03 2011-02-17 Olympus Imaging Corp Variable magnification optical system and image pickup device
JP4586102B2 (en) * 2009-09-03 2010-11-24 キヤノン株式会社 Zoom lens
JP2009282554A (en) * 2009-09-03 2009-12-03 Canon Inc Zoom lens
JP2010282230A (en) * 2010-09-10 2010-12-16 Hoya Corp Wide-angle zoom lens system
WO2014097355A1 (en) * 2012-12-19 2014-06-26 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
US9432586B2 (en) 2012-12-19 2016-08-30 Panasonic Intellectual Property Management Co., Ltd. Zoom lens system, interchangeable lens apparatus and camera system
WO2016194775A1 (en) * 2015-05-29 2016-12-08 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JPWO2016194775A1 (en) * 2015-05-29 2018-03-22 株式会社ニコン Variable magnification optical system, optical device
US11061210B2 (en) 2015-05-29 2021-07-13 Nikon Corporation Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP2018013685A (en) * 2016-07-22 2018-01-25 キヤノン株式会社 Zoom lens and imaging apparatus having the same
CN113031204A (en) * 2019-12-09 2021-06-25 凤凰光学股份有限公司 High-resolution low-distortion easily-processed optical lens

Similar Documents

Publication Publication Date Title
JP3167069B2 (en) Zoom lens
JPH05173071A (en) Wide angle zoom lens
JPH06337354A (en) Zoom lens
JPH08248312A (en) Zoom lens
JP2744348B2 (en) High zoom lens
JP3849129B2 (en) Zoom lens
JPH1020193A (en) Zoom lens
JPH07287168A (en) Zoom lens with high power variation rate
JPH08122640A (en) Zoom lens
JPH0642017B2 (en) Compact zoom lens
JP3412908B2 (en) Zoom lens
JPH0830783B2 (en) High magnification zoom lens for compact cameras
JP3184581B2 (en) Zoom lens
JPH095626A (en) Variable power optical system
JPH112762A (en) Zoom lens
JPH0843734A (en) Zoom lens
JPH116958A (en) Zoom lens
JP3219574B2 (en) Zoom lens
JPH06130298A (en) Compact zoom lens
JP2676400B2 (en) High magnification compact zoom lens
JPH05224123A (en) Telephoto zoom lens
JP3357930B2 (en) Zoom lens
JPH08211290A (en) High variable power rate zoom lens
JP3029150B2 (en) Wide-angle high zoom lens
JPH0894935A (en) Internal focusing system zoom lens