JPH07209583A - Light converging device for optical fiber projection light - Google Patents
Light converging device for optical fiber projection lightInfo
- Publication number
- JPH07209583A JPH07209583A JP6031763A JP3176394A JPH07209583A JP H07209583 A JPH07209583 A JP H07209583A JP 6031763 A JP6031763 A JP 6031763A JP 3176394 A JP3176394 A JP 3176394A JP H07209583 A JPH07209583 A JP H07209583A
- Authority
- JP
- Japan
- Prior art keywords
- optical fiber
- light
- focus
- reflecting mirror
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば高倍率の顕微鏡
や高速度カメラの照明装置、あるいは光重合のための光
照射装置や光半田に用いられる光加熱装置等における光
ファイバ出射光の集光装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the collection of light emitted from an optical fiber in, for example, an illuminating device for a high-power microscope or a high-speed camera, a light irradiation device for photopolymerization, a light heating device used for optical soldering, or the like. The present invention relates to an optical device.
【0002】[0002]
【従来の技術】従来、光源ランプの集光装置として集光
レンズを用いるものと、回転楕円鏡を用いるものとがあ
る。2. Description of the Related Art Conventionally, there are a light source lamp using a condenser lens and a spheroidal mirror as a condenser.
【0003】ところが、光ファイバ又は光ファイバ束か
らの出射光の集光装置として集光レンズを用いる場合、
図1の(a)のように光ファイバ1をレンズ2の焦点に
配置した場合、光ファイバ1の出射光は元来、拡散光な
ので集光効率が悪い。また、図1の(b)のように、光
ファイバ1を焦点より離すようにすると、集光効率が上
り、比較的高密度にはなるが、集光効率を上げるために
は大きな集光レンズを必要とし、しかもワーキングディ
スタンス(WD)が極端に短かくなり、作業エリアが挾
くなる。However, when a condenser lens is used as a condenser for the light emitted from the optical fiber or the optical fiber bundle,
When the optical fiber 1 is arranged at the focal point of the lens 2 as shown in FIG. 1A, the light emitted from the optical fiber 1 is originally a diffused light, and the light collection efficiency is poor. Further, as shown in FIG. 1B, when the optical fiber 1 is moved away from the focus, the light collection efficiency increases and the density becomes relatively high. Required, and the working distance (WD) becomes extremely short, and the work area becomes narrow.
【0004】一方、図1の(c)のように回転楕円鏡3
を用いる方法は、開口角に近い外側の弱い光は集光する
が、中心近辺の強い光は全て集光せずに光損失となる。On the other hand, as shown in FIG. 1C, the spheroidal mirror 3
In the method using, the weak light on the outer side close to the aperture angle is condensed, but the strong light in the vicinity of the center is not condensed, resulting in light loss.
【0005】[0005]
【発明が解決しようとする課題】そこで本発明は、光フ
ァイバ又は光ファイバ束から出射した光を高密度に集光
し、且つ集光点近傍に諸作業を容易にする空間が得られ
る光ファイバ出射光の集光装置を提供することを課題と
するものである。SUMMARY OF THE INVENTION Therefore, the present invention provides an optical fiber which collects light emitted from an optical fiber or an optical fiber bundle at a high density and provides a space near the condensing point to facilitate various operations. An object of the present invention is to provide a condensing device for emitted light.
【0006】[0006]
【課題を解決するための手段】本発明は上記の課題を解
決するためになされたもので、回転楕円鏡の一部から成
る反射鏡を用い、その第1焦点から反射鏡に向けて光フ
ァイバ又は光ファイバ束の出射光を投射するようにした
ものである。The present invention has been made to solve the above-mentioned problems, and uses a reflecting mirror which is a part of a spheroidal mirror, and an optical fiber from the first focal point toward the reflecting mirror. Alternatively, the light emitted from the optical fiber bundle is projected.
【0007】本発明と従来の光源ランプを回転楕円鏡の
第1焦点に設けた集光装置との違いは、回転楕円鏡の全
部を反射面として用いるという技術思想ではなく、図2
に示すように一部を利用するようにしたことである。The difference between the present invention and the conventional light collecting device in which the light source lamp is provided at the first focal point of the spheroidal mirror is not the technical idea of using the entire spheroidal mirror as the reflecting surface, but FIG.
That is to use a part as shown in.
【0008】図2において、1は光ファイバ又は光ファ
イバ束、4は回転楕円鏡の一部から成る反射鏡であり、
F1は第1焦点、F2は第2焦点、WDはワーキングデ
イスタンスである。In FIG. 2, reference numeral 1 is an optical fiber or an optical fiber bundle, and 4 is a reflecting mirror which is a part of a spheroidal mirror.
F 1 is the first focus, F 2 is the second focus, and WD is the working distance.
【0009】今図3において、内面を鏡面とした回転楕
円鏡Rの第1焦点F1に点光源を置いた場合、すべての
光線は内面で反射して第2焦点に集光することは周知の
通りであるが、第1焦点F1に置いた点光源がある大き
さを持っている場合、その像は第2焦点F2近辺に形成
されるが、点光源と同じ像は出来ない。It is well known in FIG. 3 that when a point light source is placed at the first focal point F 1 of a spheroidal mirror R having an inner surface as a mirror surface, all light rays are reflected by the inner surface and are condensed at a second focal point. As described above, when the point light source placed at the first focus F 1 has a certain size, the image is formed near the second focus F 2, but the same image as the point light source cannot be formed.
【0010】[0010]
【外1】 [Outer 1]
【0011】従って、図3の場合、P1やP2で反射し
た像は第2焦点F2に於いて大きく、Pn−1,Pnで
反射した像は、ほぼ等倍となり、それが重ね合わされた
結果、第2焦点F2における像はぼやけたものとなる。
なお、図3の場合、像のぼやけが大きく、つまり密度が
低くなる。Therefore, in the case of FIG. 3, the images reflected at P 1 and P 2 are large at the second focal point F 2 , and the images reflected at P n-1 and P n have almost the same magnification. As a result of the superposition, the image at the second focus F 2 becomes blurry.
In the case of FIG. 3, the blur of the image is large, that is, the density is low.
【0012】以上のことから、回転楕円鏡の一部から成
る反射鏡を用いて効果的に光を集める為には、光点を極
力小さくした方が有利であり、またFrom the above, it is advantageous to minimize the light spot in order to effectively collect light using the reflecting mirror which is a part of the spheroidal mirror.
【0013】[0013]
【外2】 [Outside 2]
【0014】従って光源が1つの場合は、光ファイバ束
を用い、一端はそのまゝ光源と対向させ、他端は複数に
分岐させ、分岐した各光ファイバに対してそれぞれ図2
に示すような光学系を構成し、各反射鏡の第2焦点が同
一の位置になるように反射鏡を配置するか、あるいは光
源をそれぞれ持つ図2に示す光学系を複数配置すると共
に各反射鏡の第2焦点が同一の位置になるように構成す
ることにより、高密度の集光された光エネルギが得られ
る。Therefore, when there is only one light source, an optical fiber bundle is used, one end of which is opposed to the light source and the other end is branched into a plurality of optical fibers.
The optical system as shown in Fig. 2 is configured and the reflecting mirrors are arranged so that the second focal points of the respective reflecting mirrors are at the same position, or plural optical systems shown in Fig. 2 each having a light source are arranged and each reflecting By configuring the second focal point of the mirror to be at the same position, a high density of condensed light energy can be obtained.
【0015】光ファイバ1から出射する光は、点光源の
ように全方向に出射されるのではなく、一定の立体角
(通常20°〜70°)であるので、反射鏡4の大きさ
はその光を受けるだけの大きさがあればよい。そして、
ワーキングディスタンスWDは反射鏡4を設ける位置に
よって変化し、前述のように、反射鏡4の位置を第2焦
点F2に近くすると光の集光密度は大きく(像面積は小
さく)なるが、WDは小さくなるので、実施に際して
は、その兼ね合いを考慮する必要がある。Since the light emitted from the optical fiber 1 is not emitted in all directions unlike a point light source but has a constant solid angle (usually 20 ° to 70 °), the size of the reflecting mirror 4 is large. It only needs to be large enough to receive the light. And
The working distance WD changes depending on the position where the reflecting mirror 4 is provided, and as described above, when the position of the reflecting mirror 4 is close to the second focal point F 2 , the light condensing density becomes large (the image area becomes small). Since it will be smaller, it is necessary to consider the trade-off in the implementation.
【0016】[0016]
【実施例】図4は、本発明の第1の実施例を示すもの
で、5は光源、6は光ファイバ束(又は光ファイバ)、
7aは回転楕円反射面の一部から成る反射鏡、8は被照
射面、F1は回転楕円の第1焦点、F2は第2焦点であ
る。FIG. 4 shows a first embodiment of the present invention, 5 is a light source, 6 is an optical fiber bundle (or optical fiber),
Reflector consisting of part of the spheroidal reflecting surface 7a, 8 are irradiated surface, F 1 is the first focal point of the spheroid, F 2 is the second focal point.
【0017】[0017]
【外3】 [Outside 3]
【0018】そして、この実施例では、第2焦点近辺に
空間的作業エリアを大きく取ることができる。In this embodiment, a large spatial work area can be taken near the second focal point.
【0019】[0019]
【外4】 [Outside 4]
【0020】図6は本発明の第3の実施例を示すもの
で、被照射面8が平面で、かつ端部を照射する場合のよ
うに、反射鏡7cで覆ってしまっても問題のない場合の
ものである。FIG. 6 shows a third embodiment of the present invention, and there is no problem even if the surface 8 to be irradiated is a flat surface and is covered with a reflecting mirror 7c as in the case of irradiating the end portion. This is the case.
【0021】[0021]
【外5】 [Outside 5]
【0022】図7は本発明の第4の実施例を示すもの
で、光ファイバ束6を分岐し、各光ファイバ毎に本発明
に係る反射鏡7を用い、各反射鏡の第2焦点を同一位置
となるように反射鏡を配置したものである。FIG. 7 shows a fourth embodiment of the present invention. An optical fiber bundle 6 is branched and a reflecting mirror 7 according to the present invention is used for each optical fiber. The reflecting mirrors are arranged so as to be at the same position.
【0023】この場合、光源5からの光を受け入れる光
ファイバ束6の入射端面積をS0とし、分岐数をnとす
れば、光ファイバ出射端の面積SnはIn this case, if the incident end area of the optical fiber bundle 6 that receives the light from the light source 5 is S 0 and the number of branches is n, the area Sn of the optical fiber exit end is
【0024】[0024]
【数1】 [Equation 1]
【0025】となる。この(3)式からわかるように、
分岐数nが大きく、光路比mが小さい程、集光面積Sm
を小さくすることが出来る。[0025] As can be seen from equation (3),
The larger the number of branches n and the smaller the optical path ratio m, the more the light collecting area Sm.
Can be reduced.
【0026】また、第2焦点F2において、n個の反射
光を重ね合せることになるので、入射端S0に入力され
た光エネルギは、集光点、即ち第2焦点F2において集
光される。例えば光ファイバ束6を8分岐とし、回転楕
円上での光路比mを2とすると、Further, in the second focal point F 2, it means that superimposed the n number of the reflected light, the light energy that is input to the entrance end S 0 is the focal point, i.e. the condenser at the second focal point F 2 To be done. For example, assuming that the optical fiber bundle 6 has eight branches and the optical path ratio m on the spheroid is 2,
【0027】[0027]
【数2】 [Equation 2]
【0028】図8は本発明の第5の実施例を示すもの
で、図7に示した第4の実施例の変形を示すものであ
る。この場合反射鏡7,7の保持体(図示せず)は第4
の実施例よりも小さくすることが出来る。この実施例で
は反射鏡7,7を対向させ、それぞれに光ファイバから
の出射光を出射させる孔7d,7dを設けたが、反射鏡
を対向させずにずらせて設けるようにすれば孔を設けな
くとも済むものとなる。FIG. 8 shows a fifth embodiment of the present invention, which is a modification of the fourth embodiment shown in FIG. In this case, the holders (not shown) for the reflecting mirrors 7, 7 are the fourth
It can be made smaller than that of the embodiment. In this embodiment, the reflecting mirrors 7 and 7 are opposed to each other, and the holes 7d and 7d for emitting the light emitted from the optical fiber are provided respectively, but if the reflecting mirrors are provided not to face each other but to be shifted, the holes are provided. It will be unnecessary.
【0029】図9は本発明の第6の実施例を示すもの
で、n個の反射鏡7を笠状の保持体9にずらせて設けた
もので、6aは分岐された光ファイバの光出射端であ
り、第2焦点F2の位置に高密度に光を集光させること
ができる。FIG. 9 shows a sixth embodiment of the present invention, in which n reflection mirrors 7 are provided on a holding body 9 in the form of a shade, and 6a is a light output of a branched optical fiber. At the end, the light can be condensed with high density at the position of the second focus F 2 .
【0030】[0030]
【発明の効果】高密度の集光された光エネルギが得ら
れ、かつワーキングデイスタンスを大きくとれる光ファ
イバ又は光ファイバ束を用いた光照射装置を提供するこ
とが出来る。EFFECTS OF THE INVENTION It is possible to provide a light irradiation device using an optical fiber or an optical fiber bundle capable of obtaining a high density of condensed light energy and having a large working distance.
【図1】従来法による集光装置の問題点を説明するため
の図である。FIG. 1 is a diagram for explaining a problem of a light collecting device according to a conventional method.
【図2】本発明の原理図である。FIG. 2 is a principle view of the present invention.
【図3】本発明実施の際に考慮すべき点の説明図であ
る。FIG. 3 is an explanatory diagram of points to be considered when implementing the present invention.
【図4】第1の実施例の構成を示す概略図である。FIG. 4 is a schematic diagram showing the configuration of the first exemplary embodiment.
【図5】第2の実施例の構成を示す概略図である。FIG. 5 is a schematic diagram showing a configuration of a second exemplary embodiment.
【図6】第3の実施例の構成を示す概略図である。FIG. 6 is a schematic diagram showing a configuration of a third exemplary embodiment.
【図7】第4の実施例の構成を示す概略図である。FIG. 7 is a schematic diagram showing a configuration of a fourth exemplary embodiment.
【図8】第5の実施例の構成を示す概略図である。FIG. 8 is a schematic diagram showing a configuration of a fifth exemplary embodiment.
【図9】第6の実施例の構成を示す概略図である。FIG. 9 is a schematic diagram showing a configuration of a sixth exemplary embodiment.
1 光ファイバ 2 レンズ 3 回転楕円鏡 4 反射鏡 5 光源 6 光ファイバ束 7,7a〜7c 反射鏡 8 被照射面 9 保持体 DESCRIPTION OF SYMBOLS 1 optical fiber 2 lens 3 spheroidal mirror 4 reflecting mirror 5 light source 6 optical fiber bundle 7, 7a to 7c reflecting mirror 8 irradiated surface 9 holder
Claims (2)
反射鏡を用い、その第1焦点から反射鏡に向けて光ファ
イバ又は光ファイバ束の出射光を投射して第2焦点に集
光させることを特徴とする光ファイバ出射光の集光装
置。1. A reflecting mirror, which is a part of a spheroidal mirror, is used as the reflecting mirror, and light emitted from an optical fiber or a bundle of optical fibers is projected from the first focal point toward the reflecting mirror and is condensed at the second focal point. A condensing device for light emitted from an optical fiber.
を用い、各反射鏡の第1焦点にそれぞれ光ファイバ又は
光ファイバ束の光出射端を配置してそれぞれの反射鏡に
向けて出射光を投射し、前記各反射鏡の第2焦点が同一
位置になるように各反射鏡を配置したことを特徴とする
光ファイバ出射光の集光装置。2. A plurality of reflecting mirrors each of which is a part of a spheroidal mirror are used, and a light emitting end of an optical fiber or a bundle of optical fibers is arranged at a first focal point of each reflecting mirror to face each reflecting mirror. A condensing device for emitted light from an optical fiber, characterized in that each reflecting mirror is arranged such that the emitted light is projected and the second focus of each of the reflecting mirrors is at the same position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6031763A JPH07209583A (en) | 1994-01-20 | 1994-01-20 | Light converging device for optical fiber projection light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6031763A JPH07209583A (en) | 1994-01-20 | 1994-01-20 | Light converging device for optical fiber projection light |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07209583A true JPH07209583A (en) | 1995-08-11 |
Family
ID=12340080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6031763A Pending JPH07209583A (en) | 1994-01-20 | 1994-01-20 | Light converging device for optical fiber projection light |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07209583A (en) |
-
1994
- 1994-01-20 JP JP6031763A patent/JPH07209583A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4106078A (en) | Light source system | |
JP2730782B2 (en) | Lighting equipment | |
JP4792486B2 (en) | Optical system for Fresnel lens light, especially spotlight or floodlight | |
US4206494A (en) | High throughput illuminator | |
JP2009122686A (en) | Optical device | |
JP3058251B2 (en) | Illumination optics | |
JP2870790B2 (en) | Lighting system for micro reader printer | |
US6672740B1 (en) | Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors | |
JP3270471B2 (en) | Method and apparatus for non-imaging focusing and projection of electromagnetic radiation | |
JP2006511070A (en) | Illumination system with efficient concentrator optics | |
JPH07209583A (en) | Light converging device for optical fiber projection light | |
JP3367569B2 (en) | Illumination optical device, exposure device, and transfer method using the exposure device | |
JP3057110B2 (en) | Laser processing mask irradiation equipment | |
JP2906543B2 (en) | Lighting system for micro reader printer | |
JP2821691B2 (en) | Light source device for projector | |
JPS61292600A (en) | X-ray optical system | |
JPS62186219A (en) | Semiconductor laser device | |
JPH1195109A (en) | Confocal optical scanner | |
JPH0477703A (en) | Illuminator for optical system | |
JP2842676B2 (en) | Light beam irradiation device | |
JP3415879B2 (en) | Irradiation device | |
EP1798579B1 (en) | Condensing and collecting optical system using parabolic reflectors or a corresponding ellipsoid/hyperboloid pair of reflectors | |
JPH055854A (en) | Laser beam scanning optical system | |
JPH09145899A (en) | X-ray condensing system | |
JP2871227B2 (en) | Flash illumination device with variable irradiation angle |