JPH0720398A - Plane tilt correction scanning optical system - Google Patents

Plane tilt correction scanning optical system

Info

Publication number
JPH0720398A
JPH0720398A JP5166792A JP16679293A JPH0720398A JP H0720398 A JPH0720398 A JP H0720398A JP 5166792 A JP5166792 A JP 5166792A JP 16679293 A JP16679293 A JP 16679293A JP H0720398 A JPH0720398 A JP H0720398A
Authority
JP
Japan
Prior art keywords
scanning
lens
optical system
tilt correction
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5166792A
Other languages
Japanese (ja)
Inventor
Kazuo Yamakawa
和夫 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP5166792A priority Critical patent/JPH0720398A/en
Publication of JPH0720398A publication Critical patent/JPH0720398A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Lenses (AREA)

Abstract

PURPOSE:To make a device more compact and inexpensive by making a field angle wide in a main scanning direction while excellently maintaining image- formation characteristic and plane tilt correction function. CONSTITUTION:A laser beam B emitted from a semiconductor laser 1 is changed to the parallel rays of light by a collimator lens 2, and linearly converged by a cylindrical lens 3, and forms an image on the deflecting reflection surface 4a of a polygonal mirror 4. An ftheta lens 5 is constituted of a 1st lens having a cylindrical surface and a 2nd lens having a toric surface in this order from the polygonal mirror 4 side, and provided with at least one optical axis symmetric aspherical surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主としてレーザビーム
プリンタ等に用いられて、走査線の副走査方向について
のピッチのムラを除去する面倒れ補正走査光学系に関す
る。さらに詳述すると、光源から発した光線束を偏向器
の偏向反射面上に線状に結像する線状結像光学系と、前
記偏向器で反射偏向された光線束を被走査物上に結像す
る走査結像光学系とを備えた面倒れ補正走査光学系に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface tilt correction scanning optical system which is mainly used in a laser beam printer or the like and removes unevenness in pitch of scanning lines in the sub-scanning direction. More specifically, a linear imaging optical system that linearly images the light beam emitted from the light source on the deflective reflection surface of the deflector, and the light beam reflected and deflected by the deflector onto the object to be scanned. The present invention relates to a surface tilt correction scanning optical system including a scanning image forming optical system for forming an image.

【0002】[0002]

【従来の技術】レーザビームプリンタは、記録を極めて
高速で行える利点に加えて、昨今、その小型化と低コス
ト化が次第に実現されてきており、OA機器の多様化及
び発達に伴って、増々その需要が高まっている。
2. Description of the Related Art Recently, laser beam printers have been gradually reduced in size and cost in addition to the advantage that recording can be performed at extremely high speed. With the diversification and development of OA equipment, laser beam printers have been increasing. The demand is increasing.

【0003】例えば、このようなレーザビームプリンタ
において、光源からの光線束を走査するために用いられ
るポリゴンミラー等の偏向器の偏向反射面には、製作誤
差や取付誤差、あるいは、回転時の振動等によって、走
査面に直交する方向に対して多少の倒れ誤差がある。
For example, in such a laser beam printer, a deflection reflection surface of a deflector such as a polygon mirror used for scanning a light beam from a light source has a manufacturing error, a mounting error, or a vibration during rotation. Therefore, there is a slight tilt error with respect to the direction orthogonal to the scanning plane.

【0004】そのため、このような倒れ誤差のある偏向
反射面で反射された光線束は、被走査物上での結像位置
が副走査方向にずれ、走査線のピッチのむらが生じる。
そして、この走査線のピッチのむらは、例えば、レーザ
ビームプリンタのような記録装置においては、記録の画
質低下を引き起こす。
Therefore, the light beam reflected by the deflecting and reflecting surface having such a tilt error shifts the image forming position on the object to be scanned in the sub-scanning direction, resulting in uneven scanning line pitch.
Then, the unevenness of the pitch of the scanning lines causes a deterioration in recording image quality in a recording apparatus such as a laser beam printer.

【0005】前述した面倒れ補正走査光学系は、このよ
うな走査線のピッチのむらを除去するためのものであ
り、光源からの光線束を、一旦、線状結像光学系によっ
て走査面に直交する方向に収束させて偏向器の偏向反射
面上に線状に結像させ、偏向反射点からの光線束を、走
査結像光学系によってこの方向において復元して被走査
物上に共役に結像することで、偏向反射面の倒れ誤差の
影響を受けないようにするものである。一方、走査面内
においては、被走査物上での光線束の走査速度を等速な
ものとすべく、走査結像光学系によって偏向反射面から
の光線束をこの光学系への入射角に比例する像高となる
ように、被走査物上に結像するものである。
The above-described surface tilt correction scanning optical system is for removing such unevenness of the scanning line pitch, and a ray bundle from the light source is once made orthogonal to the scanning surface by the linear imaging optical system. The beam bundle from the deflective reflection point is restored in this direction by the scanning and image forming optical system and is conjugated to the object to be scanned. By forming an image, the influence of the tilt error of the deflective reflection surface is prevented. On the other hand, in the scanning plane, in order to make the scanning speed of the light flux on the object to be scanned constant, the scanning imaging optical system changes the light flux from the deflecting and reflecting surface to the incident angle to this optical system. The image is formed on the object to be scanned so that the image height becomes proportional.

【0006】なお、本明細書において、「走査面」と
は、走査される光線束の時系列的な集合によって形成さ
れる平面、即ち、被走査物における主走査ラインと、こ
の面倒れ補正走査光学系の光軸とを含む平面を意味する
ものとする。
In the present specification, the term "scanning plane" means a plane formed by a time-series aggregate of a bundle of rays to be scanned, that is, a main scanning line in an object to be scanned and this plane tilt correction scanning. It means a plane including the optical axis of the optical system.

【0007】従来から、上述のような面倒れ補正走査光
学系として、種々の構成のものが提案されている。その
一例としては、特公昭52-28666号公報において開示され
ているように、走査結像光学系が、線状結像光学系によ
って線状に結像された光線束を偏向器による反射後に一
旦円形に復元整形するシリンドリカルレンズ等のビーム
整形光学系と、復元整形された光線束を被走査物上に収
束結像する収束光学系とから成るものがある。
Conventionally, various structures have been proposed as the above-described surface tilt correction scanning optical system. As an example thereof, as disclosed in Japanese Examined Patent Publication No. 52-28666, the scanning image-forming optical system is configured such that a beam bundle of rays linearly imaged by the linear image-forming optical system is once reflected by a deflector. There is a system that includes a beam shaping optical system such as a cylindrical lens that restores and shapes the light in a circular shape, and a focusing optical system that converges and forms an image of the restored and shaped light beam on the object to be scanned.

【0008】この場合は、ビーム整形光学系によって光
線束の復元整形を行うように構成すると、ビーム整形光
学系に円形ビームに復元するという制約条件が課せられ
ることになり、光線束の等速走査性を得るために収束光
学系に持たせる歪曲特性や被走査物上での結像特性を良
好にする自由度が少なくなる。従って、この走査結像光
学系として上述の諸特性が優れたものを得るためには、
多くのレンズが必要となり、光学系の構成が複雑化する
という問題が生じる。
In this case, if the beam shaping optical system is configured to perform restoration shaping of the light beam, a constraint condition for restoring the beam into a circular beam is imposed on the beam shaping optical system. The degree of freedom for improving the distortion characteristic of the converging optical system and the image forming characteristic on the object to be scanned is reduced. Therefore, in order to obtain the scanning imaging optical system having the above-mentioned various excellent characteristics,
Since many lenses are required, there arises a problem that the configuration of the optical system becomes complicated.

【0009】その改良案として、特開昭50-93720号公報
において開示されているように、前記シリンドリカルレ
ンズ等のビーム整形光学系を、収束光学系と被走査物と
の間に介装したものがある。
As an improvement plan, as disclosed in Japanese Patent Laid-Open No. 50-93720, a beam shaping optical system such as the above-mentioned cylindrical lens is interposed between a converging optical system and an object to be scanned. There is.

【0010】このような構成の場合、良質な画像を得る
ためには、ビーム整形光学系を被走査物に近接して設け
なければならない。そのため、このビーム整形光学系と
して主走査方向に長いものが必要となり、コンパクトな
構成にすることが難しいという問題がある。
In the case of such a construction, in order to obtain a good quality image, the beam shaping optical system must be provided close to the object to be scanned. Therefore, this beam shaping optical system needs to be long in the main scanning direction, and it is difficult to make it compact.

【0011】また、特開昭56-36622号公報において開示
されているように、走査結像光学系として、偏向器側か
ら順に、球面単レンズとトーリック面を有する単レンズ
とを配置したものも知られている。そして、この走査結
像光学系は、光線束の等速走査性を得るための歪曲特性
と、線状結像光学系と協働して偏向反射面の倒れ誤差を
補正するための機能とを共に有している。
Further, as disclosed in Japanese Patent Laid-Open No. 56-36622, there is also a scanning imaging optical system in which a spherical single lens and a single lens having a toric surface are arranged in order from the deflector side. Are known. Further, this scanning image forming optical system has a distortion characteristic for obtaining a constant speed scanning property of a light beam bundle and a function for correcting the tilt error of the deflecting / reflecting surface in cooperation with the linear image forming optical system. Have both.

【0012】[0012]

【発明が解決しようとする課題】しかし、この構成の場
合、光学系はコンパクトになっているものの、構成上、
自由度が少なく、光線束の等速走査性を得るための歪曲
特性と偏向反射面の倒れ誤差に対する補正機能とを共に
良好に維持するようにすると、光線束の走査範囲を広い
ものとして画角の拡大を図ることが難しくなるという問
題がある。
However, in this configuration, although the optical system is compact,
If the degree of freedom is low and both the distortion characteristics for obtaining the uniform speed scanning of the light flux and the correction function for the tilt error of the deflecting / reflecting surface are maintained well, the scanning range of the light flux becomes wide and the angle of view becomes wide. There is a problem that it will be difficult to expand.

【0013】特開昭63-19617号公報において開示されて
いる面倒れ補正走査光学系は、上記実情に鑑みてなされ
たものであり、結像特性や面倒れ補正機能を良好に維持
しながら、主走査方向について広画角化を図り、レーザ
ビームプリンタ等の装置をより一層コンパクトに構成で
きる面倒れ補正走査光学系を提供することを目的として
提案したものである。
The surface tilt correction scanning optical system disclosed in Japanese Patent Application Laid-Open No. 63-19617 is made in view of the above-mentioned circumstances, and while maintaining good imaging characteristics and surface tilt correction function, The present invention has been proposed for the purpose of providing a surface tilt correction scanning optical system capable of widening the angle of view in the main scanning direction and making a device such as a laser beam printer more compact.

【0014】そして、本発明は、更にコンパクト化を図
り、しかも低コスト化を図ることができる面倒れ補正走
査光学系を提供することを目的とするものである。
Another object of the present invention is to provide a surface tilt correction scanning optical system which can be made more compact and can be manufactured at low cost.

【0015】[0015]

【課題を解決するための手段】この目的を達成するべ
く、本発明に係る面倒れ補正走査光学系は、偏向器で反
射偏向された光線束を被走査物上に結像する走査結像光
学系が、偏向器側から順に、シリンドリカル面を有する
第1レンズと,トーリック面を有する第2レンズとから
成り、かつ、少なくとも1つの光軸対称非球面を有する
ことを特徴としている。
In order to achieve this object, a surface tilt correction scanning optical system according to the present invention is a scanning imaging optical system for forming an image of a light beam reflected and deflected by a deflector on an object to be scanned. The system is characterized in that it comprises, in order from the deflector side, a first lens having a cylindrical surface and a second lens having a toric surface, and has at least one optical axis symmetric aspherical surface.

【0016】なお、ここでの、及び、以下本明細書中に
おいて、「トーリック面」とは、面倒れ補正走査光学系
の光軸に直交する面内で、光線束が走査される主走査方
向と、この主走査方向に直交する副走査方向とに、それ
ぞれ異なる屈折力を有する屈折面を意味するものであ
る。また、「シリンドリカル面」とは、主走査方向と副
走査方向との何れか一方の方向にのみ屈折力を有し、他
方の方向には屈折力を有しない屈折面を意味するもので
ある。
The term "toric surface" used here and hereinafter will be referred to as a "toric surface" in the main scanning direction in which a light beam is scanned in a plane orthogonal to the optical axis of the plane tilt correction scanning optical system. And a refracting surface having different refracting powers in the sub-scanning direction orthogonal to the main scanning direction. Further, the “cylindrical surface” means a refractive surface having a refractive power in only one of the main scanning direction and the sub-scanning direction and not having a refractive power in the other direction.

【0017】本発明に係る面倒れ補正走査光学系におい
ては、シリンドリカル面とトーリック面とをそれぞれ別
のレンズに設けることによって、走査面に直交する方向
での結像特性をかなり広範囲に亘って良好に維持するこ
とができ、設計の自由度を増大させることができる。そ
して、このことで、走査面に沿う方向での設計の制約が
軽減され、この方向において、被走査物上での光線束の
等速走査性を充分に高く維持できる歪曲特性を有しなが
ら、結像特性を良好に維持し、かつ、画角を広いものに
することができる。
In the surface tilt correction scanning optical system according to the present invention, by providing the cylindrical surface and the toric surface on different lenses, respectively, the imaging characteristics in the direction orthogonal to the scanning surface can be improved over a wide range. Therefore, the degree of freedom in design can be increased. Then, by this, the restrictions on the design in the direction along the scanning surface are alleviated, and in this direction, while having the distortion characteristic that the constant speed scannability of the light beam on the object to be scanned can be maintained sufficiently high, It is possible to maintain good imaging characteristics and widen the angle of view.

【0018】また、走査面に直交する方向において、偏
向器の偏向反射点と被走査物上での結像点とを、この走
査結像光学系に関して共役関係に維持しながら、倍率を
広い範囲で設定することができる。そして、この倍率が
低いほど面倒れ補正効果は高くなり、逆に倍率が高いほ
ど結像特性が良くなりやすいので、要求される性能に応
じて、それに見合うように倍率の設定を行うことができ
る。
Further, in the direction orthogonal to the scanning plane, the deflection reflection point of the deflector and the image forming point on the object to be scanned are maintained in a conjugate relationship with respect to the scanning image forming optical system, and the magnification is in a wide range. Can be set with. The lower the magnification is, the higher the effect of the face tilt correction is, and the higher the magnification is, the better the imaging characteristics are. Therefore, it is possible to set the magnification in accordance with the required performance. .

【0019】そして、このように設計の自由度が高めら
れたことにより、小さいサイズの光学系でも所望の性能
に見合った設計を比較的容易に行うことができるように
なり、その結果、光学系の広角化を図ることでコンパク
トな構成のものを実現できるようになった。
By increasing the degree of freedom in designing in this way, it becomes possible to relatively easily design even an optical system having a small size in accordance with desired performance. It became possible to realize a compact structure by widening the angle.

【0020】さらに、本発明によれば、少なくとも1つ
の面を光軸対称非球面とすることによって、走査面に沿
う方向において、被走査物上での光線束の等速走査性を
十分高く維持できる歪曲特性を有しながら、結像特性を
良好に維持することが容易となる。
Further, according to the present invention, by making at least one surface an optical axis symmetric aspherical surface, the uniform velocity scanning property of the light flux on the object to be scanned can be maintained sufficiently high in the direction along the scanning surface. It becomes easy to maintain good imaging characteristics while having possible distortion characteristics.

【0021】このため、画角をより広いものにすること
ができるため、一層のコンパクト化を図ることができ
る。また、低屈折率の光学材料を用いても十分な性能が
得られるため、低コスト化を図ることができるようにな
る。
As a result, the angle of view can be made wider, and the size can be further reduced. Further, even if an optical material having a low refractive index is used, sufficient performance can be obtained, so that the cost can be reduced.

【0022】特に、第1レンズのシリンドリカル面に、
走査面に直交する方向に負の屈折力を持たせることで、
広い範囲に亘ってこの方向での結像特性を高くすること
ができる。
Particularly, on the cylindrical surface of the first lens,
By giving negative refracting power in the direction orthogonal to the scanning plane,
The imaging characteristics in this direction can be improved over a wide range.

【0023】さらに、次の条件式(1)を満足するように
構成するのが好ましい。この条件は、本発明を実施する
にあたって、結像特性を良好に維持するために充足され
るべきものである。 |f1H/f1V|>5 …(1) 但し、 f1H:走査面に沿った方向の第1レンズの焦点距離 f1V:走査面に直交する方向の第1レンズの焦点距離 である。
Further, it is preferable that the constitution is such that the following conditional expression (1) is satisfied. This condition should be satisfied in order to maintain good imaging characteristics when carrying out the present invention. | F 1H / f 1V |> 5 (1) where f 1H is the focal length of the first lens in the direction along the scanning plane f 1V is the focal length of the first lens in the direction orthogonal to the scanning plane.

【0024】この条件は、主として、走査面に直交する
方向において、球面収差と像面湾曲とを補正するための
ものである。この条件が満たされない場合には、上記両
収差の補正を広画角でバランスよく行うことが困難であ
る。特に、像面湾曲が充分に補正されていない場合に
は、スポット径が走査線上で変動することになり、同じ
く画質の劣化を招来することになる。
This condition is mainly for correcting spherical aberration and field curvature in the direction orthogonal to the scanning plane. If this condition is not satisfied, it is difficult to correct both aberrations in a wide field angle in a well-balanced manner. In particular, if the field curvature is not sufficiently corrected, the spot diameter will fluctuate on the scanning line, and similarly, the image quality will be deteriorated.

【0025】[0025]

【実施例】以下、本発明を具体的に説明する。本発明に
係る面倒れ補正走査光学系は、例えば、図26に示すよ
うなレーザビームプリンタ等のレーザ走査装置に用いら
れる。このレーザ走査装置は、光源となる半導体レーザ
1,コリメータレンズ2,シリンドリカルレンズ3,ポ
リゴンミラー4,fθレンズ5,感光体ドラム6等から
構成されている。
The present invention will be specifically described below. The surface tilt correction scanning optical system according to the present invention is used, for example, in a laser scanning device such as a laser beam printer as shown in FIG. This laser scanning device is composed of a semiconductor laser serving as a light source, a collimator lens 2, a cylindrical lens 3, a polygon mirror 4, an fθ lens 5, a photosensitive drum 6 and the like.

【0026】半導体レーザ1からは、画像情報に応じて
直接変調されたレーザビームBが発せられる。光線束の
一例であるこのレーザビームBは、コリメータレンズ2
で平行光に整形される。その後、線状結像光学系の一例
であるシリンドリカルレンズ3により一旦線状に収束さ
れ、偏向器の一例であるポリゴンミラー4の偏向反射面
4aに結像する。この偏向反射面4aで反射された後の
レーザビームBは、ポリゴンミラー4の回転に伴って偏
向され、走査結像光学系の一例であるfθレンズ5によ
って感光体ドラム6上に結像されて同図中のA方向に走
査される。
The semiconductor laser 1 emits a laser beam B directly modulated according to image information. This laser beam B, which is an example of a light beam bundle, is used by the collimator lens 2
Is shaped into parallel light. Then, the light is converged linearly by a cylindrical lens 3 which is an example of a linear imaging optical system, and an image is formed on a deflecting reflection surface 4a of a polygon mirror 4 which is an example of a deflector. The laser beam B after being reflected by the deflecting / reflecting surface 4a is deflected as the polygon mirror 4 rotates, and is imaged on the photoconductor drum 6 by an fθ lens 5 which is an example of a scanning and imaging optical system. Scanning is performed in the A direction in FIG.

【0027】本発明に係る面倒れ補正走査光学系は、上
述した線状結像光学系(シリンドリカルレンズ)3と走査
結像光学系(fθレンズ)5とから成り、偏向器(ポリゴ
ンミラー)4の偏向反射面4aの面倒れにより生じる走
査線のピッチのずれを除去するものである。
The surface tilt correction scanning optical system according to the present invention comprises the linear imaging optical system (cylindrical lens) 3 and the scanning imaging optical system (fθ lens) 5 described above, and a deflector (polygon mirror) 4 The deviation of the scanning line pitch caused by the tilting of the deflective reflection surface 4a is removed.

【0028】以下、走査結像光学系5の具体例の諸元を
表2〜表12に示す。表1は、実施例1〜実施例11
を、図1〜図3に示すレンズ構成図と、図4〜図25に
示す収差図とにそれぞれ対応させて示している。つま
り、図1は実施例1〜実施例4のレンズ構成図、図2は
実施例5〜実施例10のレンズ構成図、図3は実施例1
1のレンズ構成図であり、対応する各実施例の特徴をそ
れぞれ表している。また、図1〜図3の(a)は走査面に
沿った方向で切断したときのレンズ配置を断面的に示す
レンズ構成図であり、図1〜図3の(b)は走査面に直交
する方向で切断したときのレンズ配置を断面的に示すレ
ンズ構成図である。各レンズ構成図(図1〜図3)及びレ
ンズデータ(表2〜表12)において、レンズ面の符号の
肩に[*]を付した面はシリンドリカル面であることを、
[**]を付した面はトーリック面であることを、[+]を付
した面は光軸対称非球面であることをそれぞれ示してい
る。
The specifications of the specific example of the scanning and imaging optical system 5 are shown in Tables 2 to 12 below. Table 1 shows Examples 1 to 11
Are shown in correspondence with the lens configuration diagrams shown in FIGS. 1 to 3 and the aberration diagrams shown in FIGS. 4 to 25, respectively. That is, FIG. 1 is a lens configuration diagram of Examples 1 to 4, FIG. 2 is a lens configuration diagram of Examples 5 to 10, and FIG. 3 is Example 1
FIG. 1 is a lens configuration diagram of No. 1 and shows characteristics of each corresponding embodiment. Further, FIGS. 1 to 3A are sectional views showing the lens arrangement when the lens is cut in the direction along the scanning surface, and FIGS. 1 to 3B are orthogonal to the scanning surface. It is a lens block diagram which shows in cross section the lens arrangement when it cut | disconnects in the direction. In each lens configuration diagram (FIGS. 1 to 3) and lens data (Tables 2 to 12), the surface marked with [*] on the shoulder of the lens surface is a cylindrical surface,
Surfaces marked with [**] indicate toric surfaces, and surfaces marked with [+] indicate axisymmetric aspherical surfaces.

【0029】また、走査面に沿った方向の収差図におい
て、歪曲収差は、光線束の等速走査性を得るための理想
像高を、 f・θ (但し、 θ:入射角[偏向された光線束がレンズ光軸となす角度] f:走査面に沿った方向の全ての走査結像光学系の焦点
距離 である。)とし、式: {(y’−f・θ)/f・θ}×100(%) で示す理想像高f・θからの実際の像高y’の偏差の百
分率で表してある。
Further, in the aberration diagram in the direction along the scanning plane, the distortion aberration is expressed by f.θ (where θ is the incident angle [deflected, Angle formed by ray bundle with lens optical axis] f: focal length of all scanning imaging optical systems in the direction along the scanning plane), and the formula: {(y'-f.θ) / f · θ } × 100 (%), which is expressed as a percentage of the deviation of the actual image height y ′ from the ideal image height f · θ.

【0030】その他、各実施例諸元において、 2ω:最大入射角 n1:第1レンズ(G1)を構成する光学材料の屈折率[780nm
における] n2:第2レンズ(G2)を構成する光学材料の屈折率[780nm
における] f1H:走査面に沿った方向の第1レンズ(G1)の焦点距離 f2H:走査面に沿った方向の第2レンズ(G2)の焦点距離 fV:走査面に直交する方向の全ての走査結像光学系の
焦点距離 f1V:走査面に直交する方向の第1レンズ(G1)の焦点距
離 f2V:走査面に直交する方向の第2レンズ(G2)の焦点距
離 である。
In addition, in the specifications of each embodiment, 2ω: maximum incident angle n 1 : refractive index of the optical material constituting the first lens (G1) [780 nm
] N 2 : Refractive index of the optical material constituting the second lens (G2) [780 nm
] F 1H : focal length of the first lens (G1) in the direction along the scanning plane f 2H : focal length of the second lens (G2) in the direction along the scanning plane f V : in the direction orthogonal to the scanning plane Focal lengths of all scanning imaging optical systems f 1V : Focal length of the first lens (G1) in the direction orthogonal to the scanning plane f 2V : Focal length of the second lens (G2) in the direction orthogonal to the scanning plane .

【0031】また、 A4,A6,A8:光軸対称非球面[+]の係数 であり、非球面の形状は、その面の頂点から光軸上に被
走査物の方向を正とするX軸をとり、同頂点にX軸と垂直
なY軸をとるとき、次の数1の式で表している。但し、
数1の式中、C0は曲率半径(r1,r2,…)の逆数である。
A 4 , A 6 , and A 8 are coefficients of the optical axis symmetric aspherical surface [+], and the shape of the aspherical surface is positive from the vertex of the surface on the optical axis in the direction of the scanned object. When the X axis is taken and the Y axis perpendicular to the X axis is taken at the same vertex, it is expressed by the following formula 1. However,
In the formula of Formula 1, C 0 is the reciprocal of the radius of curvature (r 1 , r 2 , ...).

【0032】[0032]

【数1】 [Equation 1]

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】[0039]

【表7】 [Table 7]

【0040】[0040]

【表8】 [Table 8]

【0041】[0041]

【表9】 [Table 9]

【0042】[0042]

【表10】 [Table 10]

【0043】[0043]

【表11】 [Table 11]

【0044】[0044]

【表12】 [Table 12]

【0045】[0045]

【発明の効果】以上説明したように本発明によれば、走
査結像光学系が、偏向器側から順に、シリンドリカル面
を有する第1レンズと,トーリック面を有する第2レン
ズとから成り、かつ、少なくとも1つの光軸対称非球面
を有するので、結像特性や面倒れ補正機能を良好に維持
しながら、主走査方向について広画角化を図り、装置を
より一層コンパクトにすることができる。しかも、低屈
折率の光学材料を用いても十分な性能が得られるため、
低コストで面倒れ補正走査光学系を実現することができ
る。
As described above, according to the present invention, the scanning and imaging optical system comprises, in order from the deflector side, the first lens having the cylindrical surface and the second lens having the toric surface, and Since it has at least one optical axis symmetric aspherical surface, it is possible to achieve a wider angle of view in the main scanning direction and further downsize the apparatus while maintaining good imaging characteristics and surface tilt correction function. Moreover, even if a low refractive index optical material is used, sufficient performance can be obtained,
It is possible to realize a surface tilt correction scanning optical system at low cost.

【0046】さらに、第1レンズのシリンドリカル面
に、走査面に直交する方向に負の屈折力を持たせること
によって、広い範囲にわたって走査面に直交する方向で
の結像特性を向上させることができる。また、第1レン
ズが前記条件式(1)を満足するように構成することに
よって、結像特性を向上させることができる。
Furthermore, by giving the cylindrical surface of the first lens a negative refracting power in the direction orthogonal to the scanning surface, the image forming characteristic in the direction orthogonal to the scanning surface can be improved over a wide range. . Further, by forming the first lens so as to satisfy the conditional expression (1), it is possible to improve the imaging characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1〜実施例4に対応するレンズ
構成図。
FIG. 1 is a lens configuration diagram corresponding to Examples 1 to 4 of the present invention.

【図2】本発明の実施例5〜実施例10に対応するレン
ズ構成図。
FIG. 2 is a lens configuration diagram corresponding to Examples 5 to 10 of the present invention.

【図3】本発明の実施例11に対応するレンズ構成図。FIG. 3 is a lens configuration diagram corresponding to Example 11 of the present invention.

【図4】本発明の実施例1の走査面に沿った方向の収差
図。
FIG. 4 is an aberration diagram in the direction along the scanning surface according to the first embodiment of the present invention.

【図5】本発明の実施例2の走査面に沿った方向の収差
図。
FIG. 5 is an aberration diagram in the direction along the scanning surface according to the second embodiment of the present invention.

【図6】本発明の実施例3の走査面に沿った方向の収差
図。
FIG. 6 is an aberration diagram in the direction along the scanning surface according to the third embodiment of the present invention.

【図7】本発明の実施例4の走査面に沿った方向の収差
図。
FIG. 7 is an aberration diagram in the direction along the scanning surface according to the fourth embodiment of the present invention.

【図8】本発明の実施例5の走査面に沿った方向の収差
図。
FIG. 8 is an aberration diagram in the direction along the scanning surface of Example 5 of the present invention.

【図9】本発明の実施例6の走査面に沿った方向の収差
図。
FIG. 9 is an aberration diagram in the direction along the scanning surface according to the sixth embodiment of the present invention.

【図10】本発明の実施例7の走査面に沿った方向の収
差図。
FIG. 10 is an aberration diagram in the direction along the scanning surface according to the seventh embodiment of the present invention.

【図11】本発明の実施例8の走査面に沿った方向の収
差図。
FIG. 11 is an aberration diagram in the direction along the scanning surface according to the eighth embodiment of the present invention.

【図12】本発明の実施例9の走査面に沿った方向の収
差図。
FIG. 12 is an aberration diagram in the direction along the scanning surface of Example 9 of the present invention.

【図13】本発明の実施例10の走査面に沿った方向の
収差図。
FIG. 13 is an aberration diagram in the direction along the scanning surface according to the tenth embodiment of the present invention.

【図14】本発明の実施例11の走査面に沿った方向の
収差図。
FIG. 14 is an aberration diagram in the direction along the scanning surface of Example 11 of the present invention.

【図15】本発明の実施例1の走査面に直交する方向の
収差図。
FIG. 15 is an aberration diagram in the direction orthogonal to the scanning plane according to the first embodiment of the present invention.

【図16】本発明の実施例2の走査面に直交する方向の
収差図。
FIG. 16 is an aberration diagram of a second embodiment of the present invention in a direction orthogonal to the scanning surface.

【図17】本発明の実施例3の走査面に直交する方向の
収差図。
FIG. 17 is an aberration diagram of a third embodiment of the present invention in a direction orthogonal to the scanning surface.

【図18】本発明の実施例4の走査面に直交する方向の
収差図。
FIG. 18 is an aberration diagram of a fourth embodiment of the present invention in a direction orthogonal to the scanning surface.

【図19】本発明の実施例5の走査面に直交する方向の
収差図。
FIG. 19 is an aberration diagram of a fifth embodiment of the present invention in a direction orthogonal to the scanning surface.

【図20】本発明の実施例6の走査面に直交する方向の
収差図。
FIG. 20 is an aberration diagram in the direction orthogonal to the scanning surface according to the sixth embodiment of the present invention.

【図21】本発明の実施例7の走査面に直交する方向の
収差図。
FIG. 21 is an aberration diagram in the direction orthogonal to the scanning surface according to Example 7 of the present invention.

【図22】本発明の実施例8の走査面に直交する方向の
収差図。
FIG. 22 is an aberration diagram in a direction orthogonal to the scanning surface according to Example 8 of the present invention.

【図23】本発明の実施例9の走査面に直交する方向の
収差図。
FIG. 23 is an aberration diagram in the direction orthogonal to the scanning surface according to Example 9 of the present invention.

【図24】本発明の実施例10の走査面に直交する方向
の収差図。
FIG. 24 is an aberration diagram of a tenth embodiment of the present invention in a direction orthogonal to the scanning surface.

【図25】本発明の実施例11の走査面に直交する方向
の収差図。
FIG. 25 is an aberration diagram in the direction orthogonal to the scanning surface of Example 11 of the present invention.

【図26】本発明の実施例が用いられるレーザビームプ
リンタの走査装置の概略構成図。
FIG. 26 is a schematic configuration diagram of a scanning device of a laser beam printer in which an embodiment of the present invention is used.

【符号の説明】[Explanation of symbols]

1 …光源(半導体レーザ) 3 …線状結像光学系(シリンドリカルレンズ) 4 …偏向器(ポリゴンミラー) 4a…偏向反射面 5 …走査結像光学系(fθレンズ) 6 …被走査物(感光体ドラム) B …光線束(レーザビーム) 1 ... Light source (semiconductor laser) 3 ... Linear imaging optical system (cylindrical lens) 4 ... Deflector (polygon mirror) 4a ... Deflection / reflection surface 5 ... Scanning imaging optical system (f.theta. Lens) 6 ... Scanned object (photosensitive) Body drum) B ... Ray bundle (laser beam)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光源から発した光線束を偏向器の偏向反射
面上に線状に結像する線状結像光学系と,前記偏向器で
反射偏向された光線束を被走査物上に結像する走査結像
光学系とを備えた面倒れ補正走査光学系であって、 前記走査結像光学系が、前記偏向器側から順に、シリン
ドリカル面を有する第1レンズと,トーリック面を有す
る第2レンズとから成り、かつ、少なくとも1つの光軸
対称非球面を有することを特徴とする面倒れ補正走査光
学系。
1. A linear imaging optical system for linearly imaging a light beam emitted from a light source on a deflecting and reflecting surface of a deflector, and a light beam reflected and deflected by the deflector onto an object to be scanned. A surface tilt correction scanning optical system including a scanning imaging optical system for forming an image, wherein the scanning imaging optical system has, in order from the deflector side, a first lens having a cylindrical surface and a toric surface. A surface tilt correction scanning optical system comprising a second lens and at least one optical axis symmetric aspherical surface.
【請求項2】前記第1レンズのシリンドリカル面が、走
査面に直交する方向に負の屈折力を持つものであること
を特徴とする請求項1に記載の面倒れ補正走査光学系。
2. The surface tilt correction scanning optical system according to claim 1, wherein the cylindrical surface of the first lens has a negative refractive power in a direction orthogonal to the scanning surface.
【請求項3】前記第1レンズが、次の条件を満たすもの
であることを特徴とする請求項1又は請求項2に記載の
面倒れ補正走査光学系; |f1H/f1V|>5 但し、 f1H:走査面に沿った方向の第1レンズの焦点距離 f1V:走査面に直交する方向の第1レンズの焦点距離 である。
3. The surface tilt correction scanning optical system according to claim 1, wherein the first lens satisfies the following condition: | f 1H / f 1V |> 5 Here, f 1H is the focal length of the first lens in the direction along the scanning plane, and f 1V is the focal length of the first lens in the direction orthogonal to the scanning plane.
JP5166792A 1993-07-06 1993-07-06 Plane tilt correction scanning optical system Pending JPH0720398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5166792A JPH0720398A (en) 1993-07-06 1993-07-06 Plane tilt correction scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5166792A JPH0720398A (en) 1993-07-06 1993-07-06 Plane tilt correction scanning optical system

Publications (1)

Publication Number Publication Date
JPH0720398A true JPH0720398A (en) 1995-01-24

Family

ID=15837762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5166792A Pending JPH0720398A (en) 1993-07-06 1993-07-06 Plane tilt correction scanning optical system

Country Status (1)

Country Link
JP (1) JPH0720398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271820A (en) * 1994-11-30 1996-10-18 Samsung Electro Mech Co Ltd Optical scanner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08271820A (en) * 1994-11-30 1996-10-18 Samsung Electro Mech Co Ltd Optical scanner

Similar Documents

Publication Publication Date Title
JP3445050B2 (en) Scanning optical device and multi-beam scanning optical device
JP3337510B2 (en) Optical scanning device
JP3466863B2 (en) Scanning optical device and image recording device using the same
JP3397624B2 (en) Scanning optical device and laser beam printer having the same
JP3303558B2 (en) Scanning optical device
JP3620767B2 (en) Reflective scanning optical system
JP3445092B2 (en) Scanning optical device
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP2000081584A (en) Scanning optical device
JP5269000B2 (en) Multi-beam scanning optical apparatus and laser beam printer having the same
JP2000267030A (en) Optical scanning device
JP4349500B2 (en) Optical scanning optical system
JPH08240768A (en) Scanning optical system
JP3627781B2 (en) Laser scanner
JPH04141619A (en) Scanning optical system with surface tilt correcting function
JPH0720398A (en) Plane tilt correction scanning optical system
JP2716428B2 (en) Surface tilt correction scanning optical system
JP3320239B2 (en) Scanning optical device
JPH10260371A (en) Scanning optical device
JP3437331B2 (en) Optical scanning optical system and laser beam printer including the same
JPH1184304A (en) Optical scanner
JPS6321619A (en) Scanning optical system with correction for surface tilt
JPS6350814A (en) Surface tilt correcting and scanning optical system
JPH09281422A (en) Scanning optical device
JPH02285321A (en) Highly accurate toric ftheta lens system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 16