JPH07180038A - High-hardness thin film and its production - Google Patents

High-hardness thin film and its production

Info

Publication number
JPH07180038A
JPH07180038A JP6821494A JP6821494A JPH07180038A JP H07180038 A JPH07180038 A JP H07180038A JP 6821494 A JP6821494 A JP 6821494A JP 6821494 A JP6821494 A JP 6821494A JP H07180038 A JPH07180038 A JP H07180038A
Authority
JP
Japan
Prior art keywords
film
amorphous
crystalline
fine particles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6821494A
Other languages
Japanese (ja)
Other versions
JP3281173B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihisa Inoue
明久 井上
Hiroshi Yamagata
寛 山形
Jiyunichi Nagahora
純一 永洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP06821494A priority Critical patent/JP3281173B2/en
Publication of JPH07180038A publication Critical patent/JPH07180038A/en
Application granted granted Critical
Publication of JP3281173B2 publication Critical patent/JP3281173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To produce a dense wear resistant thin film excellent in adhesion to a substrate and collapsing resistance and having high hardness and to provide a method for producing the thin film. CONSTITUTION:At the time of executing film forming on a substrate by a physical vapor phase deposition method, the material having a compsn. of the general formula: AlaMb (M=Ti, Ta, V, Cr, Zr, Nb, Mo, Hf, W, Fe, Co, Ni, Cu and Mn, 60at%<=a<=98.5at% and 1.5at%<=b'<=40at%; where a+b+c=100at%) capable of forming an amorphous film or an amorphous film in which crystalline fine grains are deposited and dispersed in accordance with the partial pressure of a reaction gas is used. Furthermore, the formation of a hard film is executed by two stages of (A) the formation of the amorphous film or the amorphous film in which crystalline fine particles are deposited and dispersed and (B) heat treatment for the same amorphous film. By this method, the film in which ceramic fine particles are dispersed into the substantially amorphous or crystalline base metal phase or the film in which the dispersing ratio of the ceramic fine particles increased toward the film surface and the compsn. and structure are changed into a crystalline ceramic phase in a gradient way can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属母相中に結晶質セ
ラミックス微粒子を分散した高硬度薄膜及びその製造方
法に関し、さらに詳しくは、基材に対する密着性が良好
で、耐圧壊性に優れ、しかも高硬度の硬質セラミックス
表面を有し、高強度材料、耐摩耗材料、耐高温材料など
として産業上の種々の用途に有用な耐摩耗性硬質膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-hardness thin film in which crystalline ceramic fine particles are dispersed in a metal matrix and a method for producing the same. More specifically, it has good adhesion to a substrate and excellent crush resistance. Further, the present invention relates to a wear-resistant hard film having a hard ceramic surface of high hardness and useful for various industrial applications as a high-strength material, wear-resistant material, high-temperature resistant material, and the like.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】機械部品
や工具などの摩耗や擦り傷を防ぐための耐摩耗コーティ
ング材料としては、従来、TiN,TiC,WC,Al
−Ti−N系等の材料が用いられている。そして、これ
らの膜は、一般に反応性スパッタ法やイオンプレーティ
ング法などの物理的気相蒸着法により成膜され、耐摩耗
膜として利用されているが、高い硬度を得るためには膜
中の窒素濃度又は炭素濃度をある程度高くする必要があ
る。しかしながら、このことによって、膜には処理後に
残留応力が発生することがある。また、成膜条件によっ
ては柱状構造の結晶粒子となるため、硬質膜内部で発生
した破壊がその周辺の正常部にまで悪影響を及ぼすこと
があり、機械的に脆くなるという問題がある。
2. Description of the Related Art Conventionally, TiN, TiC, WC and Al have been used as wear resistant coating materials for preventing wear and abrasion of machine parts and tools.
Materials such as —Ti—N type are used. And, these films are generally formed by a physical vapor deposition method such as a reactive sputtering method or an ion plating method and are used as abrasion resistant films, but in order to obtain high hardness, It is necessary to increase the nitrogen concentration or carbon concentration to some extent. However, this can cause residual stresses in the film after processing. In addition, depending on the film forming conditions, the crystal particles have a columnar structure, so that the breakage generated inside the hard film may adversely affect even the normal part around the hard film, resulting in mechanical brittleness.

【0003】また、形成された膜は緻密でなければなら
ず、しかも基材との密着性に優れたものでなければなら
ない。一般に、これらの膜を基材上に成膜するに当って
は、基材に脱脂、エッチング等の前処理を施した後、所
望の硬質膜が基材上に直に形成されている。このように
形成された膜は、基材と膜の物性値が場合によっては極
端に異なるため、基材と膜との密着性が不充分なものと
なる。そのために、一般に基材を予熱してから成膜する
方法がとられている。しかしながら、このような処理を
施しても膜は柱状構造を示しており、機械的に脆くなる
という問題がある。
Further, the formed film must be dense and have excellent adhesion to the substrate. Generally, in forming these films on a base material, a desired hard film is directly formed on the base material after performing pretreatment such as degreasing and etching on the base material. In the film thus formed, the physical property values of the base material and the film are extremely different depending on the case, so that the adhesiveness between the base material and the film becomes insufficient. Therefore, generally, a method of preheating a base material and then forming a film is adopted. However, even if such a treatment is performed, the film has a columnar structure, and there is a problem that the film becomes mechanically brittle.

【0004】したがって、本発明の目的は、膜中に高硬
度を有する微粒子を均一に分散させることで、基材に対
する密着性に優れ、膜全体としてはセラミックス材料の
欠点である脆性が緩和された、高い硬度を示す複合硬質
膜を提供しようとするものである。さらに本発明の目的
は、金属母相中のセラミックス微粒子の分散割合が膜厚
方向に増加した機能的に傾斜した構造を有する膜を形成
するようにセラミックス微粒子が分散し、それによって
基材に対する密着性及び耐圧壊性に優れ、高い硬度を示
す緻密な耐摩耗性硬質膜を提供することにある。本発明
の別の目的は、上記のような優れた性質を有する高硬度
の耐摩耗性薄膜を、物理的気相蒸着法及び熱処理法を利
用して比較的簡単な工程で基材上に形成できる方法を提
供することにある。
Therefore, the object of the present invention is to disperse fine particles having a high hardness uniformly in the film, so that the adhesion to the substrate is excellent and the brittleness, which is a defect of the ceramic material as a whole film, is alleviated. The present invention is intended to provide a composite hard film having high hardness. Further, the object of the present invention is to disperse the ceramic fine particles so as to form a film having a functionally inclined structure in which the dispersion ratio of the ceramic fine particles in the metal matrix phase is increased in the film thickness direction, thereby adhering to the substrate. The object is to provide a dense wear-resistant hard film having excellent hardness and crush resistance and exhibiting high hardness. Another object of the present invention is to form a high-hardness wear-resistant thin film having the above-mentioned excellent properties on a substrate by a relatively simple process using a physical vapor deposition method and a heat treatment method. To provide a way to do it.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に、本発明によれば、一般式:Alab (ここで、M
はTi,Ta,V,Cr,Zr,Nb,Mo,Hf,
W,Fe,Co,Ni,Cu及びMnよりなる群から選
ばれた少なくとも1種の元素、a及びbはそれぞれ原子
%を示し、60at%≦a≦98.5at%、1.5a
t%≦b≦40at%、但し、a+b=100at%)
で表わされる組成を有する金属母相中に結晶質微粒子が
分散していることを特徴とする高硬度薄膜が提供され
る。好適には、金属母相に分散している結晶質微粒子が
500nm以下、好ましくは100nm以下のセラミッ
クス粒子である高硬度薄膜が提供される。金属母相は実
質的に非晶質相であってもあるいは結晶質相であっても
よい。高硬度薄膜は、金属母相中に膜全体にわたって均
一に結晶質微粒子が分散している均一組成膜であっても
よく、あるいは金属母相中の結晶質微粒子の分散割合が
膜厚方向に連続的に又は段階的に増加している機能的に
傾斜した構造の膜であってもよい。一つの好適な態様に
よれば、上記組成を有する実質的に結晶の金属相から膜
表面に向ってセラミックス微粒子の分散割合が増加して
結晶質セラミックス相に組成及び構造が傾斜的に変化し
ている高硬度薄膜が提供される。
In order to achieve the above object, according to the present invention, the general formula: Al a M b (where M
Is Ti, Ta, V, Cr, Zr, Nb, Mo, Hf,
At least one element selected from the group consisting of W, Fe, Co, Ni, Cu and Mn, a and b each represent atomic%, and 60 at% ≦ a ≦ 98.5 at%, 1.5a
t% ≦ b ≦ 40 at%, where a + b = 100 at%)
There is provided a high hardness thin film characterized in that crystalline fine particles are dispersed in a metal matrix having a composition represented by: Suitably, there is provided a high hardness thin film in which the crystalline fine particles dispersed in the metal matrix phase are ceramic particles of 500 nm or less, preferably 100 nm or less. The metal matrix phase may be a substantially amorphous phase or a crystalline phase. The high hardness thin film may be a uniform composition film in which crystalline fine particles are uniformly dispersed throughout the metal matrix phase, or the dispersion ratio of the crystalline fine particles in the metal matrix phase is continuous in the film thickness direction. It may be a film having a functionally graded structure that is gradually or stepwise increased. According to one preferred embodiment, the dispersion ratio of the ceramic fine particles increases from the substantially crystalline metal phase having the above composition toward the film surface, and the composition and structure gradually change to the crystalline ceramic phase. A high hardness thin film is provided.

【0006】さらに本発明によれば、前記高硬度薄膜の
製造方法も提供される。本発明の一つの態様によれば、
(A)物理的気相蒸着法により、一般式:Alab
(ここで、M,a及びbは前記した意味と同じである)
で表わされる組成を有する蒸発源材料を用い、かつ窒
素、酸素又は炭素を含む反応ガスを用い、反応ガスの供
給量を、用いた蒸発源材料に応じて非晶質相を形成する
反応ガス分圧の範囲内で、分圧一定に、又は連続的もし
くは段階的に変化するように制御しながら、所定量の反
応ガスを含む不活性ガス雰囲気中で基材上に非晶質膜を
形成する工程、及び(B)前記工程により得られた膜を
不活性ガス雰囲気中で熱処理することによって金属母相
中に結晶質微粒子が分散している膜を形成することを特
徴とする高硬度薄膜の製造方法が提供される。さらに本
発明の他の態様によれば、(A)物理的気相蒸着法によ
り、一般式:Alab (ここで、M,a及びbは前記
した意味と同じである)で表わされる組成を有する蒸発
源材料を用い、窒素、酸素又は炭素を含む反応ガスの供
給量を、用いた蒸発源材料に応じて非晶質相を形成する
反応ガス分圧から結晶質相を形成する反応ガス分圧まで
連続的又は段階的に変化するように制御しながら、所定
量の反応ガスを含む不活性ガス雰囲気中で基材上に成膜
を行い、基材上の実質的に非晶質の金属相から膜表面に
向って反応ガス成分量が連続的又は段階的に増加して結
晶質セラミックス相に変化してなる構造傾斜膜を作成す
る工程、及び(B)前記工程により得られた構造傾斜膜
を不活性ガス雰囲気中で熱処理を行うことにより、実質
的に結晶の金属相から膜表面に向ってセラミックス微粒
子の分散割合が増加して結晶質セラミックス相に組成及
び構造が傾斜的に変化してなる膜を得る工程からなるこ
とを特徴とする高硬度薄膜の製造方法が提供される。前
記いずれの方法においても、好適には、基材上への成膜
はスパッタ法又はイオンプレーティング法により行わ
れ、また前記熱処理は、所与の組成において、非晶質の
膜が得られる最高窒素分圧における結晶化温度以上の温
度に30分以上保持して行われる。
Further, according to the present invention, there is also provided a method for manufacturing the above-mentioned high hardness thin film. According to one aspect of the invention,
(A) By a physical vapor deposition method, a general formula: Al a M b
(Where M, a and b have the same meanings as described above)
Using an evaporation source material having a composition represented by, and using a reaction gas containing nitrogen, oxygen or carbon, the reaction gas is supplied at a reaction gas content that forms an amorphous phase according to the evaporation source material used. An amorphous film is formed on a substrate in an inert gas atmosphere containing a predetermined amount of a reaction gas while controlling the partial pressure to be constant or to change continuously or stepwise within a pressure range. And (B) heat-treating the film obtained in the above process in an inert gas atmosphere to form a film in which crystalline fine particles are dispersed in a metal matrix phase. A manufacturing method is provided. According to another aspect of the present invention, (A) is represented by the general formula: Al a M b (where M, a and b have the same meanings as described above) by physical vapor deposition. A reaction for forming a crystalline phase from a reaction gas partial pressure for forming an amorphous phase according to the supply amount of a reaction gas containing nitrogen, oxygen or carbon by using an evaporation source material having a composition While controlling the gas partial pressure to change continuously or stepwise, a film is formed on the base material in an inert gas atmosphere containing a predetermined amount of reaction gas, and is substantially amorphous on the base material. And (B) the step of forming a structurally graded film in which the amount of the reaction gas component increases continuously or stepwise from the metal phase toward the film surface to change to the crystalline ceramic phase, and (B) By subjecting the structure-graded film to a heat treatment in an inert gas atmosphere, the crystal is substantially crystallized. A method for producing a high-hardness thin film, comprising the step of obtaining a film in which the dispersion ratio of ceramic fine particles increases from the metal phase toward the film surface and the composition and structure gradually change to a crystalline ceramic phase. Will be provided. In any of the above methods, preferably, the film formation on the substrate is performed by a sputtering method or an ion plating method, and the heat treatment is performed at a maximum to obtain an amorphous film with a given composition. It is carried out by maintaining the temperature above the crystallization temperature under nitrogen partial pressure for 30 minutes or more.

【0007】[0007]

【発明の作用及び態様】本発明は、物理的気相蒸着法、
特にスパッタ法又はイオンプレーティング法により基材
上に成膜を行うに際して、ターゲット(蒸発材料)とし
て、不活性ガス雰囲気中の反応ガス分圧に応じて非晶質
膜又は非晶質膜中に結晶質セラミックス微粒子が析出・
分散した膜を形成できる組成の材料を用い、また、硬質
膜の形成を、(A)非晶質膜あるいは結晶質微粒子が析
出・分散した非晶質膜の成膜と、(B)前記工程により
得られた非晶質膜の熱処理の二つの工程により行うもの
である。
The present invention relates to a physical vapor deposition method,
In particular, when forming a film on a substrate by a sputtering method or an ion plating method, an amorphous film or an amorphous film is used as a target (evaporation material) depending on the partial pressure of the reaction gas in an inert gas atmosphere. Precipitation of crystalline ceramic particles
A material having a composition capable of forming a dispersed film is used, and a hard film is formed by (A) forming an amorphous film or an amorphous film in which crystalline fine particles are deposited / dispersed, and (B) the above step. This is performed by two steps of heat treatment of the amorphous film obtained by.

【0008】前記(A)工程における非晶質膜の成膜
は、基材と、一般式:Alab (ここで、MはTi,
Ta,V,Cr,Zr,Nb,Mo,Hf,W,Fe,
Co,Ni,Cu及びMnよりなる群から選ばれた少な
くとも1種の元素、a及びbはそれぞれ原子%を示し、
60at%≦a≦98.5at%、1.5at%≦b≦
40at%、但し、a+b=100at%)で表わされ
る組成を有する蒸発源材料を蒸着室内にセットし、窒
素、酸素又は炭素を含む反応ガスの供給量を、雰囲気中
の反応ガス分圧を非晶質膜を形成し得る範囲内で分圧一
定に、又は連続的にもしくは段階的に変化するように制
御しながら、物理的気相蒸着法により反応ガスを含む不
活性ガス雰囲気中で基材上に成膜を行い、非晶質膜を形
成する。例えば、Ar,He,Ne,Xe,Kr等の不
活性ガスを導入してガス圧(全圧)を0.6〜1.2P
aの低圧に保った蒸着装置内に、窒素ガス、アンモニア
ガス、メタンガス等の反応ガスの供給量を分圧一定に制
御して成膜することにより、膜中の反応ガス成分の量が
膜全体にわたって実質的に均一な非晶質膜が得られる。
一方、反応ガスの供給量をその雰囲気中の分圧が連続的
もしくは段階的に増加するように制御することにより、
膜中の反応ガス成分の量が基板−膜界面から膜表面部で
最大となるように傾斜して増大した非晶質膜が得られ
る。
The formation of the amorphous film in the step (A) is carried out by using a base material and a general formula: Al a M b (where M is Ti,
Ta, V, Cr, Zr, Nb, Mo, Hf, W, Fe,
At least one element selected from the group consisting of Co, Ni, Cu and Mn, a and b each represent atomic%,
60 at% ≦ a ≦ 98.5 at%, 1.5 at% ≦ b ≦
40 at%, where a + b = 100 at%) is set in the evaporation source material, and the supply amount of the reaction gas containing nitrogen, oxygen, or carbon is set to the reaction gas partial pressure in the atmosphere. On the substrate in an inert gas atmosphere containing a reaction gas by physical vapor deposition while controlling the partial pressure to be constant within the range where a porous film can be formed or to control it continuously or stepwise. A film is formed on the substrate to form an amorphous film. For example, by introducing an inert gas such as Ar, He, Ne, Xe, or Kr, the gas pressure (total pressure) is 0.6 to 1.2 P.
By controlling the supply amount of the reaction gas such as nitrogen gas, ammonia gas, and methane gas to a constant partial pressure in the vapor deposition apparatus kept at a low pressure of a to form a film, the amount of the reaction gas component in the film is reduced. A substantially uniform amorphous film is obtained.
On the other hand, by controlling the supply amount of the reaction gas so that the partial pressure in the atmosphere increases continuously or stepwise,
It is possible to obtain an amorphous film in which the amount of the reactive gas component in the film is gradually increased from the substrate-film interface to the maximum at the film surface portion.

【0009】本発明の他の態様によれば、蒸着室への反
応ガスの供給量は、雰囲気中の反応ガスの分圧が用いる
蒸発源材料に応じて非晶質膜を形成し得るレベルから結
晶質セラミックス粒子の析出を生じ得るレベルまで連続
的に又は段階的に変化するように制御される。この場
合、膜中の反応ガス成分の量が膜表面に向って増大して
おり、膜の組成及び構造が基材との接触部の実質的に非
晶質の金属相から膜表層部の結晶質セラミックス相へ変
化している構造傾斜膜もしくは傾斜機能膜が得られる。
According to another aspect of the present invention, the supply amount of the reaction gas to the vapor deposition chamber is from a level capable of forming an amorphous film depending on the evaporation source material used by the partial pressure of the reaction gas in the atmosphere. It is controlled to change continuously or stepwise to a level at which precipitation of crystalline ceramic particles can occur. In this case, the amount of the reactive gas component in the film increases toward the film surface, and the composition and structure of the film are changed from the substantially amorphous metal phase in the contact portion with the substrate to the crystal in the surface layer portion of the film. It is possible to obtain a functionally graded film or a functionally graded film that has changed to a quality ceramic phase.

【0010】前記工程(A)で得られた非晶質膜又は構
造傾斜膜は、次いで不活性ガス雰囲気中での熱処理に付
される(工程B)。非晶質膜を熱処理すると、金属母相
中に結晶質セラミックス微粒子が析出・分散した硬質膜
が得られる。このようにして得られる硬質膜は、結晶質
微粒子が母相中に実質的に膜全体にわたって均一に析出
・分散した構造を有する膜、あるいは基材と接する膜の
組成、構造と膜最表部の組成、構造に違いがあり、膜厚
方向に連続的にもしくは段階的に変化している組成及び
構造を有する膜である。例えば、膜中の反応ガス成分の
量が膜全体にわたって実質的に均一な非晶質膜を熱処理
すると、結晶質微粒子が金属母相中に膜全体にわたって
均一に分散している均一組成の膜が得られる。他方、膜
中の反応ガス成分の量が基板−膜界面から膜表面部で最
大となるように傾斜して増大した非晶質膜を熱処理する
と、金属母相中に分散している結晶質微粒子の割合が膜
表面に向って増大しており、膜の組成及び構造が膜厚方
向に実質的に非晶質の金属から結晶質セラミックスへ連
続的又は段階的に変化している機能的に傾斜した構造の
膜が得られる。この場合、非晶質膜の熱処理は、形成さ
れた非晶質膜を一般に350℃以上の温度、好ましくは
膜の結晶化温度以上の温度に30分以上保持して行うこ
とが望ましい。金属母相は実質的に非晶質相であっても
よく、あるいは結晶質相であってもよく、熱処理の温
度、時間など熱処理条件を適当に選定することにより制
御できる。
The amorphous film or structure-graded film obtained in the step (A) is then subjected to heat treatment in an inert gas atmosphere (step B). When the amorphous film is heat-treated, a hard film having crystalline ceramic fine particles precipitated and dispersed in the metal matrix is obtained. The hard film thus obtained is a film having a structure in which crystalline fine particles are substantially uniformly deposited / dispersed in the matrix in the matrix, or the composition, structure and film outermost portion of the film in contact with the base material. The film has a composition and a structure which are different in composition and structure and are continuously or stepwise changed in the film thickness direction. For example, when an amorphous film in which the amount of reactive gas components in the film is substantially uniform throughout the film is heat-treated, a film having a uniform composition in which crystalline fine particles are uniformly dispersed throughout the film in the metal matrix phase is obtained. can get. On the other hand, when an amorphous film whose temperature is gradually increased from the substrate-film interface to the maximum at the film surface is heat treated, the crystalline fine particles dispersed in the metal matrix phase are dispersed. Is increasing toward the film surface, and the composition and structure of the film are continuously or stepwise changed from a substantially amorphous metal to a crystalline ceramic in the film thickness direction Functionally graded A film having the above structure is obtained. In this case, it is desirable that the heat treatment of the amorphous film is performed by holding the formed amorphous film at a temperature of generally 350 ° C. or higher, preferably a temperature of the film crystallization temperature or higher for 30 minutes or longer. The metal matrix phase may be a substantially amorphous phase or a crystalline phase, and can be controlled by appropriately selecting heat treatment conditions such as heat treatment temperature and time.

【0011】例えば、Al80Ti20合金を蒸発源材料と
して用い、窒素ガスを反応ガスとして用いると、窒素分
圧0.005〜0.087Paにおいて非晶質膜を形成
できる。この非晶質膜の結晶化温度は、成膜時の窒素分
圧の増大と共に389℃(0.021Paで)から45
5℃(0.072Paで)へと変化するが、不活性ガス
雰囲気中で結晶化温度以上の温度で熱処理を行うと、硬
度の高い膜が得られる。この膜を透過電子顕微鏡で観察
したところ、金属母相中に数nm〜十数nm程度の粒径
を持つ極めて微細な粒子が析出しており、この微粒子
は、通常の薄膜中に観察される柱状構造の微粒子とは異
なり、粒界等に方向性がないことが判った。従って、従
来技術のような問題がなく、極めて緻密で基材との密着
性に優れると共に、セラミックス材料の欠点である脆性
を示さない硬度の高い膜を作製できる。
For example, when an Al 80 Ti 20 alloy is used as the evaporation source material and nitrogen gas is used as the reaction gas, an amorphous film can be formed at a nitrogen partial pressure of 0.005 to 0.087 Pa. The crystallization temperature of this amorphous film is from 389 ° C. (at 0.021 Pa) to 45 as the nitrogen partial pressure during film formation increases.
Although the temperature changes to 5 ° C. (at 0.072 Pa), a film having high hardness can be obtained by performing heat treatment at a temperature equal to or higher than the crystallization temperature in an inert gas atmosphere. When this film is observed with a transmission electron microscope, extremely fine particles having a particle size of several nm to several tens of nm are precipitated in the metal matrix phase, and these fine particles are observed in an ordinary thin film. It was found that, unlike the fine particles having a columnar structure, the grain boundaries and the like have no directionality. Therefore, it is possible to produce a film having a high hardness, which is extremely dense and has excellent adhesion to a base material, and which does not exhibit brittleness, which is a defect of a ceramic material, without the problems of the prior art.

【0012】本発明の別の態様においては、蒸着室への
反応ガスの供給量を、成膜中、蒸着室内の窒素分圧が前
記したように非晶質膜を生成し得る低レベルから窒化物
セラミックス微粒子を析出し得る高レベル、すなわち窒
素分圧0.087Pa以上に連続的又は段階的に増加す
るように制御することにより、金属の非晶質相を主体と
し、窒素量が膜表面に向って連続的又は段階的に増加
し、膜表層部において窒化物微粒子が析出して実質的に
結晶質セラミックス相とした構造傾斜膜が得られる。こ
の構造傾斜膜をさらに熱処理することによって結晶化さ
せることにより、セラミックス微粒子の分散割合が増厚
方向に増大して実質的に結晶質金属相から結晶質セラミ
ックス相に膜の組成及び構造が傾斜的に変化した硬質膜
が得られる。
In another aspect of the present invention, the supply amount of the reaction gas to the deposition chamber is changed from a low level during the film formation so that the partial pressure of nitrogen in the deposition chamber can form an amorphous film as described above. By controlling so as to continuously or stepwise increase the nitrogen partial pressure to 0.087 Pa or more, which is a high level capable of precipitating fine ceramic particles, the amorphous phase of the metal is the main component, and the amount of nitrogen on the film surface is large. It is possible to obtain a structurally graded film that increases continuously or stepwise, and nitride fine particles are precipitated in the film surface layer portion to substantially form a crystalline ceramic phase. By further heat-treating this structure-graded film to crystallize it, the dispersion ratio of the ceramic fine particles increases in the direction of increasing the thickness, and the composition and structure of the film gradually change from the crystalline metal phase to the crystalline ceramic phase. A hard film that has changed to

【0013】この傾斜膜の態様(構造)としては、
(1)基材接触部が金属相(マトリックス相のみ、又は
マトリックス相とその他の化合物相)であり、膜厚途中
より窒化物微粒子が析出し、これより膜表面に向って増
大し、膜表面部で(Al,M)N系結晶質セラミックス
相になる構造のもの、(2)基材接触部から窒化物微粒
子が膜表面部に向って増大し、膜表面部で(Al,M)
N系結晶質セラミックス相になる構造のものなどが含ま
れる。
As a mode (structure) of this gradient film,
(1) The base material contact portion is a metal phase (only the matrix phase or the matrix phase and other compound phases), and nitride fine particles are precipitated from the middle of the film thickness and increase toward the film surface. (2) Nitride fine particles increase from the substrate contact part toward the film surface part, and (Al, M) N-type crystalline ceramic phase is formed at the film surface part (Al, M)
Those having a structure that becomes an N-based crystalline ceramics phase are included.

【0014】このように、基材からその上に形成された
硬質層にかけての物性値を連続的に変化させ、基材と膜
との界面での急激な物性値の差をなくしたことにより、
基材に対する膜の密着性が向上する。また本発明によれ
ば、柱状構造の結晶生成を避けるため、一旦非晶質相を
形成し、これを熱処理することによって結晶化を行う。
これによって、構造傾斜膜内部には100nm以下の微
細な結晶質粒子(金属、金属間化合物及び窒化物)が生
じ、緻密化された高硬度の膜が得られる。また、生成す
る結晶質粒子は数十nm以下の微細な結晶を主体として
いるため、膜内部で破壊が生じても、被破壊部分が周辺
の正常部分に悪影響を及ぼし難くなり、耐圧壊性が向上
する。
As described above, the physical property values from the base material to the hard layer formed on the base material are continuously changed to eliminate a sharp difference in the physical property values at the interface between the base material and the film.
The adhesion of the film to the base material is improved. Further, according to the present invention, in order to avoid the generation of crystals having a columnar structure, the amorphous phase is once formed and then heat-treated to crystallize.
As a result, fine crystalline particles (metal, intermetallic compound, and nitride) of 100 nm or less are generated inside the structure-gradient film, and a dense and high-hardness film is obtained. In addition, since the generated crystalline particles are mainly composed of fine crystals of several tens of nm or less, even if breakage occurs inside the film, the destroyed part is unlikely to adversely affect the surrounding normal part, and the crush resistance is low. improves.

【0015】本発明で用いる蒸発源材料の他方の成分、
すなわちTi,Ta,V,Cr,Zr,Nb,Mo,H
f,W,Fe,Co,Ni,Cu及びMnなどの耐火金
属は、Alマトリックス中の拡散能が小さい元素であ
り、種々の準安定又は安定な金属間化合物を形成し、微
細結晶組織の高温での安定化に貢献する。これらの金属
はまた、窒化物等として導電性を有すること、もしくは
耐食性に優れる材料としても知られている。上記蒸着手
段としては、スパッタリング法やイオンプレーティング
法などを挙げることができる。また、蒸発源としては一
つの蒸発源に必要組成を含む化合物、混合物であっても
よいし、複数の蒸発源を同時に用いることによって個々
の蒸発源が単一組成であってもよいし、また前記蒸発源
の組合せであっても良い。
The other component of the evaporation source material used in the present invention,
That is, Ti, Ta, V, Cr, Zr, Nb, Mo, H
Refractory metals such as f, W, Fe, Co, Ni, Cu and Mn are elements having a small diffusivity in the Al matrix, form various metastable or stable intermetallic compounds, and have a high temperature of a fine crystal structure. Contribute to stabilization in. These metals are also known to have conductivity as a nitride or the like, or a material having excellent corrosion resistance. Examples of the vapor deposition means include a sputtering method and an ion plating method. Further, the evaporation source may be a compound or mixture containing a composition required for one evaporation source, or a plurality of evaporation sources may be used at the same time so that each evaporation source may have a single composition. A combination of the evaporation sources may be used.

【0016】以下、前記各工程及びその技術的な意義に
ついて、具体的なデータを示しながら説明する。 (A)非晶質膜又は構造傾斜膜の作成工程: 一般式:Alab (ここで、M,a及bは前記した意
味と同じである)で表わされる組成を有する蒸発源材料
(ターゲット)を用い、物理的気相蒸着法、特にスパッ
タ法又はイオンプレーティング法により所定量の窒素ガ
スを含む不活性ガス雰囲気中で基材上に成膜を行うと、
蒸着室内の窒素分圧あるいは窒素ガス供給量の制御態様
に応じて、均一な窒素量を有する非晶質膜、窒素量が膜
表面に向って連続的又は段階的に増加した非晶質膜、又
は基材接触部の実質的に非晶質の金属相から(Al,
M)N系結晶質セラミックス相に膜の組成及び構造が変
化した構造傾斜膜が形成される。
The respective steps and their technical significance will be described below with reference to concrete data. (A) Amorphous film or structure-graded film production process: An evaporation source material having a composition represented by the general formula: Al a M b (where M, a and b have the same meanings as described above) ( Target) using a physical vapor deposition method, particularly a sputtering method or an ion plating method to form a film on a substrate in an inert gas atmosphere containing a predetermined amount of nitrogen gas,
An amorphous film having a uniform nitrogen content, an amorphous film in which the nitrogen content is continuously or stepwise increased toward the film surface according to the control mode of the nitrogen partial pressure or the nitrogen gas supply amount in the deposition chamber, Or from the substantially amorphous metallic phase of the substrate contact part (Al,
M) A structurally graded film in which the composition and structure of the film is changed is formed in the N-based crystalline ceramic phase.

【0017】このことを図1及び図2を参照しながら説
明する。図1は、ターゲットに80at%Al−20%
at%Ti合金を用いて得られた膜について、膜断面に
おける各組成の変化を示すEDX(エネルギー分散型X
線分光法)による線分析結果を示している。ガラス基板
への成膜は後述する実施例1と同様にして行った。但
し、反応ガスとしての窒素ガスの分圧は0Paから0.
129Paまで180分間にわたって連続的に変化させ
た。このようにして得られた膜は、全体で5μmの厚さ
であり、その断面は緻密で柱状構造を示さないことが電
子顕微鏡観察によって確認された。また、図1から明ら
かなように、膜中の窒素量は、ガラス基板上から膜表面
にかけて連続的に増加している。
This will be described with reference to FIGS. 1 and 2. Figure 1 shows a target of 80 at% Al-20%.
For the film obtained by using the at% Ti alloy, EDX (energy dispersive X
The line analysis result by the line spectroscopy is shown. The film formation on the glass substrate was performed in the same manner as in Example 1 described later. However, the partial pressure of the nitrogen gas as the reaction gas is from 0 Pa to 0.
It was continuously changed to 129 Pa over 180 minutes. It was confirmed by electron microscope observation that the film thus obtained had a total thickness of 5 μm, and the cross section thereof was dense and did not show a columnar structure. Further, as is clear from FIG. 1, the amount of nitrogen in the film continuously increases from the glass substrate to the film surface.

【0018】図2は、窒素分圧を一定に保持して作製し
た種々の均一組成膜のX線回折による分析結果を示す。
なお、各均一組成膜のX線回折図は、解り易いように縦
座標軸の強さ方向に分圧順にシフトしてまとめて示し
た。図2から明らかなように、窒素ガスを導入しないで
得られた金属膜はアルミの結晶を示すデータであるが、
これは非晶質金属中にアルミ結晶が分散した状態であ
り、上記「実質的に非晶質の金属」とはこのような構造
を包含する用語と理解されるべきである。窒素分圧を上
げると、0.021〜0.087Paの範囲で非晶質構
造となり、さらに窒素分圧を上げると、0.102Pa
でTiを固溶したAlNの結晶からなる最終セラミック
ス結晶質相に変化する。
FIG. 2 shows the results of X-ray diffraction analysis of various uniform composition films produced by keeping the nitrogen partial pressure constant.
The X-ray diffraction patterns of the uniform composition films are collectively shown by shifting in the direction of partial pressure in the strength direction of the ordinate axis for easy understanding. As is clear from FIG. 2, the metal film obtained without introducing nitrogen gas is data showing aluminum crystals.
This is a state in which aluminum crystals are dispersed in an amorphous metal, and the above “substantially amorphous metal” should be understood as a term including such a structure. When the nitrogen partial pressure is increased, an amorphous structure is formed in the range of 0.021 to 0.087 Pa. When the nitrogen partial pressure is further increased, it is 0.102 Pa.
Then, it changes into a final ceramic crystalline phase composed of AlN crystals in which Ti is solid-dissolved.

【0019】従って、成膜時に、蒸着室への窒素ガスの
供給量を、用いた蒸発源材料に応じて非晶質膜を形成す
る範囲内で窒素分圧を一定に、又は連続的もしくは段階
的に変化するように制御することにより、膜中の窒素量
が一定又は膜表面に向かって連続的又は段階的に増加し
た非晶質膜が得られる。あるいはまた、用いた蒸発源材
料に応じて非晶質相を形成する分圧から結晶質相を形成
する分圧まで窒素分圧が連続的又は段階的に変化するよ
うに窒素ガス供給量を制御することにより、金属の非晶
質相を主体とし、窒素量が膜表面に向って連続的又は段
階的に増加し、膜表層部が窒化物微粒子が析出して実質
的に結晶質セラミックス相となっている構造傾斜膜を形
成することができる。
Therefore, at the time of film formation, the nitrogen gas is supplied to the vapor deposition chamber at a constant nitrogen partial pressure within a range for forming an amorphous film depending on the evaporation source material used, or continuously or stepwise. By controlling so that the amount of nitrogen in the film is constant, an amorphous film in which the amount of nitrogen in the film is constant or which increases continuously or stepwise toward the film surface can be obtained. Alternatively, the nitrogen gas supply amount is controlled so that the partial pressure of nitrogen changes continuously or stepwise from the partial pressure of forming an amorphous phase to the partial pressure of forming a crystalline phase depending on the evaporation source material used. By doing so, the amorphous phase of the metal is the main component, the amount of nitrogen increases continuously or stepwise toward the film surface, and nitride fine particles are precipitated on the film surface layer portion to form a substantially crystalline ceramic phase. It is possible to form a structurally graded film.

【0020】窒素分圧を一定に保持して作製した各均一
組成膜について、窒素分圧と示差走査熱量計(DSC)
によって測定した結晶化温度(Tx)との関係を図3に
示す。また、窒素分圧と微小硬度計によって測定したヌ
ープ硬さとの関係を図4に示す。図3及び図4から明ら
かなように、非晶質相からなる膜の結晶化温度は窒素分
圧の増大とともに661K(0.021Pa)から72
7K(0.072Pa)に、また膜のヌープ硬さも33
0Hk(0Pa)から2310Hk(0.11Pa)に
大きく増大した。
Nitrogen partial pressure and differential scanning calorimeter (DSC) for each uniform composition film produced by keeping the nitrogen partial pressure constant.
The relationship with the crystallization temperature (Tx) measured by is shown in FIG. FIG. 4 shows the relationship between the nitrogen partial pressure and the Knoop hardness measured by a micro hardness meter. As is clear from FIG. 3 and FIG. 4, the crystallization temperature of the film made of the amorphous phase increases from 661 K (0.021 Pa) to 72 as the nitrogen partial pressure increases.
7K (0.072Pa) and Knoop hardness of the film is 33
It greatly increased from 0Hk (0Pa) to 2310Hk (0.11Pa).

【0021】(B)前記工程により得られた非晶質膜又
は構造傾斜膜の熱処理工程:窒素分圧を一定に保持して
作製した各均一組成の非晶質膜を527℃で4時間熱処
理して得られた膜のX線回折による分析結果を図5に示
す。図5に示す結果から、非晶質膜を熱処理することに
より、低い窒素分圧で成膜された膜では金属(Al)及
び金属間化合物(Al5 Ti2 )の結晶粒子が生成する
が、高い窒素分圧で成膜された膜ではこれらに加えて窒
化物(AlN)のセラミックス粒子が生成することがわ
かる。これらの膜を透過電子顕微鏡で観察したところ、
金属母相中に数nm〜数十nm程度の粒径を持つ極めて
微細な粒子が析出しており、これらの微粒子は、通常の
薄膜中に観察される柱状構造とは異なり、粒界等に方向
性がないことが判った。従って、熱処理によって、極め
て緻密で基材との密着性に優れると共に、セラミックス
材料の欠点である脆性を示さない硬度の高い膜を作製で
きる。
(B) Heat treatment process of the amorphous film or the structure gradient film obtained by the above process: The amorphous film of each uniform composition produced by keeping the nitrogen partial pressure constant is heat-treated at 527 ° C. for 4 hours. The result of X-ray diffraction analysis of the film thus obtained is shown in FIG. From the results shown in FIG. 5, when the amorphous film is heat-treated, crystal particles of metal (Al) and intermetallic compound (Al 5 Ti 2 ) are generated in the film formed with a low nitrogen partial pressure. It is understood that in addition to these, nitride (AlN) ceramic particles are generated in the film formed with a high nitrogen partial pressure. When these films were observed with a transmission electron microscope,
Extremely fine particles having a particle size of several nm to several tens of nm are precipitated in the metal matrix phase, and these fine particles are different from the columnar structure observed in a usual thin film, It turns out that there is no direction. Therefore, the heat treatment makes it possible to produce a film that is extremely dense and has excellent adhesion to the substrate, and that does not exhibit brittleness, which is a defect of the ceramic material, and has high hardness.

【0022】基材接触部の実質的に非晶質の金属相から
膜表層部の結晶質セラミックス相へ膜の組成及び構造が
膜表面に向って変化している構造傾斜膜の場合は、非晶
質の膜が得られる最高窒素分圧(上記Al80Ti20合金
をターゲットに用いた例では0.087Pa)で作製さ
れる非晶質膜の結晶化温度(Tx)以上の温度で熱処理
を行う。この熱処理によって、構造傾斜膜内部には微細
な結晶質粒子(金属、金属間化合物及び窒化物)が生
じ、最も低い窒素分圧で成膜された部分の実質的に結晶
質の金属相から、膜表面に向って徐々に窒化物セラミッ
クス微粒子の析出・分散割合が増加して、最も高い窒素
分圧で成膜された膜表層部の(Al,M)N系結晶質セ
ラミックス相に膜の組成及び構造が傾斜的に変化した緻
密な構造傾斜膜が得られる。得られた膜は、基材側から
膜表面にかけてヌープ硬さも傾斜的に増大し、また基材
に対する密着性も向上した。
In the case of a structurally graded film in which the composition and structure of the film changes from the substantially amorphous metal phase in the substrate contact portion to the crystalline ceramic phase in the film surface layer portion, Heat treatment is performed at a temperature equal to or higher than the crystallization temperature (Tx) of the amorphous film formed at the maximum nitrogen partial pressure (0.087 Pa in the example using the Al 80 Ti 20 alloy as a target) that can obtain a crystalline film. To do. By this heat treatment, fine crystalline particles (metals, intermetallic compounds, and nitrides) are generated inside the structure-graded film, and from the substantially crystalline metal phase of the portion formed at the lowest nitrogen partial pressure, The precipitation / dispersion ratio of nitride ceramics particles gradually increases toward the surface of the film, and the composition of the film in the (Al, M) N-based crystalline ceramics phase of the film surface layer part formed at the highest nitrogen partial pressure. Also, a dense structure-graded film having a structure that changes in a tilted manner can be obtained. In the obtained film, the Knoop hardness gradually increased from the substrate side to the film surface, and the adhesion to the substrate also improved.

【0023】上記熱処理条件としては、熱処理温度は前
記した結晶化温度(Tx)以上の温度とし、また熱処理
時間は非晶質相の結晶化が生じるに充分な時間とするこ
とが望ましい。一般に熱処理は所与の試料を上記温度で
30分以上保持して行う。熱処理温度が前記結晶化温度
以下の場合又は熱処理時間が不十分な場合には熱処理に
よって結晶質粒子が析出しないが、前記したように結晶
化温度は非晶質膜形成時の窒素分圧により変化するの
で、成膜条件に応じた熱処理条件に設定しておく必要が
ある。また、昇温速度は好ましくは15℃/分以下とす
る。昇温速度が15℃/分を越えて速くなると、基材と
膜の熱膨張率の相違による剥離の原因となるので好まし
くない。なお、この熱処理によって析出する結晶質粒子
の粒径は1000nm以下とする必要がある。過度の熱
処理によって結晶質粒子の粒径がこれより大きくなる
と、膜の強度低下を招くので好ましくない。
As the heat treatment conditions, it is desirable that the heat treatment temperature is a temperature above the crystallization temperature (Tx), and the heat treatment time is a time sufficient for crystallization of the amorphous phase. Generally, heat treatment is performed by holding a given sample at the above temperature for 30 minutes or more. If the heat treatment temperature is lower than the crystallization temperature or if the heat treatment time is insufficient, crystalline particles do not precipitate by the heat treatment, but as described above, the crystallization temperature changes depending on the nitrogen partial pressure during the formation of the amorphous film. Therefore, it is necessary to set the heat treatment conditions according to the film forming conditions. The rate of temperature rise is preferably 15 ° C / min or less. If the rate of temperature increase exceeds 15 ° C./min, peeling may occur due to the difference in thermal expansion coefficient between the substrate and the film, which is not preferable. The grain size of the crystalline particles precipitated by this heat treatment must be 1000 nm or less. If the grain size of the crystalline particles becomes larger than that due to excessive heat treatment, the strength of the film is lowered, which is not preferable.

【0024】[0024]

【実施例】以下、実施例を示して本発明についてさらに
具体的に説明するが、本発明が下記実施例に限定される
ものでないことはもとよりである。
The present invention will be described in more detail with reference to the following examples, but it goes without saying that the present invention is not limited to the following examples.

【0025】実施例1 (A)非晶質膜の形成:(80at%Al−20at%
Ti)からなるターゲットをマグネトロンスパッタ蒸着
装置内の電極(接地電位)に対向させて配置し、電極と
ターゲットの間に、ガラス板又はアルミ板を被蒸着基板
として配置した。前記スパッタ装置内を真空ポンプにて
排気した後、アルゴンガスを供給し、装置内のガス圧
(全圧)を1Paとした。コーティングに先立ち、ガラ
ス基板又はアルミ基板を固定している治具に高周波電源
をつなぎ、ガラス基板又はアルミ基板をそれぞれ10分
間スパッタエッチングした。ついで、ターゲットに直流
電源をつなぎ、予備放電を行なった。なおこの時、予備
放電によるガラス基板又はアルミ基板へのコーティング
がなされないようにした。この予備放電は、ターゲット
表面に吸着したガスや湿気を取りのぞくことが目的であ
る。上記予備放電の後、シャッターを移動させ、ガラス
基板又はアルミ基板に対するコーティングを開始した。
コーティング中、反応ガスである窒素ガスは、電気的に
制御できる流量調節計によって、装置内の窒素分圧が0
Paから0.129Paの範囲内の所定の分圧となるよ
うに制御した。装置内の圧力変化は、排気ポンプと装置
の間に配設されたバルブによって圧力1Paとなるよう
に調整した。
Example 1 (A) Formation of amorphous film: (80 at% Al-20 at%
A target made of Ti) was placed facing the electrode (ground potential) in the magnetron sputter deposition apparatus, and a glass plate or an aluminum plate was placed as a deposition target substrate between the electrode and the target. After exhausting the inside of the sputtering apparatus with a vacuum pump, argon gas was supplied, and the gas pressure (total pressure) inside the apparatus was set to 1 Pa. Prior to coating, a high frequency power source was connected to a jig fixing a glass substrate or an aluminum substrate, and the glass substrate or the aluminum substrate was sputter-etched for 10 minutes, respectively. Then, a direct current power supply was connected to the target to carry out preliminary discharge. At this time, the glass substrate or the aluminum substrate was not coated by the preliminary discharge. The purpose of this preliminary discharge is to remove the gas and moisture adsorbed on the target surface. After the preliminary discharge, the shutter was moved to start coating on the glass substrate or the aluminum substrate.
During coating, the reaction gas, nitrogen gas, has a nitrogen partial pressure of 0 in the apparatus, which can be controlled electrically by a flow controller.
The pressure was controlled so as to have a predetermined partial pressure within the range of Pa to 0.129 Pa. The pressure change in the device was adjusted so that the pressure was 1 Pa by the valve provided between the exhaust pump and the device.

【0026】(B)熱処理:熱処理は、試料を炉内に設
置し、炉内を真空ポンプによって排気した後、排気をや
めてアルゴンガスを導入し、大気圧として行なった。熱
処理中は、炉内にアルゴンガスを常時導入し、ガス置換
を行なった。昇温は2時間かけて室温から540℃まで
連続的に上げ、熱処理温度540℃に達してからその温
度に2時間保持した。熱処理後、試料の冷却は、ヒータ
ー電源を切って自然に冷えるのを待った。
(B) Heat treatment: The heat treatment was carried out at atmospheric pressure by placing the sample in a furnace, evacuating the furnace with a vacuum pump, stopping the evacuation and introducing argon gas. During the heat treatment, argon gas was constantly introduced into the furnace for gas replacement. The temperature was raised continuously from room temperature to 540 ° C over 2 hours, and after reaching the heat treatment temperature of 540 ° C, the temperature was maintained for 2 hours. After the heat treatment, the sample was cooled by turning off the heater power and waiting for it to cool naturally.

【0027】図2は、窒素分圧を一定に保持して作製し
た各均一組成膜のX線回折による分析結果である。な
お、各膜のX線回折図は、解り易いように縦座標軸の強
さ方向に分圧順にシフトしてまとめて示した。図2から
明らかなように、窒素ガスを導入しないで得られた金属
膜はアルミニウム結晶となったが、窒素分圧0.021
Pa、0.038Pa、0.055Pa、0.072P
a、0.087Paで非晶質膜を得ることができた。ま
た、これらの非晶質膜を熱処理して得られた各膜の微小
硬度計によって測定したヌープ硬さを下記表1及び図4
に示す。
FIG. 2 shows the result of X-ray diffraction analysis of each film having a uniform composition prepared by keeping the nitrogen partial pressure constant. The X-ray diffraction patterns of the respective films are collectively shown by shifting in the direction of partial pressure in the strength direction of the ordinate axis for easy understanding. As is clear from FIG. 2, the metal film obtained without introducing nitrogen gas became aluminum crystals, but the nitrogen partial pressure was 0.021.
Pa, 0.038Pa, 0.055Pa, 0.072P
It was possible to obtain an amorphous film at a of 0.087 Pa. In addition, the Knoop hardness of each film obtained by heat-treating these amorphous films was measured by a micro hardness meter and the Knoop hardness shown in Table 1 and FIG.
Shown in

【表1】 上記表1及び図4から明らかなように、非晶質膜の熱処
理によって硬度は増大し、また成膜時の窒素分圧の増加
と共に硬度は増大する。しかし、ある程度窒素分圧が高
くなると硬度の減少傾向が認められる。これは成膜時に
発生した膜中の残留応力の影響によるものと考えられ
る。
[Table 1] As is clear from Table 1 and FIG. 4, the heat treatment of the amorphous film increases the hardness, and the hardness increases as the nitrogen partial pressure during film formation increases. However, when the nitrogen partial pressure becomes high to some extent, the hardness tends to decrease. It is considered that this is due to the effect of residual stress in the film generated during film formation.

【0028】図6乃至図8は、窒素分圧0.052Pa
で形成した非晶質膜を実施例1と同様にして熱処理して
得られたAl−Ti−N系薄膜の膜断面のTEM(透過
電子顕微鏡)写真である。図6は倍率10万倍の明視野
像であり、図7は図6と同じ試料の電子線回折像であ
る。図8は図6と同じ試料の倍率10万倍の暗視野像で
あり、微細な結晶の分散状態がわかる。また、図9乃至
図11は、窒素分圧0.07Paで形成した非晶質膜を
実施例1と同様にして熱処理して得られたAl−Ti−
N系薄膜の膜断面の透過電子顕微鏡写真である。図9は
倍率10万倍の明視野像であり、図10は図9と同じ試
料の電子線回折像である。図11は図9と同じ試料の倍
率10万倍の暗視野像であり、微細な結晶の分散状態が
わかる。これらのTEM写真から明らかなように、本発
明の方法によれば、非晶質金属母相中に均一にセラミッ
クス粒子を分散させた薄膜を得ることができた。
6 to 8 show a nitrogen partial pressure of 0.052 Pa.
3 is a TEM (transmission electron microscope) photograph of a film cross section of an Al—Ti—N-based thin film obtained by heat-treating the amorphous film formed in 1. in the same manner as in Example 1. FIG. 6 is a bright field image at a magnification of 100,000 times, and FIG. 7 is an electron beam diffraction image of the same sample as FIG. FIG. 8 is a dark field image of the same sample as FIG. 6 at a magnification of 100,000 times, and the dispersed state of fine crystals can be seen. 9 to 11 are Al-Ti-obtained by heat-treating an amorphous film formed at a nitrogen partial pressure of 0.07 Pa in the same manner as in Example 1.
It is a transmission electron micrograph of the cross section of a N-type thin film. FIG. 9 is a bright field image at a magnification of 100,000 times, and FIG. 10 is an electron beam diffraction image of the same sample as in FIG. FIG. 11 is a dark-field image of the same sample as in FIG. 9 at a magnification of 100,000 times, and the dispersed state of fine crystals can be seen. As is clear from these TEM photographs, according to the method of the present invention, it was possible to obtain a thin film in which ceramic particles were uniformly dispersed in the amorphous metal matrix.

【0029】実施例2 (A)構造傾斜膜の形成:(80at%Al−20at
%Ti)からなるターゲットをマグネトロンスパッタ蒸
着装置内の電極(接地電位)に対向させて配置し、電極
とターゲットの間に、ガラス板からなる被蒸着基板を配
置し、以下の手順により成膜を行った。基板は予め清浄
(エッチング)し、エッチング終了後、予備放電を行な
った(プリスパッタ)。プリスパッタの後、ターゲット
と基板を対向して配置した。基板に対してコーティング
している間、反応ガスである窒素ガスの供給量は電気的
制御によって連続的に一定量づつ増加させ、その間、窒
素分圧は0Paから0.13Paへと変化した。なお、
このときの真空チャンバー内の圧力はアルゴンガスの供
給量を電気的制御によって連続的に減少させることによ
って一定の圧力(1Pa)となるようにした。
Example 2 (A) Formation of Structured Gradient Film: (80 at% Al-20 at)
% Ti) is placed facing the electrode (ground potential) in the magnetron sputter deposition apparatus, a deposition target substrate made of a glass plate is placed between the electrode and the target, and a film is formed by the following procedure. went. The substrate was cleaned (etched) in advance, and after the etching was completed, preliminary discharge was performed (presputtering). After pre-sputtering, the target and the substrate were placed facing each other. While coating the substrate, the supply amount of the reaction gas, nitrogen gas, was continuously increased by a constant amount by electrical control, and the nitrogen partial pressure was changed from 0 Pa to 0.13 Pa during that period. In addition,
The pressure in the vacuum chamber at this time was set to a constant pressure (1 Pa) by continuously reducing the amount of argon gas supplied by electrical control.

【0030】(B)熱処理:上記のように成膜された試
料を熱処理炉に入れ、炉内を排気した後、アルゴンガス
を導入し、大気圧とした。引き続き炉内をアルゴンガス
で置換しながら熱処理を開始した。加熱に際し、炉のヒ
ーターへの電力供給量は電流によって制御し、所定温度
にはおよそ2時間で達するようにした。熱処理温度は5
50℃とし、4時間保持した。温度は、炉内部に熱電対
を挿入して測定し、ヒーターへの投与電流の切入によっ
て調整した。加熱終了後、炉内の温度が100℃以下に
なるまでアルゴンガスを導入し続けた。炉内部が室温と
なった後、試料を取りだし、分析、評価に供した。
(B) Heat treatment: The sample formed as described above was placed in a heat treatment furnace, the inside of the furnace was evacuated, and then argon gas was introduced to bring it to atmospheric pressure. Subsequently, heat treatment was started while replacing the inside of the furnace with argon gas. During heating, the amount of electric power supplied to the heater of the furnace was controlled by the electric current so that the predetermined temperature was reached in about 2 hours. Heat treatment temperature is 5
The temperature was set to 50 ° C. and the temperature was maintained for 4 hours. The temperature was measured by inserting a thermocouple inside the furnace and adjusted by cutting the dosing current into the heater. After the heating was completed, argon gas was continuously introduced until the temperature inside the furnace became 100 ° C. or lower. After the inside of the furnace reached room temperature, a sample was taken out and subjected to analysis and evaluation.

【0031】図12乃至図14は、上記のように熱処理
して得られた(Al、Ti)N系構造傾斜薄膜の膜断面
の透過電子顕微鏡写真である。図12は倍率65000
倍の明視野像であり、図13は図12と同じ試料の倍率
65000倍の暗視野像であり、微細な結晶の分散状態
がわかる。図14は図12と同じ試料の電子線回折像で
ある。これらのTEM写真から明らかなように、本発明
の方法によれば、実質的に結晶質の金属相から膜表面に
向って窒化物セラミックス微粒子の分散割合が増加して
(Al,M)N系結晶質セラミックス相に組成及び構造
が傾斜的に変化した膜を得ることができた。膜内部には
粒径50nm以下の微細結晶粒の生成が観察され、その
粒径は膜作製時の窒素分圧の増大とともに小さくなるこ
とがわかる。
12 to 14 are transmission electron microscope photographs of the film cross section of the (Al, Ti) N-based structurally graded thin film obtained by the heat treatment as described above. FIG. 12 shows a magnification of 65000
FIG. 13 is a double bright field image, and FIG. 13 is a dark field image of the same sample as that in FIG. 12 at a magnification of 65,000 times, and the dispersed state of fine crystals can be seen. FIG. 14 is an electron diffraction image of the same sample as FIG. As is clear from these TEM photographs, according to the method of the present invention, the dispersion ratio of the nitride ceramic fine particles increases from the substantially crystalline metal phase toward the film surface, and the (Al, M) N-based It was possible to obtain a film in which the composition and structure of the crystalline ceramics phase was changed in a gradient manner. Generation of fine crystal grains having a grain size of 50 nm or less is observed inside the film, and it is understood that the grain size becomes smaller as the nitrogen partial pressure during film production increases.

【0032】また、熱処理して得られた薄膜の微小硬度
計によって測定したヌープ硬さを図15に、またスクラ
ッチ試験法(走査型スクラッチテスター、島津製作所
製、SST・101を使用)による膜の密着性の試験結
果を図16に示す。前記実施例で作製した傾斜機能膜
(FGM)の他に、比較例として熱処理前の膜について
の試験結果も示してある。膜の密着性は、荷重の増加と
共に変化するカートリッジ出力によって示され、出力が
急激に増加している時点で膜が剥離したことを示す。図
15から明らかなように、熱処理後の傾斜機能膜内部の
ヌープ硬さについては、全体的な硬度は増大し、特に基
材側で約300Hk向上したが、均一組成膜で得られた
硬度増加の状態とは異なり、基材側から膜表面にかけて
の変化の仕方に偏りが認められた。これは熱処理後の膜
内部の組成分布の偏りと一致しており、加熱拡散による
成分変化が主な原因と考えられる。また、図16から明
らかなように、熱処理後の基材に対する膜の密着性にお
いてその圧壊荷重が熱処理前に比べ約10%改善された
ことより、高温での耐摩耗膜としての用途も期待でき
る。
FIG. 15 shows the Knoop hardness of the thin film obtained by the heat treatment, which was measured by a micro hardness tester, and the film by the scratch test method (scanning scratch tester, SST 101, manufactured by Shimadzu Corporation) was used. The adhesion test results are shown in FIG. In addition to the functionally gradient film (FGM) produced in the above-mentioned example, the test results of the film before heat treatment are also shown as a comparative example. The adhesion of the film is shown by the cartridge output changing with increasing load, indicating that the film has peeled off at the time when the output increased rapidly. As is clear from FIG. 15, the Knoop hardness inside the functionally gradient film after the heat treatment increased as a whole, particularly about 300 Hk on the substrate side, but the hardness increase obtained by the uniform composition film was increased. In contrast to the above condition, a bias was observed in the manner of change from the substrate side to the film surface. This is in agreement with the deviation of the composition distribution inside the film after the heat treatment, and it is considered that the change in the components due to heat diffusion is the main cause. Further, as is clear from FIG. 16, the crushing load of the adhesion of the film to the base material after the heat treatment was improved by about 10% as compared with that before the heat treatment, so that it can be expected to be used as a wear resistant film at high temperature. .

【0033】実施例3 (A)非晶質膜の形成:基板2上への成膜のために図1
7に示すように傾斜した電極系を持つ装置を使用した。
2個のターゲット、即ち円板状の高純度アルミニウム及
び高純度マンガンのターゲット5,6を用い、同時にス
パッタさせることにより合金組成を調整し、スパッタに
は2つの高周波電源9,10を用いた。それぞれ支持台
7,8に取り付けられた2個のターゲット5,6は、こ
れら2個のターゲットの中心を通る法線が、モータ4に
より回転されるホルダ3に取り付けられている基板2の
表面で交差するように、スパッタチャンバー1内に傾斜
して設置された。なお、それぞれの合金組成割合は、タ
ーゲットに印加する電力量を調整することにより制御
し、アルミニウム及びマンガンの相対的な割合は80a
t%Al−20at%Mnとした。成膜される膜内の変
調成分である窒素量は、チャンバー内部への窒素ガス導
入量をマス・フロー・コントローラーにより調整するこ
とにより制御した。この時、チャンバー内の窒素ガス分
圧は0Paから0.065Paの範囲で変化した。コー
ティングは、チャンバー内の予備排気及びターゲット表
面の清浄化のためのプリスパッタリング後に行い、コー
ティング処理後、ターゲット及び基板の温度が下がって
から空気を導入してチャンバー内を大気圧とし、試料を
取り出した。
Example 3 (A) Amorphous film formation: FIG. 1 for forming a film on the substrate 2.
A device with a tilted electrode system as shown in 7 was used.
Two targets, that is, disk-shaped targets 5 and 6 of high-purity aluminum and high-purity manganese, were used, and the alloy composition was adjusted by simultaneous sputtering, and two high-frequency power sources 9 and 10 were used for sputtering. The two targets 5 and 6 attached to the supporting bases 7 and 8 respectively have a normal line passing through the centers of these two targets on the surface of the substrate 2 attached to the holder 3 rotated by the motor 4. It was installed so as to be inclined in the sputtering chamber 1 so as to intersect. Each alloy composition ratio is controlled by adjusting the amount of electric power applied to the target, and the relative ratio of aluminum and manganese is 80a.
t% Al-20at% Mn. The amount of nitrogen, which is a modulation component in the formed film, was controlled by adjusting the amount of nitrogen gas introduced into the chamber with a mass flow controller. At this time, the partial pressure of nitrogen gas in the chamber changed in the range of 0 Pa to 0.065 Pa. Coating is performed after pre-exhaust in the chamber and pre-sputtering for cleaning the target surface, and after the coating process, the temperature of the target and substrate is lowered to introduce air to bring the chamber to atmospheric pressure and take out the sample. It was

【0034】図18は各窒素分圧を一定に保って作製し
た均一組成膜のX線回折の結果を示す。図18から明ら
かなように、窒素ガスを導入しないで(窒素分圧0P
a)作製した金属膜は非晶質相を示し、窒素分圧の増大
とともに非晶質合金構造から結晶質セラミックス構造へ
と変化し、窒素分圧0.056Pa以上では結晶質セラ
ミックス相となった。各窒素分圧で作製した非晶質膜の
結晶化温度は、図19に示す通りで300℃以上であっ
た。また、各窒素分圧で作製した膜のヌープ硬さは図2
0に示す通りで、窒素分圧0.056Paでは1370
Hkであった。
FIG. 18 shows the result of X-ray diffraction of a uniform composition film produced by keeping each nitrogen partial pressure constant. As is clear from FIG. 18, without introducing nitrogen gas (nitrogen partial pressure 0 P
a) The produced metal film exhibits an amorphous phase, which changes from an amorphous alloy structure to a crystalline ceramic structure with an increase in the nitrogen partial pressure, and becomes a crystalline ceramic phase at a nitrogen partial pressure of 0.056 Pa or more. . The crystallization temperature of the amorphous film produced by each partial pressure of nitrogen was 300 ° C. or higher as shown in FIG. In addition, the Knoop hardness of the film produced at each nitrogen partial pressure is shown in FIG.
As shown in 0, 1370 at a nitrogen partial pressure of 0.056 Pa
It was Hk.

【0035】(B)熱処理:熱処理はガラス基板上に成
膜した1μm厚さの膜及びアルミ基板上に成膜した33
μm厚さの膜について行った。なお、それぞれの膜にお
いてはその厚さが異なるだけで、膜厚は成膜処理時間に
よって制御した。成膜時の窒素分圧は前記したように0
Paから0.065Paまで連続的に変化させた。従っ
て、膜内部の窒素濃度は基板側が低く、表面にいくに従
って高くなっている。熱処理は、各試料を熱処理炉に入
れ、炉内を排気した後、アルゴンガスの導入によって大
気圧とし、引き続きアルゴンガスによって炉内を置換し
ながら試料の加熱を行った。昇温は2時間かけて550
℃まで連続的に上げ、試料をこの温度で2時間保持し
た。その後炉内を室温まで冷やした後、試料を炉内から
取り出した。
(B) Heat treatment: Heat treatment was performed on a glass substrate having a thickness of 1 μm and on an aluminum substrate 33.
It was carried out on a membrane with a thickness of μm. The thickness of each film was different, and the film thickness was controlled by the film formation processing time. The nitrogen partial pressure during film formation is 0 as described above.
It was continuously changed from Pa to 0.065 Pa. Therefore, the nitrogen concentration inside the film is low on the substrate side and increases toward the surface. For the heat treatment, each sample was placed in a heat treatment furnace, the inside of the furnace was evacuated, and then the atmosphere was brought to atmospheric pressure by introducing argon gas, and then the sample was heated while the inside of the furnace was replaced by argon gas. Temperature rise is 550 over 2 hours
The temperature was raised continuously to 0 ° C. and the sample was kept at this temperature for 2 hours. Then, after cooling the inside of the furnace to room temperature, the sample was taken out from the inside of the furnace.

【0036】アルミ基板上に成膜した膜について硬さ試
験を行い、またガラス基板上に成膜した膜についてはス
クラッチ試験を行った。これらの試験結果をそれぞれ図
21及び図22に示す。図21に示す結果から明らかな
ように、熱処理後の膜内部の硬さは厚さ方向全域にわた
って熱処理前の硬度より高くなり、ヌープ硬さで105
8Hkから2169Hkへと変化する部位が認められ
た。また図22に示す結果から明らかなように、熱処理
後の膜は熱処理前の膜に比べてスクラッチ試験における
引掻き針の膜への押込み量が17%減少した。これは熱
処理によって膜の硬度が高くなったためであり、膜破壊
強度の改善を図ることができた。なお、引掻き痕は熱処
理前後の試料において差異は認められなかった。
A hardness test was conducted on a film formed on an aluminum substrate, and a scratch test was conducted on a film formed on a glass substrate. The results of these tests are shown in FIGS. 21 and 22, respectively. As is clear from the results shown in FIG. 21, the hardness inside the film after the heat treatment is higher than the hardness before the heat treatment over the entire thickness direction, and the Knoop hardness is 105 or less.
A site changing from 8Hk to 2169Hk was observed. Further, as is clear from the results shown in FIG. 22, the film after heat treatment had a 17% reduction in the amount of scratching needle pushed into the film in the scratch test, as compared to the film before heat treatment. This is because the hardness of the film was increased by the heat treatment, and the film breaking strength could be improved. No difference was found in the scratch marks between the samples before and after the heat treatment.

【0037】[0037]

【発明の効果】以上詳述した如く、本発明の方法によれ
ば、基材に対する密着性及び耐圧壊性に優れ、高い硬度
を有する緻密な耐摩耗性膜を、比較的簡単な工程により
製造することができる。また、本発明で得られる膜は、
金属母相中に微粒子が析出・分散している構造の複合硬
質膜、あるいは実質的に結晶の金属相から膜表面に向っ
てセラミックス微粒子の分散割合が増加して結晶質セラ
ミックス相に組成及び構造が傾斜的に変化している構造
の緻密な複合硬質膜であり、基材に対する密着性や耐圧
壊性に優れ、折り曲げに強く、高い硬度を有するなど、
優れた特性を示し、耐摩耗性として使用できる他、高い
硬度と導電性を有することから、耐摩耗性を有する電気
接点などにも応用することができる。その他、本発明の
複合硬質膜は、機械的、電気的に優れた特性を示すとと
もにセラミックス材料の欠点である脆性が緩和されてい
るので、電気電子材料、高強度材料、耐摩耗材料、耐高
温材料などとして使用でき、産業上の種々の用途に供す
ることができる。
As described in detail above, according to the method of the present invention, a dense wear-resistant film having excellent adhesion to a substrate and crush resistance and high hardness can be produced by a relatively simple process. can do. Further, the film obtained by the present invention,
A composite hard film having a structure in which fine particles are precipitated and dispersed in a metal matrix phase, or a dispersion ratio of ceramic fine particles increases from the substantially crystalline metal phase toward the film surface to form a composition and structure in a crystalline ceramic phase. Is a dense composite hard film with a structure that changes in an inclined manner, has excellent adhesion to substrates and crush resistance, is strong in bending, has high hardness, etc.
It has excellent properties and can be used as abrasion resistance, and since it has high hardness and conductivity, it can be applied to electrical contacts having abrasion resistance. In addition, since the composite hard film of the present invention exhibits excellent mechanical and electrical properties and the brittleness, which is a defect of ceramic materials, is mitigated, it can be used as an electrical / electronic material, a high-strength material, an abrasion-resistant material, and a high-temperature resistant material. It can be used as a material or the like and can be used for various industrial uses.

【図面の簡単な説明】[Brief description of drawings]

【図1】80at%Al−20%at%Ti合金を用い
て作製した、(Al80Ti20100-xx の組成の構造
傾斜膜の膜断面における各組成の変化を示すEDX(エ
ネルギー分散型X線分光法)による線分析図である。
FIG. 1 shows EDX (energy of each composition in a film cross section of a structurally graded film having a composition of (Al 80 Ti 20 ) 100-x N x , which is produced using an 80 at% Al-20% at% Ti alloy. It is a line analysis diagram by a dispersion type X-ray spectroscopy.

【図2】窒素分圧を一定に保持して作製した各(Al80
Ti20100-xx 均一組成薄膜のX線回折図であり、
各X線回折図を縦座標軸の強さ方向に窒素分圧順にシフ
トして示す。
[Fig. 2] Each (Al 80 manufactured by keeping a nitrogen partial pressure constant)
Ti 20 ) 100-x N x X-ray diffraction pattern of a uniform composition thin film,
Each X-ray diffraction diagram is shown by shifting in the direction of the strength of the ordinate axis in the order of nitrogen partial pressure.

【図3】窒素分圧を一定に保持して作製した各(Al80
Ti20100-xx 均一組成薄膜の窒素分圧と結晶化温
度(Tx)との関係を示すグラフである。
[Fig. 3] Each (Al 80 manufactured by keeping a nitrogen partial pressure constant)
3 is a graph showing the relationship between the nitrogen partial pressure and the crystallization temperature (Tx) of a Ti 20 ) 100-x N x uniform composition thin film.

【図4】窒素分圧を一定に保持して作製した各(Al80
Ti20100-xx 均一組成薄膜及び該膜を熱処理して
得られた膜の窒素分圧とヌープ硬さとの関係を示すグラ
フである。
[Fig. 4] Each (Al 80 manufactured by keeping a nitrogen partial pressure constant)
3 is a graph showing the relationship between the nitrogen partial pressure and the Knoop hardness of a Ti 20 ) 100-xN x uniform composition thin film and the film obtained by heat-treating the film.

【図5】窒素分圧を一定に保持して作製した各(Al80
Ti20100-xx 均一組成薄膜を熱処理して得られた
膜のX線回折図であり、各X線回折図を縦座標軸の強さ
方向に窒素分圧順にシフトして示す。
FIG. 5: Each (Al 80 manufactured by maintaining a nitrogen partial pressure constant)
FIG. 3 is an X-ray diffraction diagram of a film obtained by heat-treating a Ti 20 ) 100-x N x uniform composition thin film, in which each X-ray diffraction diagram is shown shifted in the direction of the nitrogen partial pressure in the strength direction of the ordinate axis.

【図6】実施例1において窒素分圧0.052Paで作
製した(Al80Ti20100-xx 組成非晶質膜を熱処
理して得られたAl−Ti−N系硬質薄膜の倍率10万
倍の明視野像を示す透過電子顕微鏡写真である。
FIG. 6 is a magnification of an Al—Ti—N-based hard thin film obtained by heat-treating an (Al 80 Ti 20 ) 100-x N x composition amorphous film produced at a nitrogen partial pressure of 0.052 Pa in Example 1. It is a transmission electron micrograph showing a bright field image of 100,000 times.

【図7】図6と同じ試料のAl−Ti−N系硬質薄膜の
電子線回折像を示す透過電子顕微鏡写真である。
FIG. 7 is a transmission electron micrograph showing an electron diffraction image of an Al—Ti—N-based hard thin film of the same sample as in FIG.

【図8】図6と同じ試料のAl−Ti−N系硬質薄膜の
倍率10万倍の暗視野像を示す透過電子顕微鏡写真であ
る。
8 is a transmission electron micrograph showing a dark field image of an Al—Ti—N-based hard thin film of the same sample as FIG. 6 at a magnification of 100,000 times.

【図9】実施例1において窒素分圧0.07Paで作製
した(Al80Ti20100-xx 組成非晶質膜を熱処理
して得られたAl−Ti−N系硬質薄膜の倍率10万倍
の明視野像を示す透過電子顕微鏡写真である。
FIG. 9 is a magnification of an Al—Ti—N-based hard thin film obtained by heat-treating an (Al 80 Ti 20 ) 100-x N x composition amorphous film produced at a nitrogen partial pressure of 0.07 Pa in Example 1. It is a transmission electron micrograph showing a bright field image of 100,000 times.

【図10】図9と同じ試料のAl−Ti−N系硬質薄膜
の電子線回折像を示す透過電子顕微鏡写真である。
10 is a transmission electron micrograph showing an electron diffraction image of an Al—Ti—N-based hard thin film of the same sample as FIG. 9.

【図11】図9と同じ試料のAl−Ti−N系硬質薄膜
の倍率10万倍の暗視野像を示す透過電子顕微鏡写真で
ある。
FIG. 11 is a transmission electron micrograph showing a dark field image of an Al—Ti—N-based hard thin film of the same sample as FIG. 9 at a magnification of 100,000 times.

【図12】実施例2で作製した(Al80Ti20100-x
x の組成の構造傾斜膜を熱処理して得られたAl−T
i−N系硬質薄膜の倍率65000倍の明視野像を示す
透過電子顕微鏡写真である。
FIG. 12: (Al 80 Ti 20 ) 100-x produced in Example 2
Al-T obtained by heat-treating a structure gradient film having a composition of N x
3 is a transmission electron micrograph showing a bright field image of an iN hard thin film at a magnification of 65,000.

【図13】図12と同じ試料のAl−Ti−N系硬質薄
膜の倍率65000倍の暗視野像を示す透過電子顕微鏡
写真である。
FIG. 13 is a transmission electron micrograph showing a dark field image of an Al—Ti—N-based hard thin film of the same sample as in FIG. 12 at a magnification of 65,000 times.

【図14】図12と同じ試料のAl−Ti−N系硬質薄
膜の電子線回折像を示す透過電子顕微鏡写真である。
FIG. 14 is a transmission electron micrograph showing an electron diffraction image of an Al—Ti—N-based hard thin film of the same sample as in FIG.

【図15】実施例2で作製した(Al80Ti20100-x
x の組成の構造傾斜膜及び該膜を熱処理して得られた
Al−Ti−N系硬質薄膜の厚さ方向のヌープ硬さを示
すグラフである。
FIG. 15: (Al 80 Ti 20 ) 100-x produced in Example 2
3 is a graph showing Knoop hardness in the thickness direction of a structurally graded film having a composition of N x and an Al—Ti—N-based hard thin film obtained by heat-treating the film.

【図16】図15と同じ試料のAl−Ti−N系硬質薄
膜のスクラッチ試験法による膜の密着性の試験結果を示
すグラフである。
16 is a graph showing the test results of the adhesion of the Al—Ti—N-based hard thin film of the same sample as FIG. 15 by the scratch test method.

【図17】実施例3で用いたスパッタ蒸着装置の概略構
成図である。
FIG. 17 is a schematic configuration diagram of a sputter deposition apparatus used in Example 3.

【図18】実施例3において窒素分圧を一定に保持して
作製した各(Al80Mn20100- xx 均一組成薄膜の
X線回折図であり、各X線回折図を縦座標軸の強さ方向
に窒素分圧順にシフトして示す。
FIG. 18 is an X-ray diffraction diagram of each (Al 80 Mn 20 ) 100- xN x uniform composition thin film produced by maintaining a nitrogen partial pressure in Example 3, and each X-ray diffraction diagram is represented by an ordinate axis. The values are shifted in the order of nitrogen partial pressure in the direction of the strength of.

【図19】実施例3において窒素分圧を一定に保持して
作製した各(Al80Mn20100- xx 均一組成薄膜の
窒素分圧と結晶化温度(Tx)との関係を示すグラフで
ある。
FIG. 19 shows the relationship between the nitrogen partial pressure and the crystallization temperature (Tx) of each (Al 80 Mn 20 ) 100- xN x uniform composition thin film produced by maintaining the nitrogen partial pressure constant in Example 3. It is a graph.

【図20】実施例3において窒素分圧を一定に保持して
作製した各(Al80Mn20100- xx 均一組成薄膜の
窒素分圧とヌープ硬さとの関係を示すグラフである。
FIG. 20 is a graph showing the relationship between the nitrogen partial pressure and the Knoop hardness of each (Al 80 Mn 20 ) 100- xN x uniform composition thin film produced by holding the nitrogen partial pressure constant in Example 3.

【図21】実施例3で作製した(Al80Mn20100-x
x の組成の構造傾斜膜及び該膜を熱処理して得られた
Al−Mn−N系硬質薄膜の厚さ方向のヌープ硬さを示
すグラフである。
FIG. 21: (Al 80 Mn 20 ) 100-x produced in Example 3
3 is a graph showing the Knoop hardness in the thickness direction of a structure gradient film having a composition of N x and an Al—Mn—N-based hard thin film obtained by heat-treating the film.

【図22】図21と同じ試料のAl−Mn−N系硬質薄
膜のスクラッチ試験の試験結果を示すグラフである。
FIG. 22 is a graph showing test results of a scratch test of an Al—Mn—N-based hard thin film of the same sample as FIG. 21.

【符号の説明】[Explanation of symbols]

1 スパッタチャンバー、 2 基板、 3 ホルダ、
4 モータ、 5,6 ターゲット、 7,8 支持
台、 9,10 高周波電源
1 sputter chamber, 2 substrate, 3 holder,
4 motors, 5 and 6 targets, 7 and 8 supports, 9 and 10 high frequency power supplies

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 明久 宮城県仙台市青葉区川内無番地 川内住宅 11−806 (72)発明者 山形 寛 富山県中新川郡立山町道源寺1008 (72)発明者 永洞 純一 神奈川県横浜市緑区すみよし台14−6 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihisa Inoue Kawauchi Mubanji, Aoba-ku, Sendai City, Miyagi Prefecture Kawauchi Housing 11-806 (72) Inventor Hiroshi Yamagata 1008 Dogenji, Tateyama-cho, Nakashinkawa-gun, Toyama Prefecture (72) Invention Person Junichi Yongdong 14-6 Sumiyoshidai, Midori Ward, Yokohama City, Kanagawa Prefecture

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 一般式:Alab (ここで、MはT
i,Ta,V,Cr,Zr,Nb,Mo,Hf,W,F
e,Co,Ni,Cu及びMnよりなる群から選ばれた
少なくとも1種の元素、a及びbはそれぞれ原子%を示
し、60at%≦a≦98.5at%、1.5at%≦
b≦40at%、但し、a+b=100at%)で表わ
される組成を有する金属母相中に結晶質微粒子が分散し
ていることを特徴とする高硬度薄膜。
1. A general formula: Al a M b (where M is T
i, Ta, V, Cr, Zr, Nb, Mo, Hf, W, F
At least one element selected from the group consisting of e, Co, Ni, Cu and Mn, a and b each represent atomic%, and 60 at% ≦ a ≦ 98.5 at% and 1.5 at% ≦
b ≦ 40 at%, where a + b = 100 at%), wherein fine crystalline particles are dispersed in a metal matrix having a composition represented by a + b = 100 at%).
【請求項2】 金属母相が非晶質であり、結晶質微粒子
が500nm以下のセラミックス微粒子である請求項1
に記載の高硬度薄膜。
2. The metal matrix phase is amorphous, and the crystalline fine particles are ceramic fine particles of 500 nm or less.
The high-hardness thin film described in.
【請求項3】 実質的に非晶質の金属母相中にセラミッ
クス微粒子が均一に分散している請求項1又は2に記載
の高硬度薄膜。
3. The high hardness thin film according to claim 1, wherein the ceramic fine particles are uniformly dispersed in the substantially amorphous metal matrix phase.
【請求項4】 実質的に非結晶の金属母相から膜表面に
向ってセラミックス微粒子の分散割合が増加して結晶質
セラミックス相に組成及び構造が傾斜的に変化している
請求項1又は2に記載の高硬度薄膜。
4. The composition and the structure are gradually changed from a substantially non-crystalline metal matrix phase to a crystalline ceramic phase by increasing the dispersion ratio of the ceramic fine particles toward the film surface. The high-hardness thin film described in.
【請求項5】 実質的に結晶の金属母相から膜表面に向
ってセラミックス微粒子の分散割合が増加して結晶質セ
ラミックス相に組成及び構造が傾斜的に変化している請
求項1に記載の高硬度薄膜。
5. The composition and the structure according to claim 1, wherein the dispersion ratio of the ceramic fine particles increases from the substantially crystalline metal matrix phase toward the film surface, and the composition and structure of the crystalline ceramic phase gradually change. High hardness thin film.
【請求項6】 膜内部に100nm以下の微細な窒化物
セラミックス微粒子が分散している請求項2乃至5のい
ずれか一項に記載の高硬度薄膜。
6. The high hardness thin film according to claim 2, wherein fine nitride ceramics fine particles of 100 nm or less are dispersed inside the film.
【請求項7】 前記窒化物セラミックス微粒子は、膜表
面に向ってその粒子直径が小さくなると共に粒子の数が
増加している請求項6に記載の高硬度薄膜。
7. The high hardness thin film according to claim 6, wherein the nitride ceramic fine particles have a particle diameter that decreases toward the film surface and the number of particles increases.
【請求項8】 前記セラミックス微粒子が窒化アルミニ
ウム微粒子であり、該窒化アルミニウム微粒子の他にさ
らに金属アルミニウムの結晶微粒子及び/又はAl5
2 金属間化合物の結晶微粒子が膜中に分散している請
求項2乃至7のいずれか一項に記載の高硬度薄膜。
8. The ceramic fine particles are aluminum nitride fine particles, and in addition to the aluminum nitride fine particles, crystal particles of metal aluminum and / or Al 5 T.
The high hardness thin film according to any one of claims 2 to 7, wherein crystal grains of i 2 intermetallic compound are dispersed in the film.
【請求項9】 (A)物理的気相蒸着法により、一般
式:Alab (ここで、MはTi,Ta,V,Cr,
Zr,Nb,Mo,Hf,W,Fe,Co,Ni,Cu
及びMnよりなる群から選ばれた少なくとも1種の元
素、a及びbはそれぞれ原子%を示し、60at%≦a
≦98.5at%、1.5at%≦b≦40at%、但
し、a+b=100at%)で表わされる組成を有する
蒸発源材料を用い、かつ窒素、酸素又は炭素を含む反応
ガスを用い、反応ガスの供給量を、用いた蒸発源材料に
応じて非晶質相を形成する反応ガス分圧の範囲内で、分
圧一定に、又は連続的もしくは段階的に変化するように
制御しながら、所定量の反応ガスを含む不活性ガス雰囲
気中で基材上に非晶質膜を形成する工程、及び(B)前
記工程により得られた膜を不活性ガス雰囲気中で熱処理
することによって金属母相中に結晶質微粒子が分散して
いる膜を形成することを特徴とする高硬度薄膜の製造方
法。
9. (A) By the physical vapor deposition method, a general formula: Al a M b (where M is Ti, Ta, V, Cr,
Zr, Nb, Mo, Hf, W, Fe, Co, Ni, Cu
And at least one element selected from the group consisting of Mn, a and b each represent atomic%, and 60 at% ≦ a
≦ 98.5 at%, 1.5 at% ≦ b ≦ 40 at%, where a + b = 100 at%) is used as the evaporation source material, and a reaction gas containing nitrogen, oxygen or carbon is used as the reaction gas. While controlling the supply amount of the reaction gas within a range of the partial pressure of the reaction gas forming the amorphous phase depending on the evaporation source material used, so that the partial pressure is constant or continuously or stepwise. A step of forming an amorphous film on a substrate in an inert gas atmosphere containing a fixed amount of a reaction gas, and (B) a heat treatment of the film obtained in the step in an inert gas atmosphere to form a metal matrix A method for producing a high hardness thin film, which comprises forming a film in which crystalline fine particles are dispersed.
【請求項10】 非晶質膜の熱処理を、作製した非晶質
膜の結晶化温度以上の温度に30分以上保持して行う請
求項9に記載の方法。
10. The method according to claim 9, wherein the heat treatment of the amorphous film is performed by holding the temperature of the crystallization temperature of the produced amorphous film or higher for 30 minutes or more.
【請求項11】 反応ガスとして窒素ガス又はNH3
スを用い、窒素分圧として0.005〜0.087Pa
の範囲において非晶質膜を生成させる請求項9又は10
に記載の方法。
11. Nitrogen gas or NH 3 gas is used as a reaction gas, and the nitrogen partial pressure is 0.005 to 0.087 Pa.
An amorphous film is produced in the range of 9 or 10.
The method described in.
【請求項12】 (A)物理的気相蒸着法により、一般
式:Alab (ここで、MはTi,Ta,V,Cr,
Zr,Nb,Mo,Hf,W,Fe,Co,Ni,Cu
及びMnよりなる群から選ばれた少なくとも1種の元
素、a及びbはそれぞれ原子%を示し、60at%≦a
≦98.5at%、1.5at%≦b≦40at%、但
し、a+b=100at%)で表わされる組成を有する
蒸発源材料を用い、窒素、酸素又は炭素を含む反応ガス
の供給量を、用いた蒸発源材料に応じて非晶質相を形成
する反応ガス分圧から結晶質相を形成する反応ガス分圧
まで連続的又は段階的に変化するように制御しながら、
所定量の反応ガスを含む不活性ガス雰囲気中で基材上に
成膜を行い、基材上の実質的に非晶質の金属相から膜表
面に向って反応ガス成分量が連続的又は段階的に増加し
て結晶質セラミックス相に変化してなる構造傾斜膜を作
成する工程、及び(B)前記工程により得られた構造傾
斜膜を不活性ガス雰囲気中で熱処理を行うことにより、
実質的に結晶の金属相から膜表面に向ってセラミックス
微粒子の分散割合が増加して結晶質セラミックス相に組
成及び構造が傾斜的に変化してなる膜を得る工程からな
る高硬度薄膜の製造方法。
12. (A) By a physical vapor deposition method, a general formula: Al a M b (where M is Ti, Ta, V, Cr,
Zr, Nb, Mo, Hf, W, Fe, Co, Ni, Cu
And at least one element selected from the group consisting of Mn, a and b each represent atomic%, and 60 at% ≦ a
≦ 98.5 at%, 1.5 at% ≦ b ≦ 40 at%, where a + b = 100 at%) is used, and the supply amount of the reaction gas containing nitrogen, oxygen or carbon is used. While controlling so as to continuously or stepwise change from the partial pressure of the reaction gas forming the amorphous phase to the partial pressure of the reaction gas forming the crystalline phase according to the evaporation source material,
A film is formed on a base material in an inert gas atmosphere containing a predetermined amount of reaction gas, and the amount of the reaction gas component is continuous or stepwise from the substantially amorphous metal phase on the base material toward the film surface. Of the structurally graded film formed by increasing the amount of the structurally graded ceramics into a crystalline ceramic phase, and (B) heat treating the structurally graded film obtained in the above step in an inert gas atmosphere,
Method for producing a high-hardness thin film comprising a step of obtaining a film in which the dispersion ratio of ceramic fine particles increases from the substantially crystalline metal phase toward the film surface, and the composition and structure gradually change to a crystalline ceramic phase .
【請求項13】 前記熱処理を、非晶質の膜が得られる
最高反応ガス分圧における結晶化温度以上の温度で行う
請求項10に記載の方法。
13. The method according to claim 10, wherein the heat treatment is performed at a temperature equal to or higher than the crystallization temperature at the highest partial pressure of the reaction gas at which an amorphous film is obtained.
【請求項14】 反応ガスとして窒素ガス又はNH3
スを用いる請求項12又は13に記載の方法。
14. The method according to claim 12, wherein nitrogen gas or NH 3 gas is used as the reaction gas.
JP06821494A 1993-03-15 1994-03-14 High hardness thin film and method for producing the same Expired - Fee Related JP3281173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06821494A JP3281173B2 (en) 1993-03-15 1994-03-14 High hardness thin film and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP5-78556 1993-03-15
JP7855693 1993-03-15
JP30709793 1993-11-15
JP5-307097 1993-11-15
JP06821494A JP3281173B2 (en) 1993-03-15 1994-03-14 High hardness thin film and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07180038A true JPH07180038A (en) 1995-07-18
JP3281173B2 JP3281173B2 (en) 2002-05-13

Family

ID=27299660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06821494A Expired - Fee Related JP3281173B2 (en) 1993-03-15 1994-03-14 High hardness thin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3281173B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157940A (en) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool
JP2013256718A (en) * 2013-08-07 2013-12-26 Kobe Steel Ltd Conductive thin film
JP2016519329A (en) * 2013-03-12 2016-06-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Amorphous layer extreme ultraviolet lithography blank and manufacturing and lithography system therefor
JP2016166392A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Optical absorption conductive film, and sputtering target for forming optical absorption conductive film
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
US10209613B2 (en) 2013-03-12 2019-02-19 Applied Materials, Inc. System and method for manufacturing planarized extreme ultraviolet lithography blank
US10788744B2 (en) 2013-03-12 2020-09-29 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
KR102600101B1 (en) * 2022-12-22 2023-11-08 한국야금 주식회사 Hard Coating for Cutting Tools with Excellent Wear Resistance

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157940A (en) * 2011-02-01 2012-08-23 Sumitomo Electric Hardmetal Corp Surface coating cutting tool
JP2016519329A (en) * 2013-03-12 2016-06-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Amorphous layer extreme ultraviolet lithography blank and manufacturing and lithography system therefor
US10209613B2 (en) 2013-03-12 2019-02-19 Applied Materials, Inc. System and method for manufacturing planarized extreme ultraviolet lithography blank
US10788744B2 (en) 2013-03-12 2020-09-29 Applied Materials, Inc. Extreme ultraviolet lithography mask blank manufacturing system and method of operation therefor
JP2013256718A (en) * 2013-08-07 2013-12-26 Kobe Steel Ltd Conductive thin film
JP2016166392A (en) * 2015-03-10 2016-09-15 株式会社神戸製鋼所 Optical absorption conductive film, and sputtering target for forming optical absorption conductive film
US10070515B2 (en) 2015-08-10 2018-09-04 Samsung Electronics Co., Ltd. Transparent electrode using amorphous alloy and method of manufacturing the same
KR102600101B1 (en) * 2022-12-22 2023-11-08 한국야금 주식회사 Hard Coating for Cutting Tools with Excellent Wear Resistance

Also Published As

Publication number Publication date
JP3281173B2 (en) 2002-05-13

Similar Documents

Publication Publication Date Title
JP3027502B2 (en) Abrasion-resistant amorphous hard film and method for producing the same
CN113789503B (en) In-situ synthesis method of high-entropy silicide film with antioxidant property
KR20000028678A (en) Method for improving the morphology of refactory metal thin films
JP2007270272A (en) Epitaxial diamond film underlaying substrate and its manufacturing method, and epitaxial diamond film manufactured by the epitaxial diamond film underlaying substrate and its manufacturing method
CN113151795A (en) NbMoTaWAl refractory high-entropy alloy film and preparation method thereof
TW200302289A (en) Target of high-purity nickel or nickel alloy and its producing method
Cabral Jr et al. Preparation of low resistivity Cu–1 at.% Cr thin films by magnetron sputtering
JPH0598422A (en) Continuous treatment for ion nitriding-ceramic coating
JPH06122959A (en) Wear resistant hard film of al-ti or al-ta system and its production
JP3281173B2 (en) High hardness thin film and method for producing the same
Reniers et al. Glow discharge sputtering deposition of thin films of Ag, Cr, Cu, Ni, Pd, Rh and their binary alloys onto NaCl and MgO experimental parameters and epitaxy
CN114717516A (en) TiAl/Ti with strong bonding and high corrosion resistance2Preparation method of AlC coating
CN111270207A (en) Preparation method of high-entropy alloy thin film material with layered structure
CN111218657B (en) Amorphous tungsten-based high-entropy alloy thin film material and preparation method thereof
JP2003147508A (en) Carbon film, method of depositing carbon film, and carbon film-coated member
EP0616046B1 (en) Highly hard thin film and method for production thereof
JP2003049264A (en) Tungsten sputtering target and manufacturing method
CN110468384A (en) A kind of single crystal super alloy and the resistance diffusion layer of coating interface and preparation method thereof
CN114921757A (en) Amorphous high-entropy alloy thick film preparation equipment and preparation method
JP3971336B2 (en) Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure
CN114941122B (en) High-hardness TiTaCrMoNbNx high-entropy alloy film for medical instrument and preparation method thereof
CN114657524B (en) Method for preparing gradient Nb-Si-based alloy film by adopting multi-target codeposition magnetron sputtering high-flux technology
CN114645254B (en) TiAlMoNbW high-entropy alloy nitride film and preparation process thereof
JPH06128737A (en) Sputtering target
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090222

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees