JPH0716837A - Product planning method - Google Patents
Product planning methodInfo
- Publication number
- JPH0716837A JPH0716837A JP16439993A JP16439993A JPH0716837A JP H0716837 A JPH0716837 A JP H0716837A JP 16439993 A JP16439993 A JP 16439993A JP 16439993 A JP16439993 A JP 16439993A JP H0716837 A JPH0716837 A JP H0716837A
- Authority
- JP
- Japan
- Prior art keywords
- energy
- product
- evaluated
- materials
- recycling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は石油,鉱石等の資源を加
工して工業製品とする家庭電化製品,ワードプロセッ
サ,パーソナルコンピュータ,ワークステーションなど
のエレクトロニクス製品,自動車,電車,エレベータな
どの輸送機器製品,発電機,送変電用の重電機製品,マ
ットレス,椅子などの家具製品,住宅,ビルなどの建造
物,道路の遮音防音壁などの土木製品を生み出す際の設
計手法に役立つ。BACKGROUND OF THE INVENTION The present invention relates to home appliances that process resources such as oil and ore into industrial products, electronic products such as word processors, personal computers and workstations, and transportation equipment products such as automobiles, trains and elevators. , It is useful for designing methods for producing civil engineering products such as generators, heavy electric products for power transmission and transformation, furniture products such as mattresses and chairs, structures such as houses and buildings, and sound insulation and noise barriers for roads.
【0002】[0002]
【従来の技術】従来の工業製品は、材料を選定する目安
として、材料の強度・剛性等の機械特性,外観性ならび
にこれらの経年変化,寿命、及び成形性・生産性を考慮
していた。また、スウェーデンのボルボ社では、EPS
(Environmental PriorityStrategies for product desi
gn) と称する環境優先設計法という手法を開発し、使用
している。この設計法では、個々の部品について、原材
料が素材,製品に仕上がるまで、ならびにその製品が使
用される過程,廃棄されるまでのすべての段階で環境に
与える影響をCO2やNOxの発生量で評価するものであ
る。2. Description of the Related Art Conventional industrial products have taken into consideration mechanical properties such as strength and rigidity of materials, appearance properties, secular change, life, and moldability / productivity as a standard for selecting materials. In addition, Volvo in Sweden
(Environmental Priority Strategies for product desi
We have developed and used a method called environmental priority design method called gn). According to this design method, the amount of CO 2 and NOx generated has an impact on the environment for each part, from the raw materials being finished into raw materials and products, as well as in the stages in which the products are used and discarded. Evaluate.
【0003】また、オランダのフィリップス社でEnviro
nmental Design Manual を作成し、設計者が材料を選択
する際にチェックする項目として、毒性,発癌性等の危
険度,リサイクル性等を考慮している例が有る。Also, Enviro at Phillips in the Netherlands
There is an example in which the risk factors such as toxicity and carcinogenicity, recyclability, etc. are considered as items to be checked when a designer selects a material by creating an nmental Design Manual.
【0004】[0004]
【発明が解決しようとする課題】しかし、プラスチック
を例に上げても、工業製品に適用されている種類は非常
に多く、設計者が材料を選択したあと、あるいは選択時
にチェックを行うことは煩雑な手間と時間を要してい
た。また、材料のエネルギ消費性,安全性,易リサイク
ル性等に対して判定するスケールが個々の設計者により
変動すると、評価は一般性に欠ける問題を含んでいた。
そこで、本発明の課題は一般性の有る評価に基づき且つ
迅速に材料を選定できるようにすることに有る。However, even if plastic is taken as an example, many kinds are applied to industrial products, and it is troublesome for the designer to check the material after or when selecting it. It took a lot of trouble and time. In addition, if the scale for judging energy consumption of materials, safety, recyclability, etc. varies depending on individual designers, the evaluation involves a problem of lack of generality.
Therefore, an object of the present invention is to make it possible to quickly select a material based on a general evaluation.
【0005】[0005]
【課題を解決するための手段】そこで、上記の課題を達
成するための本発明の手段は、個々の材料に対して事前
に同じスケールを用いてエネルギ消費性,クリーン性,
易リサイクル性およびコストの面から総合評価を行い、
ランク付けを行うことである。Therefore, the means of the present invention for achieving the above-mentioned object is to use the same scale in advance for each material, to save energy consumption, cleanliness,
Comprehensive evaluation in terms of easy recyclability and cost,
To do the ranking.
【0006】[0006]
【作用】設計者が上位に評価された材料のなかから用途
に適した材料を選択することにより、手間と時間をかけ
ず、客観的な視点で判定された、リサイクルに適した製
品を設計できるようにする。[Function] The designer can design a product suitable for recycling, which is judged from an objective point of view, without taking time and effort, by selecting a material suitable for the application from the materials highly evaluated. To do so.
【0007】[0007]
【実施例】以下、本発明の設計方法の実施例を説明す
る。EXAMPLES Examples of the designing method of the present invention will be described below.
【0008】図1は地球環境への影響が低く、再資源
化、すなわち、リサイクルしやすい製品を設計する際の
留意点を四角枠内にまとめ、リサイクルにおける材料の
流れを矢印で示したものである。個々に示した設計上の
留意点が、表1に示す材料評価の視点につながってい
る。また、この実施例でランク付けされた材料を総称し
て「エコマテリアル」とする。FIG. 1 shows in a square frame the points to be noted when designing a product that has a low impact on the global environment and is easy to recycle, that is, to recycle, and shows the material flow in recycling by arrows. is there. The individual points to be noted in designing lead to the viewpoint of material evaluation shown in Table 1. In addition, the materials ranked in this example are collectively referred to as “ecomaterial”.
【0009】[0009]
【表1】 [Table 1]
【0010】図左上の製造のところから説明する。製品
を設計・製造する際の留意点として、エコマテリアルA
ランク材料の積極的採用,高ランク材料の採用により材
料品種の削減・統合,材料特性の良いものを適正な設計
を行うことにより、使用量を削減し、最終的に廃棄する
量を少なくする。The manufacturing will be described from the upper left of the figure. Ecomaterial A is a point to keep in mind when designing and manufacturing products.
By aggressively adopting rank materials and adopting high rank materials, we will reduce and integrate material types and properly design materials with good material characteristics to reduce the amount used and ultimately the amount to be discarded.
【0011】[0011]
【表2】 [Table 2]
【0012】[0012]
【表3】 [Table 3]
【0013】[0013]
【表4】 [Table 4]
【0014】次に、市場ユーザでの使用に対する配慮と
して、使用中の消費エネルギを少なくすると同時に、廃
棄に至るまでの時間・製品寿命を長くし、単位時間当り
に廃棄される製品量を削減する。Next, as a consideration for use by market users, the energy consumption during use is reduced, and at the same time the time until disposal and the product life are extended to reduce the amount of product discarded per unit time. .
【0015】次に、回収,解体を考慮すると、まず容易
に分解出来る構造を採用する必要が有る。このためには
部品に易分解構造,形状を採れる物性が求められる。Next, considering recovery and disassembly, it is necessary to first adopt a structure that can be easily disassembled. For this purpose, the parts are required to have an easily disassembled structure and physical properties capable of adopting a shape.
【0016】また、材料は永久にリサイクルは出来ず、
いずれモノマ化,油化,ガス化あるいはエネルギ回収へ
といく。そこで、焼却時に安全性で問題となるようなガ
スを出さないことが重要である。Also, the material cannot be recycled forever,
Eventually, we will move to monomerization, oilification, gasification or energy recovery. Therefore, it is important not to emit a gas that poses a safety problem when incinerated.
【0017】これらの配慮すべき点を基にして、材料の
評価項目ならびに評価スケールをまとめ、表1に示す。
この表は大きく5項目に分かれている。Based on these points to be considered, the evaluation items of materials and the evaluation scale are summarized in Table 1.
This table is roughly divided into 5 items.
【0018】(1)(2)以下をまとめた総合評価であ
る。(1) (2) A comprehensive evaluation summarizing the following.
【0019】(2)エネルギ消費性の欄である。製造エ
ネルギはプラスチックを例とすると原料である石油から
素材,部品へと作り上げるまでに使われるエネルギをま
とめたものであり、小さい方が好ましい。(2) This is a column of energy consumption. Taking plastics as an example, the production energy is a summary of the energy used from the raw material petroleum to the production of raw materials and parts, and the smaller the production energy, the better.
【0020】稼働エネルギは、製品が使用される際に材
料の特性・機能が強く影響される場合に計算されるもの
で、例えば冷蔵庫の断熱材料は冷蔵庫の運転中の消費電
力を直接左右する。そこで、冷蔵庫についての詳細計算
例を示す。冷蔵庫の消費電力を60wh(216kJ)と
し、10年間使用するとその間の消費エネルギE1は E1=216×103×24×365×10≒19(G
J) となる。一方、冷蔵庫一台につき断熱用の発泡ポリウレ
タンの使用量を5kgとすると、ウレタンの製造エネルギ
が232(GJ/m3)であることから、断熱材料の製造
に要するエネルギは約0.9GJ となる。これより、断
熱材料は製造エネルギが若干大きくても断熱性能の方を
重視すべきといえる。The operating energy is calculated when the characteristics and functions of materials are strongly influenced when the product is used. For example, the heat insulating material of the refrigerator directly affects the power consumption during the operation of the refrigerator. Then, the detailed calculation example about a refrigerator is shown. When the refrigerator has a power consumption of 60 wh (216 kJ) and is used for 10 years, the energy consumption E1 during that period is E1 = 216 × 10 3 × 24 × 365 × 10≈19 (G
J). On the other hand, if the amount of foamed polyurethane used for heat insulation is 5 kg per refrigerator, the production energy of urethane is 232 (GJ / m 3 ), so the energy required to produce the heat insulation material is approximately 0.9 GJ. . From this, it can be said that the heat insulating material should emphasize the heat insulating performance even if the manufacturing energy is slightly large.
【0021】再生エネルギは部品に使われている材料を
再び溶融するなどして再成形するために必要なエネルギ
であり、小さい方が好ましい。The regeneration energy is the energy required to re-form the material used for the part by re-melting it, and the smaller the energy is, the better.
【0022】可回収エネルギは、プラスチック等を最終
的に焼却する際に熱エネルギとなる値を評価するもの
で、大きいほど好ましい。The recoverable energy is used to evaluate the value of the heat energy when the plastic or the like is finally incinerated. The larger the recoverable energy, the better.
【0023】(3)クリーン性は材料の再生プロセスあ
るいは焼却する際に有害物質が発生しないかを評価する
ものである。(3) Cleanliness evaluates whether or not harmful substances are generated during the material recycling process or incineration.
【0024】(4)易リサイクル性は材料が長寿命か,
難リサイクルの規制が海外でされているか,外観性が良
好か,成形性が良いか,材料の統合に適した物性を持っ
ているか,解体機構性の構造を成形できるか,再生する
際の問題が無いか,減容・破砕が容易か,初期材に比べ
て再生材料の強度低下は少ないかをそれぞれ評価するも
のである。(4) Easy recycling means that the material has a long life,
Difficulty recycling regulations are imposed overseas, good appearance, good moldability, physical properties suitable for material integration, moldable structure for dismantling, problem in recycling It is evaluated whether there is no crack, easy volume reduction and crushing, and less decrease in strength of the recycled material compared to the initial material.
【0025】最後に(5)としてコストも評価項目に入
れ場合も有りうる。Finally, as (5), cost may be included in the evaluation items.
【0026】これらの(2)から(5)について種々の
材料について評価を行い、総合評価A,B,C,Dのラ
ンク分けを行った。これら、A,B,C,D各ランクの
位置付けは次のものである。Various materials were evaluated for these items (2) to (5), and the overall evaluations A, B, C and D were ranked. The positions of these A, B, C and D ranks are as follows.
【0027】A:積極的に使用。A′も同様 B:使用可 C:使用可であるが、A,Bランク材料への改善要 D:極力使わない 上記の手法に従って樹脂,エラストマー用材料のなか
で、部品が大きい筐体あるいは構造部に多用される材料
を取上げ、評価し、選定指針表としてまとめたものを表
2〜表4に示す。A: Actively used. The same applies to A '. B: Usable C: Usable, but need improvement to rank A and B materials D: Do not use as much as possible Among the materials for resins and elastomers according to the above method, the case or structure with large parts Tables 2 to 4 show the materials that are frequently used for the parts, evaluated and evaluated as a selection guideline.
【0028】ここに上げた製造エネルギと可回収エネル
ギは社団法人化学経済研究所がまとめた昭和55年度の
通商産業省の総合調査委託研究による調査報告書「新規
素材の導入に伴う省エネルギ効果の分析について」から
引用した。The production energy and the recoverable energy raised here are the research report “Energy saving effect due to the introduction of new materials” by the Ministry of International Trade and Industry's comprehensive research commissioned research in 1980 compiled by the Institute of Chemical Economics. About analysis ”.
【0029】この製品設計手法に従って具体的製品の材
料設計を行った洗濯機の例を示す。全自動洗濯機の場
合、水槽,洗濯・脱水槽は頻繁に人目に触れる部品では
ないため、若干外観性に劣っていても総合評価が優れて
いるポリプロピレン(PP)を採用した。操作用のスイ
ッチなどが配置されるパネル面材料は部品サイズが比較
的小さいため、外観性を重視して、Bランクで有るがA
BS樹脂を採用し、洗濯槽の蓋や、本体上部のカバーは
人目に触れる機会が有り、外観・成形性を考慮してA′
材料で有るポリスチレン(PS)を採用した。An example of a washing machine in which the material of a specific product is designed according to this product design method will be shown. In the case of a fully automatic washing machine, the water tank and the washing / dewatering tank are not frequently visible parts, so polypropylene (PP), which has a good overall evaluation even though it is slightly inferior in appearance, was used. Since the panel surface material on which the operating switches are arranged has a relatively small part size, it is ranked B, with an emphasis on appearance, but A
Adopting BS resin, the lid of the washing tub and the cover of the upper part of the main body have the opportunity to be exposed to people, and A'in consideration of appearance and moldability.
Polystyrene (PS) which is a material was adopted.
【0030】[0030]
【発明の効果】予め製品,部品に適用する材料について
エネルギ消費性,クリーン性,易リサイクル性およびコ
ストの面から易リサイクル性の総合評価を行った材料選
定指針を作成し、これをもとに製品設計を行うことによ
り、非常に種が多いプラスチックについて設計者が材料
を選択したあと、あるいは選択時にチェックを行う煩雑
な手間と時間を省けると同じに、個々の設計者による材
料の安全性,低エネルギ消費性等に対する判定するスケ
ール変動が無くなり、客観的な評価に基づく易リサイク
ル製品を迅速に世の中へ送り出すことが出来る。[Effects of the Invention] The material selection guideline was prepared by conducting a comprehensive evaluation of ease of recyclability in terms of energy consumption, cleanliness, easy recyclability, and cost for materials applied to products and parts. Product design saves the labor and time required for the designer to select a material for a plastic with a large number of seeds, or saves the labor and time required for checking by the designer. Since there is no change in the scale for determining low energy consumption, easily recyclable products based on an objective evaluation can be promptly sent to the world.
【図1】本発明の一実施例の製品再資源化の留意点をま
とめたフローチャート。FIG. 1 is a flow chart summarizing points to be noted for product recycling according to an embodiment of the present invention.
フロントページの続き (72)発明者 村中 昌幸 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所映像メディア研究所内 (72)発明者 石井 吉太郎 茨城県日立市東多賀町一丁目1番1号 株 式会社日立製作所リビング機器事業部内 (72)発明者 藤本 亮一 栃木県下都賀郡大平町大字富田800番地 株式会社日立製作所リビング機器事業部内 (72)発明者 上浦 明 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所AV機器事業部内 (72)発明者 後藤 昌生 神奈川県横浜市戸塚区吉田町292番地 株 式会社日立製作所生産技術研究所内Front page continued (72) Inventor Masayuki Muranaka, 292 Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa, Ltd. Inside the Visual Media Research Laboratory, Hitachi, Ltd. (72) Inventor Yoshitaro Ishii 1-1-1, Higashitaga-cho, Hitachi-shi, Ibaraki Incorporated company Hitachi Ltd. Living Equipment Division (72) Inventor Ryoichi Fujimoto 800 Tomita, Ohira-cho, Shimotsuga-gun, Tochigi Prefecture Living Equipment Division Hitachi Ltd. (72) Akira Ueura 292 Yoshida-cho, Totsuka-ku, Yokohama, Kanagawa Prefecture Address Company, Hitachi Ltd. AV Equipment Division (72) Inventor Masao Goto Address: 292 Yoshida-cho, Totsuka-ku, Yokohama City, Kanagawa Prefecture Production Company, Hitachi Ltd.
Claims (3)
らかじめ、地球環境に対する影響が低いか、リサイクル
しやすいか、という視点で評価,ランク付けを行い、評
価の良い材料により製品を構成するようにしたことを特
徴とする製品設計方法。1. The materials of parts constituting an industrial product are evaluated and ranked in advance from the viewpoint of whether they have a low impact on the global environment or are easy to recycle, and the products are composed of materials with good evaluation. A product design method characterized by the above.
ーン性,易リサイクル性およびコストの面から積極使
用,使用可,可ただし改善要、ならびに極力使わないの
四段階の総合評価を行い、評価の良い材料により製品を
構成するようにした製品設計方法。2. From the viewpoint of energy consumption, cleanliness, easy recyclability, and cost in claim 1, a comprehensive evaluation is performed by a four-step comprehensive evaluation of positive use, usable, need improvement but not use as much as possible. A product design method in which the product is made of good materials.
ーン性,易リサイクル性およびコストの面から積極使
用,使用可,可ただし改善要、ならびに極力使わないの
四段階の総合評価を行い、総合評価および材料によって
製品を構成するようにした製品設計方法。3. In claim 1, a comprehensive evaluation is carried out in four steps: active use, usable, possible improvement, and not using as much as possible in terms of energy consumption, cleanliness, easy recyclability, and cost. A product design method in which a product is configured by evaluation and materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16439993A JPH0716837A (en) | 1993-07-02 | 1993-07-02 | Product planning method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16439993A JPH0716837A (en) | 1993-07-02 | 1993-07-02 | Product planning method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0716837A true JPH0716837A (en) | 1995-01-20 |
Family
ID=15792396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16439993A Pending JPH0716837A (en) | 1993-07-02 | 1993-07-02 | Product planning method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0716837A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08267455A (en) * | 1995-03-31 | 1996-10-15 | Hitachi Ltd | Waste treatment apparatus |
US6801818B2 (en) | 2001-03-14 | 2004-10-05 | The Procter & Gamble Company | Distributed product development |
US6862585B2 (en) | 2000-12-19 | 2005-03-01 | The Procter & Gamble Company | System and method for managing product development |
-
1993
- 1993-07-02 JP JP16439993A patent/JPH0716837A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08267455A (en) * | 1995-03-31 | 1996-10-15 | Hitachi Ltd | Waste treatment apparatus |
US6862585B2 (en) | 2000-12-19 | 2005-03-01 | The Procter & Gamble Company | System and method for managing product development |
US6801818B2 (en) | 2001-03-14 | 2004-10-05 | The Procter & Gamble Company | Distributed product development |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Allwood | Squaring the circular economy: the role of recycling within a hierarchy of material management strategies | |
Streimikiene et al. | Uncertain multi-criteria sustainability assessment of green building insulation materials | |
Kibert et al. | Construction ecology and metabolism: natural system analogues for a sustainable built environment | |
Babayemi et al. | Initial inventory of plastics imports in Nigeria as a basis for more sustainable management policies | |
Tian et al. | Sustainable design for automotive products: Dismantling and recycling of end-of-life vehicles | |
dos Santos Pegoretti et al. | Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector | |
Barnes et al. | BIM-enabled integrated optimization tool for LEED decisions | |
JPH0716837A (en) | Product planning method | |
Zanchi et al. | Integrating life cycle sustainability assessment results using fuzzy-TOPSIS in automotive lightweighting | |
O'neill | Life cycle assessment and environmental impact of polymeric products | |
Baynes et al. | A material flow analysis of polymers and plastics in India | |
Lye et al. | ECoDE–An environmental component design evaluation tool | |
Tinker et al. | Green construction: contractor motivation and trends in Austin, Texas | |
Wangrakdiskul et al. | Recycled plastic beads sorting machine for polypropylene and acrylonitrile butadiene styrene type with difference of density | |
Salot | The future of interiors. An exploration of sustainable materials and practices | |
Gheorghe et al. | Decision-based methods for early phase sustainable product design | |
Sassi | Biodegradable building | |
Goel et al. | Wholesale CE High Quality Brick Making Machine Cement Products Cheap Price-Huarun Tianyuan | |
Kömürlü et al. | GREEN BUILDINGS AND SUSTAINABLE BUILDING MATERIALS | |
Câmpean et al. | Environmental Impact of a Residential House Using Cardboard Waste as Construction Material | |
Oyasato et al. | Recyclability evaluation method considering material combination and degradation | |
Calixto et al. | Alternatives For The Use Of Recycled Pet | |
Kibert | CONSTRUCTION MATERIALS FROM RECYCLED POLYMERS. | |
Feldman | Plastics and Polymer Composites: A Perspective on Properties Related to their use | |
Sleiman | SUSTAINABLE MODEL FOR ARCHITECTURE AND RETAILING ENVIRONMENTS BASED ON THE CIRCULAR ECONOMY CONCEPT |