JPH07165498A - Gan single crystal and its production - Google Patents
Gan single crystal and its productionInfo
- Publication number
- JPH07165498A JPH07165498A JP24296794A JP24296794A JPH07165498A JP H07165498 A JPH07165498 A JP H07165498A JP 24296794 A JP24296794 A JP 24296794A JP 24296794 A JP24296794 A JP 24296794A JP H07165498 A JPH07165498 A JP H07165498A
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- gan single
- crystal
- gan
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Led Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、青色発光ダイオード等
のGaN単結晶基板として好適に用いることができる高
品質なGaN単結晶、および、その製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high quality GaN single crystal which can be suitably used as a GaN single crystal substrate for blue light emitting diodes and the like, and a method for producing the same.
【0002】[0002]
【従来の技術】発光ディスプレイ等における多色化の要
求や、通信・記録等におけるデータ密度向上の要求によ
って、青色から紫外線波長領域に至る短波長の発光が可
能な半導体デバイスの出現が強く求められている。この
青色〜紫外発光デバイス用の半導体材料として、 III−
V系化合物半導体では最もバンドギャップの広い窒化物
であるGaN系単結晶が着目されている。GaNは、直
接遷移型バンド構造を有するため高効率の発光が可能で
あり、かつ、室温でのバンドギャップが約3.4eVと
大きいため青色〜紫外発光を呈し、上記半導体デバイス
の要求に好適な材料である。しかし、GaNは、結晶成
長温度が高く、また結晶成長温度付近での窒素の平衡蒸
気圧が高いため、融液から高品質で大型の単結晶を製造
することは極めて困難である。従って、GaN系単結晶
の成長は、耐熱性に優れたサファイア基板またはSiC
基板上への、MOVPE(Metal Organic Vapor Phase
Epitaxy )またはMBE(Molecular Beam Epitaxy)に
よる非平衡反応に基づくヘテロエピタキシャル成長法に
よって行われていた。これに対して、近年、ZnOをバ
ッファ層としてサファイア基板上に成膜した上にGaN
単結晶を成長させる方法が開示され(例えば、Applied
physics letter Vol.61 (1992) p.2688 )、GaN基板
の作製が可能になった。このGaN基板上に同質のGa
N系単結晶薄膜を成長させることによって、上記サファ
イア基板上への直接的な結晶成長にくらべGaN系単結
晶薄膜の品質は向上した。2. Description of the Related Art Due to the demand for multi-color in light-emitting displays and the demand for higher data density in communications and recording, the emergence of semiconductor devices capable of emitting light in a short wavelength range from blue to the ultraviolet wavelength region is strongly demanded. ing. As a semiconductor material for this blue to ultraviolet light emitting device, III-
Attention has been paid to a GaN-based single crystal, which is a nitride having the widest band gap in the V-based compound semiconductor. Since GaN has a direct transition type band structure, highly efficient light emission is possible, and since the band gap at room temperature is as large as about 3.4 eV, it exhibits blue to ultraviolet light emission, which is suitable for the requirements of the above semiconductor device. It is a material. However, since GaN has a high crystal growth temperature and a high equilibrium vapor pressure of nitrogen near the crystal growth temperature, it is extremely difficult to produce a high-quality large single crystal from a melt. Therefore, the growth of the GaN-based single crystal is performed by using a sapphire substrate or SiC that has excellent heat resistance.
MOVPE (Metal Organic Vapor Phase) on the substrate
Epitaxy) or MBE (Molecular Beam Epitaxy). On the other hand, in recent years, ZnO has been used as a buffer layer on a sapphire substrate and GaN
Methods of growing single crystals are disclosed (eg, Applied
physics letter Vol.61 (1992) p.2688), it became possible to fabricate GaN substrates. Ga of the same quality on this GaN substrate
By growing the N-based single crystal thin film, the quality of the GaN-based single crystal thin film was improved as compared with the direct crystal growth on the sapphire substrate.
【0003】[0003]
【発明が解決しようとする課題】ところが、上記ZnO
をバッファ層として用いる従来の方法では、サファイア
基板上へのZnOの成膜がスパッタリング法によるもの
であるため、該ZnO層は高品質の単結晶とはならず、
この結晶構造の品質が次のGaN単結晶層に影響するた
めに高品質なGaN単結晶が得られないという問題があ
った。また、従来知られていたGaN単結晶の結晶品質
は、最も高品質なものであっても、2結晶法X線ロッキ
ングカーブの半値全幅(full width at half-maximumof
the double-crystal X-ray rocking curve)が100
sec程度、室温でのMobility は600cm2 /VS
程度であったが、結晶を成長させる方法がMOVPEで
あるために膜厚が5μm程度しか得られず非常に薄いの
で、GaN単結晶をもとの基板から分離し、例えば半導
体発光素子の基板として、単独に用いることは困難であ
った。このため、GaN単結晶を利用する場合は、もと
の基板上に形成された状態のまま用いることを余儀なく
されていたのである。以下、本明細書では、「2結晶法
X線ロッキングカーブの半値全幅」を単に「半値全幅」
という。また、上記のようにZnOバッファ層上に、H
VPE(Hydride Vapor PhaseEpitaxy )によって成長
させたGaN単結晶は、基板としては十分な厚みのもの
が得られていたが、その品質は半値全幅が300sec
以上の低品質のものであった。即ち、良好な品質と十分
な厚みとを同時に有するGaN単結晶はなかったのであ
る。However, the above ZnO
In the conventional method of using as a buffer layer, since the ZnO film is formed on the sapphire substrate by the sputtering method, the ZnO layer does not become a high-quality single crystal,
There is a problem in that a high quality GaN single crystal cannot be obtained because the quality of this crystal structure affects the next GaN single crystal layer. In addition, the crystal quality of a conventionally known GaN single crystal, even if it is the highest quality, is the full width at half-maximum of the two-crystal method X-ray rocking curve.
the double-crystal X-ray rocking curve) is 100
sec, mobility at room temperature is 600 cm 2 / VS
However, since the method of growing the crystal is MOVPE, the film thickness is only about 5 μm and it is very thin. Therefore, the GaN single crystal is separated from the original substrate, for example, as a substrate of a semiconductor light emitting device. , Was difficult to use alone. Therefore, when a GaN single crystal is used, it has been forced to use it as it is on the original substrate. Hereinafter, in the present specification, "full width at half maximum of X-ray rocking curve of two-crystal method" is simply referred to as "full width at half maximum".
Say. Further, as described above, H on the ZnO buffer layer
Although a GaN single crystal grown by VPE (Hydride Vapor Phase Epitaxy) has a sufficient thickness as a substrate, its full width at half maximum is 300 sec.
It was of low quality. That is, there was no GaN single crystal having both good quality and sufficient thickness at the same time.
【0004】本発明の目的は、高品質な単結晶で、か
つ、単独で基板として用いることが可能なほど十分な厚
みを有する、GaN単結晶を提供することである。本発
明の他の目的は、高品質な単結晶で、かつ、単独で基板
として用いることが可能なほど十分な厚みを有するGa
N単結晶の製造が可能な、GaN単結晶の製造方法を提
供することである。An object of the present invention is to provide a GaN single crystal which is a high quality single crystal and has a sufficient thickness to be used as a substrate by itself. Another object of the present invention is Ga, which is a high-quality single crystal and has a sufficient thickness so that it can be used alone as a substrate.
An object of the present invention is to provide a method for producing a GaN single crystal that enables the production of N single crystal.
【0005】[0005]
【課題を解決するための手段】本発明者等は、GaN単
結晶が従来の製造方法による低品質の結晶構造であって
も、あるいはサファイア基板等のようなGaN以外の結
晶であっても、これらを最初の結晶基板として、この上
にGaN単結晶との格子整合性が良好な物質を薄膜成長
させてバッファ層とし、この上にGaNを結晶成長させ
ることによって、より高品質のGaN単結晶が得られる
こと、および当該GaN単結晶を新たな基板とし、再び
この上にバッファ層・GaN単結晶を成長させるという
ように、バッファ層物質とGaNとを交互にエピタキシ
ャル成長させることを繰り返すに応じてGaN単結晶が
より高品質化され、十分な厚みに形成し得ることを見出
し本発明を完成した。The inventors of the present invention have found that whether a GaN single crystal has a low quality crystal structure produced by a conventional manufacturing method, or a crystal other than GaN such as a sapphire substrate. Using these as the first crystal substrate, a material having good lattice matching with the GaN single crystal is grown as a thin film on this to form a buffer layer, and GaN is crystal-grown on this to obtain a higher quality GaN single crystal. And that the GaN single crystal is used as a new substrate, and the buffer layer / GaN single crystal is grown again on the new substrate, so that the buffer layer material and the GaN are alternately epitaxially grown. The inventors have completed the present invention by finding that the quality of GaN single crystal can be improved and the GaN single crystal can be formed with a sufficient thickness.
【0006】本発明のGaN単結晶およびその製造方法
は次の特徴を有するものである。 (1) 2結晶法X線ロッキングカーブの半値全幅が5〜2
50secであり、かつ、厚みが80μm以上であるG
aN単結晶。 (2) 少なくとも表面がGaN単結晶である基板上にGa
N単結晶との格子整合性の良好な物質を薄膜成長させて
バッファ層とした上にGaNを結晶成長させてGaN単
結晶を得る工程を有するGaN単結晶の製造方法。 (3) 少なくとも表面がGaN単結晶である基板上にGa
N単結晶との格子整合性の良好な物質を薄膜成長させて
バッファ層とした上にGaNを結晶成長させてGaN単
結晶を得る工程を1回の結晶成長サイクルとし、得られ
たGaN単結晶上に上記結晶成長サイクルを少なくとも
1サイクル繰り返して積層物を形成させた後に各バッフ
ァ層を除去し、GaN単結晶を得ることを特徴とするG
aN単結晶の製造方法。 (4) 少なくとも表面がGaN単結晶である基板上にGa
N単結晶との格子整合性の良好な物質を薄膜成長させて
バッファ層とした上にGaNを結晶成長させてGaN単
結晶を得る工程を1回の結晶成長サイクルとし、得られ
たGaN単結晶を新たな基板として上記結晶成長サイク
ルを少なくとも1サイクル繰り返し、かつ1サイクル毎
にバッファ層を除去し、GaN単結晶を得ることを特徴
とするGaN単結晶の製造方法。The GaN single crystal and the manufacturing method thereof according to the present invention have the following features. (1) The full width at half maximum of the X-ray rocking curve of the two-crystal method is 5 to 2
G of 50 sec and a thickness of 80 μm or more
aN single crystal. (2) Ga at least on the substrate whose surface is GaN single crystal
A method for producing a GaN single crystal, which comprises a step of growing a substance having a good lattice matching with an N single crystal into a buffer layer to grow a GaN crystal to obtain a GaN single crystal. (3) Ga on a substrate whose surface is at least GaN single crystal
The step of obtaining a GaN single crystal by growing a thin film of a material having a good lattice matching with the N single crystal to form a buffer layer is a single crystal growth cycle. At least one cycle of the above crystal growth cycle is repeated to form a laminate, and then each buffer layer is removed to obtain a GaN single crystal.
Method for producing aN single crystal. (4) Ga at least on the substrate whose surface is GaN single crystal
A process of obtaining a GaN single crystal by growing a GaN crystal on a material having a good lattice match with the N single crystal as a buffer layer is defined as one crystal growth cycle. The above-mentioned crystal growth cycle is repeated for at least one cycle as a new substrate, and the buffer layer is removed every cycle to obtain a GaN single crystal.
【0007】[0007]
【作用】本発明のGaN単結晶は、基板上にバッファ層
の成膜とGaNの結晶成長とを交互に、また、サイクル
的に繰り返すことによって形成される。基板中に存在し
ている多くの転位、積層欠陥などは、GaNの結晶成長
層内、バッファ層内、または基板とバッファ層との界
面、またはバッファ層とGaN結晶成長層との界面で消
滅する。従って、該結晶成長サイクルを1回行なう毎
に、GaNの単結晶構造の品質は向上し、これを限りな
く繰り返せば、成長条件で規定されるような単結晶構造
に漸近的に収束するものと思われる。本発明の製造方法
によって得られるGaN単結晶は品質が良好であり、ま
た、必要ならば80μm以上の厚みにまで形成すること
が可能であり、特に半導体発光素子の基板として好まし
いものとなる。The GaN single crystal of the present invention is formed by repeating the film formation of the buffer layer and the GaN crystal growth on the substrate alternately and cyclically. Many dislocations, stacking faults and the like existing in the substrate disappear in the GaN crystal growth layer, the buffer layer, the interface between the substrate and the buffer layer, or the interface between the buffer layer and the GaN crystal growth layer. . Therefore, each time the crystal growth cycle is performed, the quality of the GaN single crystal structure is improved, and if this is repeated infinitely, it will asymptotically converge to the single crystal structure defined by the growth conditions. Seem. The GaN single crystal obtained by the production method of the present invention has good quality and can be formed to a thickness of 80 μm or more if necessary, which is particularly preferable as a substrate for a semiconductor light emitting device.
【0008】[0008]
【実施例】以下、実施例を挙げて本発明をより詳細に説
明する。本発明のGaN単結晶は、上記したように、そ
の半値全幅が5〜250secの値を示す高品質なもの
であり、かつ、単独で基板として用いることができる
程、充分な厚み80μm以上を有するものである。本発
明では、GaN単結晶の品質を数値で表すための方法と
してX線回折法を用い、この方法によって示される半値
全幅の値をもってGaN単結晶の品質とした。X線回折
法は、結晶に照射されたX線の回折を利用する方法であ
る。そのなかでも、本発明では、その測定精度を向上さ
せるために、2結晶を用いる方法によって測定をおこな
った。2結晶を用いるX線回折法は、試料の格子定数を
精密に評価し、その半値幅から結晶の完全性を評価する
方法である。本発明におけるGaN単結晶の品質評価に
おいては、X線源から入射したX線を第1結晶により高
度に単色化して、第2結晶である試料のGaN単結晶に
照射し、この試料から回折するX線のピークを中心とす
るFWHM(full width athalf-maximum)を測定し
た。X線源にはCukα1 を用い、30kV、10mA
でX線を発生させた。単色化のための第1結晶には、G
e(400)を用いた。測定は、GaN(0002)の
回折ピークについて行い、測定のステップ間隔は0.0
02°で行うものとした。The present invention will be described in more detail with reference to examples. As described above, the GaN single crystal of the present invention is of high quality having a full width at half maximum of 5 to 250 sec, and has a thickness of 80 μm or more sufficient to be used alone as a substrate. It is a thing. In the present invention, the X-ray diffraction method is used as a method for numerically expressing the quality of the GaN single crystal, and the value of the full width at half maximum indicated by this method is defined as the quality of the GaN single crystal. The X-ray diffraction method is a method that utilizes the diffraction of X-rays irradiated on the crystal. Among them, in the present invention, in order to improve the measurement accuracy, the measurement was performed by a method using two crystals. The X-ray diffraction method using two crystals is a method of precisely evaluating the lattice constant of a sample and evaluating the crystal perfection from the half width. In the quality evaluation of the GaN single crystal in the present invention, the X-rays incident from the X-ray source are highly monochromated by the first crystal, and the GaN single crystal of the sample that is the second crystal is irradiated and diffracted from this sample. FWHM (full width at half-maximum) centering on the X-ray peak was measured. Cukα 1 is used as the X-ray source, and 30 kV, 10 mA
To generate X-rays. The first crystal for monochromatization has G
e (400) was used. The measurement is performed on the diffraction peak of GaN (0002), and the measurement step interval is 0.0
It was supposed to be performed at 02 °.
【0009】本発明によるGaN単結晶の品質の実験値
については後述するものとし、次にこのような品質のG
aN単結晶を得ることが可能な製造方法を説明する。図
1は本発明の製造方法によるGaN単結晶の形成工程の
一例を模式的に示す図である。本発明のGaN単結晶の
製造方法は、最も簡単には、同図工程1に示すように、
少なくとも表面がGaN単結晶である最初の基板P0 上
にGaN単結晶との格子整合性が良好な物質を堆積させ
てバッファ層B1 とした上にGaNを結晶成長させてG
aN単結晶を得るものである。Experimental values of the quality of the GaN single crystal according to the present invention will be described later.
A manufacturing method capable of obtaining an aN single crystal will be described. FIG. 1 is a diagram schematically showing an example of a step of forming a GaN single crystal by the manufacturing method of the present invention. The simplest method for producing a GaN single crystal of the present invention is as shown in Step 1 of the figure.
A material having a good lattice matching with the GaN single crystal is deposited on the first substrate P 0 having at least the surface of the GaN single crystal to form the buffer layer B 1, and then GaN is crystal-grown to form G.
This is to obtain an aN single crystal.
【0010】本発明のGaN単結晶の製造方法は、ま
た、同図工程2に示すように、工程1で形成された積層
体の基板P1 上にGaN単結晶との格子整合性が良好な
物質を薄膜成長させてバッファ層B2 を形成した上にG
aNを結晶成長させGaN単結晶よりなる基板P2 を形
成させる。この様な工程を、工程1を1回目と数えてサ
イクル的にn回繰り返すことによって最上層にGaN単
結晶Pn が成長した後に、それまで累積した各バッファ
層を一度に除去し、GaN単結晶P1 〜Pn を分離して
多数枚のGaN単結晶とする方法である。上記方法で
は、サイクル数を増やす毎に、得られるGaNの結晶品
質は向上するが、結晶品質の向上が平衡状態に達した後
は、むしろ多数枚の基板作製技術として有用なものとな
る。In the method for producing a GaN single crystal of the present invention, as shown in step 2 in the figure, the lattice matching with the GaN single crystal is excellent on the substrate P 1 of the laminated body formed in step 1. The material is grown in a thin film to form a buffer layer B 2 and G
AN is crystal-grown to form a substrate P 2 made of a GaN single crystal. Such a process is counted as the first process, and is repeated n times, so that the GaN single crystal P n is grown on the uppermost layer, and then each buffer layer accumulated until then is removed at once to obtain the GaN single crystal. This is a method of separating the crystals P 1 to P n into a large number of GaN single crystals. In the above method, the crystal quality of GaN obtained improves as the number of cycles increases, but after the improvement in crystal quality reaches an equilibrium state, it becomes rather useful as a technique for producing a large number of substrates.
【0011】本発明のGaN単結晶の製造方法は、さら
に、同図工程3に示すように、工程1のバッファ層B1
を除去してGaN単結晶P0 ,P1 を分離し、GaN単
結晶の単独基板P1 を得、当該基板P1 上にGaN単結
晶との格子整合性が良好な物質を薄膜成長させてバッフ
ァ層B2 を形成した上にGaNを結晶成長させ、バッフ
ァ層B2 を除去してGaN単結晶P1 ,P2 を分離す
る。この様な工程を、工程1を1回目と数えてサイクル
的にn回繰り返すことによってGaN単結晶Pnが得ら
れる。即ち、本方法は新たに得られるGaN単結晶が結
晶成長する度に、その結晶成長の基礎となったバッファ
層を1サイクル毎に除去し、新たに得られるGaN単結
晶を常にGaN単独の単結晶とする方法である。この方
法においても上記工程2と同様に、結晶品質の向上が平
衡状態に達した後は、バッファ層を除去して分離される
2つのGaN単結晶は、製品材料として利用する他に、
各々次のGaN結晶成長サイクルの基板として再び利用
してもよい。In the method for producing a GaN single crystal of the present invention, further, as shown in step 3 of the figure, the buffer layer B 1 of step 1
Is removed to separate the GaN single crystals P 0 and P 1 to obtain a GaN single crystal single substrate P 1 , and a thin film of a substance having a good lattice matching with the GaN single crystal is grown on the substrate P 1. After forming the buffer layer B 2 , GaN is crystal-grown and the buffer layer B 2 is removed to separate the GaN single crystals P 1 and P 2 . A GaN single crystal P n can be obtained by repeating the above-mentioned steps cyclically n times, counting step 1 as the first time. That is, in this method, each time a newly obtained GaN single crystal grows, the buffer layer which is the basis of the crystal growth is removed every cycle, and the newly obtained GaN single crystal is always made of GaN single crystal. It is a method of making a crystal. Also in this method, as in the case of the above step 2, after the improvement of the crystal quality reaches the equilibrium state, the two GaN single crystals separated by removing the buffer layer are used as product materials.
Each may be reused as a substrate for the next GaN crystal growth cycle.
【0012】また、工程2,3に示した2つの方法を適
当に複合する方法として、結晶成長サイクルの任意の回
数kごとにバッファ層を除去する方法が考えられる。こ
の場合の任意の回数kは自由に選択してよい。As a method of appropriately combining the two methods shown in steps 2 and 3, a method of removing the buffer layer every arbitrary number k of crystal growth cycles can be considered. In this case, the arbitrary number of times k may be freely selected.
【0013】上記のように、本発明のGaN単結晶の製
造方法は、結晶成長サイクルを繰り返すことによって、
GaNの結晶構造が該結晶成長サイクルを1回行なう毎
に品質が向上し、所望の回数n回目に、極めて高品質な
GaN単結晶Pn が得られるというものである。As described above, the method for producing a GaN single crystal according to the present invention is characterized by repeating the crystal growth cycle.
The quality of the GaN crystal structure improves each time the crystal growth cycle is performed, and an extremely high quality GaN single crystal P n can be obtained at the desired number n times.
【0014】バッファ層の薄膜成長は、公知の成膜法や
結晶成長法が用いられるが、特にエピタキシャル成長可
能な成膜法が、得られるGaN単結晶の品質向上に対し
て好ましい。また、バッファ層上へGaNを結晶成長さ
せる方法も、バッファ層の薄膜成長と同様に、エピタキ
シャル成長可能な成膜法が品質向上に対して好ましい。A known film forming method or crystal growing method is used for thin film growth of the buffer layer, and a film forming method capable of epitaxial growth is particularly preferable for improving the quality of the obtained GaN single crystal. Also, as for the method of crystal-growing GaN on the buffer layer, a film-forming method capable of epitaxial growth is preferable for quality improvement, like the thin film growth of the buffer layer.
【0015】エピタキシャル成長は、結晶基板上にこれ
と同一物質あるいは同一結晶構造の物質を、その結晶軸
の向きが基板の結晶軸の向きにそろった単結晶として成
長させる方法である。本発明においては、GaNやバッ
ファ層となる物質をエピタキシャル成長させる成膜法が
最も好ましく、特にVPE(Vapor Phase Epitaxy )、
HVPE、MOVPE、MBE、GS−MBE(Gas So
urse MBE)、CBE(Chemical beam Epitaxy )等
が挙げられる。Epitaxial growth is a method in which the same substance or substance having the same crystal structure is grown on a crystal substrate as a single crystal whose crystal axes are aligned with the crystal axes of the substrate. In the present invention, a film forming method of epitaxially growing GaN or a substance to be a buffer layer is most preferable, and particularly VPE (Vapor Phase Epitaxy),
HVPE, MOVPE, MBE, GS-MBE (Gas So
urse MBE), CBE (Chemical beam Epitaxy) and the like.
【0016】上記結晶成長サイクルを繰り返す回数n
は、特に限定されるものではなく、求めるGaN結晶の
品質に応じて、また、必要とするGaN結晶基板の枚数
に応じてサイクル回数を決定してよいが、通常の半導体
デバイス用のGaN結晶基板として用いるには、2回〜
5回程度で十分な結晶品質となる。Number of repetitions n of the crystal growth cycle
Is not particularly limited, and the number of cycles may be determined according to the desired quality of the GaN crystal and the required number of GaN crystal substrates, but a GaN crystal substrate for a normal semiconductor device is used. To use as twice
Sufficient crystal quality is obtained by about 5 times.
【0017】上記、GaNの結晶成長の基礎となったバ
ッファ層を除去する方法は、得られたGaN単結晶を分
離しうる方法であればどのような方法であってもよい
が、酸等による化学的な除去方法が有効である。The above-mentioned method of removing the buffer layer which is the basis of the GaN crystal growth may be any method as long as it can separate the obtained GaN single crystal. Chemical removal methods are effective.
【0018】上記バッファ層に用いられる物質は、Ga
N単結晶との格子整合性が良好なものが用いられる。G
aN単結晶と格子製合性の良好な物質とは、結晶格子に
おけるa軸の格子定数が、GaN単結晶のそれに対して
±10%以内、好ましくは±5%以内であるウルツァイ
ト型の結晶構造も持つものを言う。これを満足する物質
の好ましい例として、ZnOが挙げられる。ZnOのa
軸の格子定数(単位格子の長さ)は3.2496Åであ
り、GaNのa軸の格子定数3.189Åに対して+
1.9%と、非常に近似した格子定数を備えており、良
好なGaNの結晶成長が行い得るので望ましい。また、
ZnOは酸によるエッチング除去性が良好であり、この
点でも、バッファ層に用いる物質として好適である。バ
ッファ層の厚みは、0.01μm〜100μm程度が好
ましい。The material used for the buffer layer is Ga
A material having a good lattice matching with the N single crystal is used. G
A substance having a good lattice compatibility with an aN single crystal is a wurtzite type crystal structure in which the lattice constant of the a-axis in the crystal lattice is within ± 10%, preferably within ± 5% of that of a GaN single crystal. Also say what you have. ZnO is mentioned as a preferable example of the substance which satisfies this. ZnO a
The lattice constant of the axis (length of unit lattice) is 3.2496Å, which is + with respect to the lattice constant of the a-axis of GaN of 3.189Å.
It has a very close lattice constant of 1.9%, which is desirable because good GaN crystal growth can be performed. Also,
ZnO has a good acid removability by etching, and in this respect also, it is suitable as a substance used for the buffer layer. The thickness of the buffer layer is preferably about 0.01 μm to 100 μm.
【0019】最初の基板P0 は、少なくとも表面がGa
N単結晶であるものを用いる。即ち、全体が実質的にG
aNだけからなるGaN単結晶の単独の基板、または、
GaN単結晶層をバッファ層形成側の表面に有するよう
な、表面だけがGaN単結晶であるような基板である。
後者の場合、GaN単結晶層を担持する基材物質として
は、GaN単結晶の成長温度(1000〜1100℃)
に対する耐熱性が良好なものが望ましく、例えばサファ
イア結晶基板、Si基板、水晶、ZnO基板、SiC基
板などが例示される。これら基材物質上へのGaN単結
晶層の形成は、MOVPE法、MBE法などによる非平
衡反応に基づくヘテロエピタキシャル成長法によって行
うことができる。The first substrate P 0 has at least a Ga surface.
A single crystal of N is used. That is, the whole is substantially G
a single substrate of GaN single crystal consisting only of aN, or
A substrate having a GaN single crystal layer on the surface on the buffer layer forming side and having only a GaN single crystal surface.
In the latter case, as the base material supporting the GaN single crystal layer, the growth temperature of the GaN single crystal (1000 to 1100 ° C.)
It is desirable that it has a good heat resistance to, for example, a sapphire crystal substrate, a Si substrate, a crystal, a ZnO substrate, a SiC substrate and the like. The GaN single crystal layer can be formed on these base materials by a heteroepitaxial growth method based on nonequilibrium reaction such as MOVPE method and MBE method.
【0020】〔GaN単結晶の製造実験および品質確認
実験〕次に、本発明のGaN単結晶の製造方法によって
実際にGaN単結晶を製造し、その品質を確認した結果
を示す。 実験例1 本実験例では、上記本発明のGaN単結晶の製造方法に
おける結晶成長サイクルを繰り返す方法として、図1に
おける工程2に示すように、最初の基板P0 上にバッフ
ァ層およびGaN単結晶を順次成長させて積層し、最後
に各バッファ層を一度に除去してGaN単結晶を分離す
る方法とした。最初の基板P0 としては、サファイア結
晶基材上にMOVPE法によりGaN単結晶層をエピタ
キシャル成長させた基板を用いた。バッファ層は厚みを
0.2μm、材料をZnOとした。結晶成長サイクルは
5回繰り返すものとした。結晶成長サイクル各回に形成
されるGaN単結晶P1 〜P5 の厚みは全て300μm
を目標とした。最後に得られたGaN単結晶P5 の半値
全幅を測定したところ、29secであり、また、その
厚みは305μmであった。[Manufacturing Experiment of GaN Single Crystal and Quality Confirmation Experiment] Next, the result of actually manufacturing a GaN single crystal by the method for manufacturing a GaN single crystal of the present invention and confirming its quality will be shown. Experimental Example 1 In this experimental example, as a method of repeating the crystal growth cycle in the method for producing a GaN single crystal of the present invention, as shown in step 2 in FIG. 1, a buffer layer and a GaN single crystal were initially formed on the substrate P 0. Was sequentially grown and laminated, and finally each buffer layer was removed at once to separate the GaN single crystal. As the first substrate P 0 , a substrate obtained by epitaxially growing a GaN single crystal layer on the sapphire crystal base material by the MOVPE method was used. The buffer layer had a thickness of 0.2 μm and was made of ZnO. The crystal growth cycle was repeated 5 times. The GaN single crystals P 1 to P 5 formed in each crystal growth cycle each have a thickness of 300 μm.
Was the goal. When the full width at half maximum of the finally obtained GaN single crystal P 5 was measured, it was 29 sec, and its thickness was 305 μm.
【0021】実験例2 本実験例では、上記実験例1における結晶成長サイクル
を繰り返す方法に代えて、図1における工程3に示すよ
うに、GaN単結晶がエピタキシャル成長する度に、そ
の前のバッファ層を除去し、新たな基板を常に1枚のG
aN単独の単結晶とした以外は、実験例1と全く同様の
GaN単結晶の作製を行った。最後に得られたGaN単
結晶P5 の品質は、半値全幅が28secであり、ま
た、その厚みは289μmであった。Experimental Example 2 In this experimental example, instead of the method of repeating the crystal growth cycle in Experimental Example 1 described above, as shown in Step 3 in FIG. 1, every time a GaN single crystal was epitaxially grown, the buffer layer before it was grown. Is removed, and a new substrate is always used as one G
A GaN single crystal was manufactured in exactly the same manner as in Experimental Example 1 except that a single crystal of aN alone was used. Regarding the quality of the finally obtained GaN single crystal P 5 , the full width at half maximum was 28 sec and the thickness thereof was 289 μm.
【0022】実験例3 本実験例では、上記実験例2における最初の基板とし
て、サファイア基板と、AlN(窒化アルミニウム)の
バッファ層と、GaN単結晶とからなる3層の基板を用
いた以外は、実験例2と全く同様のGaN単結晶の作製
を行った。3層の基板の製作工程を簡単に説明する。厚
さ300μm、面積5cm×5cmのサファイア結晶基
板上に、バッファ層としてAlNをMOVPE法によっ
て厚み500Åまでエピタキシャル成長させ、その状態
のままで材料ガスを切替え、同じMOVPE法によって
GaN単結晶を厚み2μmまでエピタキシャル成長させ
て表層とし、サファイア結晶基板と、AlNバッファ層
と、GaN単結晶の表層とからなる総厚約302μmの
三層構造の基板を得た。本実験によって最後に得られた
GaN単結晶P5 の品質は、半値全幅が25secであ
り、また、その厚みは295μmであった。Experiment Example 3 In this experiment example, a sapphire substrate, a buffer layer of AlN (aluminum nitride), and a three-layer substrate made of GaN single crystal were used as the first substrate in the above experiment example 2. A GaN single crystal was manufactured in exactly the same manner as in Experimental Example 2. A process of manufacturing a three-layer substrate will be briefly described. On a sapphire crystal substrate with a thickness of 300 μm and an area of 5 cm × 5 cm, AlN was epitaxially grown as a buffer layer by MOVPE to a thickness of 500 Å, and the material gas was changed in that state, and the same MOVPE method was used to grow a GaN single crystal to a thickness of 2 μm. Epitaxial growth was performed to form a surface layer, and a substrate having a three-layer structure with a total thickness of about 302 μm, which includes a sapphire crystal substrate, an AlN buffer layer, and a surface layer of a GaN single crystal, was obtained. The quality of the GaN single crystal P 5 finally obtained by this experiment had a full width at half maximum of 25 sec and a thickness of 295 μm.
【0023】実験例4 本実験例では、上記実験例2において、最初の基板P0
として実験例3と同様の3層の基板を用い、GaN単結
晶の結晶成長サイクルを繰り返す際の、各サイクルにお
けるバッファ層の材料として(BeO)0.13(ZnO)
0.87 を用いた以外は、実験例2と全く同様のGaN単
結晶の作製を行った。本実験によって最後に得られたG
aN単結晶P5 の品質は、半値全幅が28secであ
り、また、その厚みは301μmであった。Experimental Example 4 In this Experimental Example, the first substrate P 0 in Experimental Example 2 was used.
As a material of the buffer layer in each cycle when a GaN single crystal growth cycle is repeated using the same three-layer substrate as in Experimental Example 3, (BeO) 0.13 (ZnO)
Except for using 0.87 , a GaN single crystal was manufactured in exactly the same manner as in Experimental Example 2. G obtained at the end of this experiment
Regarding the quality of the aN single crystal P 5 , the full width at half maximum was 28 sec, and the thickness thereof was 301 μm.
【0024】実験例5 本実験例では、本発明によるGaN単結晶の品質と比較
するために、従来の製造方法によるGaN単結晶の品質
を調べた。厚さ300μm、面積5cm×5cmのサフ
ァイア結晶基板上に、スパッタリング法によってZnO
を材料とする厚さ0.6μmのバッファ層を成膜し、そ
の上にHVPEによってGaN単結晶を厚さ250μm
までエピタキシャル成長させた。このGaN単結晶の品
質は、半値全幅が420secであった。Experimental Example 5 In this experimental example, in order to compare with the quality of the GaN single crystal according to the present invention, the quality of the GaN single crystal according to the conventional manufacturing method was examined. ZnO was formed on a sapphire crystal substrate having a thickness of 300 μm and an area of 5 cm × 5 cm by a sputtering method.
A buffer layer having a thickness of 0.6 μm is formed by using as a material, and a GaN single crystal having a thickness of 250 μm is formed thereon by HVPE.
Was grown epitaxially. The full width at half maximum of the quality of this GaN single crystal was 420 sec.
【0025】上記実験結果で明らかなように、本発明の
GaN単結晶の製造方法は、従来には無い、高品質なG
aN単結晶を製造することが可能であり、かつ、GaN
単結晶を単独の基板として用いるのに十分な厚みに製造
することが可能であることが確認された。As is clear from the above experimental results, the GaN single crystal manufacturing method of the present invention has a high quality G which has never been obtained by the conventional method.
It is possible to produce an aN single crystal, and GaN
It was confirmed that it is possible to manufacture a single crystal in a thickness sufficient for use as a single substrate.
【0026】本発明の製造方法によって得られる、この
ような高品質で厚いGaN単結晶は、発光ダイオード
(LED)、レーザーダイオード(LD)、スーパール
ミネッセンスダイオード等の半導体発光素子、電子デバ
イス等の用途に好ましく用いられる。半導体発光素子に
おいては、本発明のGaN単結晶を基板として用いるこ
とで、従来の赤色LED等と同じ電極部の構造を有する
LED、LD等の製造が可能となる。これらのなかでも
特に、青色発光するものは重要である。また、その半導
体発光素子の発光の効率はより高いものとなる。Such a high quality and thick GaN single crystal obtained by the manufacturing method of the present invention is used for a semiconductor light emitting device such as a light emitting diode (LED), a laser diode (LD), a super luminescence diode, and an electronic device. It is preferably used for. In the semiconductor light emitting device, by using the GaN single crystal of the present invention as a substrate, it is possible to manufacture an LED, an LD, or the like having the same electrode structure as a conventional red LED or the like. Of these, those that emit blue light are particularly important. Further, the efficiency of light emission of the semiconductor light emitting element becomes higher.
【0027】〔本発明によるGaN単結晶を用いたLE
Dの品質確認実験〕本発明の製造方法によって得られた
GaN単結晶を基板として用いたLEDを実際に製造
し、その品質を確認した。また、従来品質のGaN単結
晶、およびサファイア結晶を各々基板とするLEDを製
作し、本発明のGaN単結晶を基板とするLEDの品質
と比較した。従来品質のGaN単結晶としては、半値全
幅が300secのものを用いた。LEDの品質は、初
期の輝度と寿命について評価した。寿命は、温度85℃
湿度85%の雰囲気中において20mAの電流によって
2000時間連続発光させた後の輝度を測定し、その輝
度の初期の輝度に対する低下率を求め、低下率2%未満
をA、低下率2〜5未満%をB、低下率5〜10%をC
と、3つのランクに分けた。LEDの構造は、本発明の
製造方法によって得られたGaN単結晶を基板とし、該
基板上に、n−AlGaNクラッド層、アンドープのI
nGaN活性層、p−AlGaNクラッド層を順次成長
させてなるダブルヘテロ接合型の構成とした。本発明に
よるGaN単結晶の基板の品質は、半値全幅が30se
c、100sec、250secの3種類である。厚み
はすべて280μmである。また、活性層のInGaN
の組成比は、In0.15Ga0.85Nと、In0.25Ga0.75
Nの2種類とし、各々の組成比のInGaNについて、
発光素子を作成し実験を行った。この実験結果を次の表
1、2に示す。[LE Using GaN Single Crystal According to the Present Invention
Quality Confirmation Experiment of D] An LED using the GaN single crystal obtained by the manufacturing method of the present invention as a substrate was actually manufactured and the quality thereof was confirmed. Further, LEDs having conventional GaN single crystals and sapphire crystals as substrates were manufactured and compared with the quality of LEDs having the GaN single crystals of the present invention as substrates. As a conventional quality GaN single crystal, a GaN single crystal having a full width at half maximum of 300 sec was used. LED quality was evaluated for initial brightness and lifetime. Life is 85 ℃
The luminance after continuously emitting light for 20 hours at a current of 20 mA in an atmosphere of 85% humidity was measured, and the reduction rate of the luminance with respect to the initial luminance was calculated. A reduction rate of less than 2% was A and a reduction rate of 2 to less than 5 % For B, and a reduction rate of 5-10% for C
It was divided into three ranks. In the structure of the LED, a GaN single crystal obtained by the manufacturing method of the present invention is used as a substrate, and an n-AlGaN clad layer and an undoped I layer are formed on the substrate.
A double heterojunction type structure was formed by sequentially growing an nGaN active layer and a p-AlGaN cladding layer. The substrate quality of the GaN single crystal according to the present invention has a full width at half maximum of 30 se.
There are three types: c, 100 sec, and 250 sec. All thicknesses are 280 μm. In addition, the active layer of InGaN
The composition ratio of In 0.15 Ga 0.85 N and In 0.25 Ga 0.75 N
There are two types of N, and InGaN of each composition ratio,
A light emitting device was prepared and an experiment was conducted. The results of this experiment are shown in Tables 1 and 2 below.
【0028】[0028]
【表1】 [Table 1]
【0029】[0029]
【表2】 [Table 2]
【0030】表1、2に示すように、本発明による高品
質なGaN単結晶を基板として用いたLEDは、初期の
輝度と寿命の点で、従来のものより優れたLEDである
ことがわかった。As shown in Tables 1 and 2, the LED using the high quality GaN single crystal according to the present invention as a substrate is superior to the conventional one in terms of initial brightness and life. It was
【0031】また、LDに関しては、次の現象が確認で
きた。サファイア結晶を基板とする従来のLDでは、サ
ファイア結晶が、へき開面の形成が困難な物質であるた
めに基板面が好ましい鏡面状態とはならず、その基板面
に形成されるGaN系化合物半導体層の面の状態は、基
板面の状態に従うため、LDにとって好ましい反射面は
形成することができなかった。しかし、本発明によるG
aN単結晶は高品質であり十分な厚みを有するため、G
aN単結晶を基板として、そのへき開面を得ることが容
易になった。また、従来のGaN系化合物半導体を用い
たLDでは、結晶品質が劣っているため、電流注入によ
る誘導放出が達成できなかったが、本発明による高品質
なGaN単結晶を基板として用いたファブリ・ペロー型
共振器のストライプレーザーを構成し実験したところ、
室温において誘導放出が確認された。Regarding LD, the following phenomenon was confirmed. In a conventional LD using a sapphire crystal as a substrate, since the sapphire crystal is a substance in which a cleavage surface is difficult to form, the substrate surface does not have a preferable mirror surface state, and the GaN compound semiconductor layer formed on the substrate surface. Since the state of the surface of (1) follows the state of the surface of the substrate, it was not possible to form a reflecting surface preferable for the LD. However, G according to the present invention
Since aN single crystal is of high quality and has sufficient thickness, G
Using the aN single crystal as a substrate, it became easy to obtain a cleavage plane. In addition, in the LD using the conventional GaN-based compound semiconductor, the crystal quality is inferior, so that stimulated emission by current injection cannot be achieved. However, a high-quality GaN single crystal according to the present invention is used as a substrate. When a stripe laser with a Perot type cavity was constructed and tested,
Stimulated release was confirmed at room temperature.
【0032】[0032]
【発明の効果】以上詳述したように、本発明のGaN単
結晶は、従来にはなかった結晶品質と充分な厚みを同時
に備えるものである。また、本発明の製造方法は、その
ような高品質で充分な厚みを同時に備えたGaN単結晶
を好適に提供することができる。従って、高効率の青色
発光を呈するLEDや、紫外線レーザーダイオード、ま
たは耐熱性の良好な半導体デバイスを得るために好適な
GaN単結晶の基板を提供することできる。また、本発
明の製造方法は、GaN単結晶の結晶品質の向上および
厚みの獲得だけでなく、高品質なGaN単結晶を効率良
く多数枚製造することが可能であり、工業的にも極めて
重要な技術である。As described above in detail, the GaN single crystal of the present invention has a crystal quality and a sufficient thickness which have not been available in the past. Further, the manufacturing method of the present invention can suitably provide a GaN single crystal having such a high quality and a sufficient thickness at the same time. Therefore, it is possible to provide a GaN single crystal substrate suitable for obtaining an LED that emits blue light with high efficiency, an ultraviolet laser diode, or a semiconductor device having good heat resistance. In addition, the manufacturing method of the present invention is capable of not only improving the crystal quality of a GaN single crystal and obtaining a thickness, but also efficiently manufacturing a large number of high-quality GaN single crystals, which is extremely industrially important. Technology.
【図1】本発明によるGaN単結晶の製造方法の工程の
一例を示す模式図である。FIG. 1 is a schematic view showing an example of steps of a method for producing a GaN single crystal according to the present invention.
P0 最初の基板 P1 〜Pn GaN単結晶 B1 〜Bn バッファ層P 0 First substrate P 1 to P n GaN single crystal B 1 to B n buffer layer
Claims (4)
幅が5〜250secであり、かつ、厚みが80μm以
上であるGaN単結晶。1. A GaN single crystal having a full width at half maximum of a 2-crystal X-ray rocking curve of 5 to 250 sec and a thickness of 80 μm or more.
板上にGaN単結晶との格子整合性の良好な物質を薄膜
成長させてバッファ層とした上にGaNを結晶成長させ
てGaN単結晶を得る工程を有するGaN単結晶の製造
方法。2. A GaN single crystal is obtained by growing a thin film of a substance having a good lattice matching with the GaN single crystal on a substrate having at least the surface of the GaN single crystal to form a buffer layer and then crystallizing GaN. A method of manufacturing a GaN single crystal having a step.
板上にGaN単結晶との格子整合性の良好な物質を薄膜
成長させてバッファ層とした上にGaNを結晶成長させ
てGaN単結晶を得る工程を1回の結晶成長サイクルと
し、得られたGaN単結晶上に上記結晶成長サイクルを
少なくとも1サイクル繰り返して積層物を形成させた後
に各バッファ層を除去し、GaN単結晶を得ることを特
徴とするGaN単結晶の製造方法。3. A GaN single crystal is obtained by growing a thin film of a substance having a good lattice matching with the GaN single crystal on a substrate having at least the surface of the GaN single crystal to form a buffer layer and then crystallizing GaN. The step is one crystal growth cycle, and the crystal growth cycle is repeated at least once on the obtained GaN single crystal to form a laminate, and then each buffer layer is removed to obtain a GaN single crystal. And a method for producing a GaN single crystal.
板上にGaN単結晶との格子整合性の良好な物質を薄膜
成長させてバッファ層とした上にGaNを結晶成長させ
てGaN単結晶を得る工程を1回の結晶成長サイクルと
し、得られたGaN単結晶を新たな基板として上記結晶
成長サイクルを少なくとも1サイクル繰り返し、かつ1
サイクル毎にバッファ層を除去し、GaN単結晶を得る
ことを特徴とするGaN単結晶の製造方法。4. A GaN single crystal is obtained by growing a thin film of a substance having a good lattice matching with the GaN single crystal on a substrate having at least the surface of the GaN single crystal to form a buffer layer and then crystallizing GaN. The process is performed once as a crystal growth cycle, and the obtained GaN single crystal is used as a new substrate to repeat the above crystal growth cycle for at least one cycle, and 1
A method for producing a GaN single crystal, which comprises removing the buffer layer every cycle to obtain a GaN single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24296794A JP3184717B2 (en) | 1993-10-08 | 1994-10-06 | GaN single crystal and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25309893 | 1993-10-08 | ||
JP5-253098 | 1993-10-08 | ||
JP24296794A JP3184717B2 (en) | 1993-10-08 | 1994-10-06 | GaN single crystal and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07165498A true JPH07165498A (en) | 1995-06-27 |
JP3184717B2 JP3184717B2 (en) | 2001-07-09 |
Family
ID=26536014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24296794A Expired - Lifetime JP3184717B2 (en) | 1993-10-08 | 1994-10-06 | GaN single crystal and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3184717B2 (en) |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001192300A (en) * | 2000-01-04 | 2001-07-17 | Sharp Corp | Nitride-based compound semiconductor substrate and method of producing the same |
US6420197B1 (en) | 1999-02-26 | 2002-07-16 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of fabricating the same |
JP2002241198A (en) * | 2001-02-13 | 2002-08-28 | Hitachi Cable Ltd | GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME |
US6656615B2 (en) | 2001-06-06 | 2003-12-02 | Nichia Corporation | Bulk monocrystalline gallium nitride |
US6750481B2 (en) | 1999-07-23 | 2004-06-15 | Sony Corporation | Semiconductor laminated substrate, semiconductor crystal substrate and semiconductor device and method of manufacturing the same |
US6756611B2 (en) | 1997-04-11 | 2004-06-29 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
WO2004083499A1 (en) * | 2003-03-19 | 2004-09-30 | Tohoku Techno Arch Co., Ltd. | PROCESS FOR PRODUCING GaN SUBSTRATE |
US6875629B2 (en) | 2001-06-06 | 2005-04-05 | Toyoda Gosei Co., Ltd. | III group nitride based semiconductor element and method for manufacture thereof |
US6897138B2 (en) | 2001-06-25 | 2005-05-24 | Toyoda Gosei Co., Ltd. | Method and apparatus for producing group III nitride compound semiconductor |
US6946370B2 (en) | 2001-09-03 | 2005-09-20 | Toyoda Gosei Co., Ltd. | Semiconductor crystal producing method |
JP2006004990A (en) * | 2004-06-15 | 2006-01-05 | Nichia Chem Ind Ltd | Growth method of nitride semiconductor layer |
US7057211B2 (en) | 2001-10-26 | 2006-06-06 | Ammono Sp. Zo.O | Nitride semiconductor laser device and manufacturing method thereof |
US7081162B2 (en) | 2001-06-06 | 2006-07-25 | Nichia Corporation | Method of manufacturing bulk single crystal of gallium nitride |
US7132730B2 (en) | 2001-10-26 | 2006-11-07 | Ammono Sp. Z.O.O. | Bulk nitride mono-crystal including substrate for epitaxy |
JP2007176790A (en) * | 2005-12-27 | 2007-07-12 | Samsung Corning Co Ltd | Method of fabricating multiple-freestanding gallium nitride substrate |
US7335262B2 (en) | 2002-05-17 | 2008-02-26 | Ammono Sp. Z O.O. | Apparatus for obtaining a bulk single crystal using supercritical ammonia |
US7589358B2 (en) | 2002-05-17 | 2009-09-15 | Ammono Sp. Z O.O. | Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same |
US7641988B2 (en) | 2004-01-27 | 2010-01-05 | Hitachi Cable, Ltd. | Self-supported nitride semiconductor substrate and its production method, and light-emitting nitride semiconductor device using it |
JP2010212461A (en) * | 2009-03-10 | 2010-09-24 | Oki Data Corp | Method of manufacturing semiconductor composite device, and semiconductor device |
US7932114B2 (en) | 2007-10-05 | 2011-04-26 | Sumitomo Electric Industries, Ltd. | Method of manufacturing GaN substrate, method of manufacturing epitaxialwafer, method of manufacturing semiconductor device and epitaxialwafer |
JP2011254068A (en) * | 2010-05-07 | 2011-12-15 | Sumitomo Chemical Co Ltd | Semiconductor substrate |
US8119499B2 (en) | 2005-08-25 | 2012-02-21 | Tohoku Techno Arch Co., Ltd. | Semiconductor substrate fabrication by etching of a peeling layer |
US8142566B2 (en) | 2004-08-06 | 2012-03-27 | Mitsubishi Chemical Corporation | Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0<=x<=1, 0<=y<1, 0<z<=1, 0<s<=1 and 0<=t<1) on a substrate |
WO2017221519A1 (en) * | 2016-06-20 | 2017-12-28 | ソニー株式会社 | Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate |
-
1994
- 1994-10-06 JP JP24296794A patent/JP3184717B2/en not_active Expired - Lifetime
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7083679B2 (en) | 1997-04-11 | 2006-08-01 | Nichia Corporation | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
EP2234142A1 (en) | 1997-04-11 | 2010-09-29 | Nichia Corporation | Nitride semiconductor substrate |
US6756611B2 (en) | 1997-04-11 | 2004-06-29 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US7442254B2 (en) | 1997-04-11 | 2008-10-28 | Nichia Corporation | Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer |
USRE42770E1 (en) | 1997-04-11 | 2011-10-04 | Nichia Corporation | Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer |
US6940103B2 (en) | 1997-04-11 | 2005-09-06 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device |
US7154128B2 (en) | 1997-04-11 | 2006-12-26 | Nichia Chemical Industries, Limited | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US6420197B1 (en) | 1999-02-26 | 2002-07-16 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of fabricating the same |
US6750481B2 (en) | 1999-07-23 | 2004-06-15 | Sony Corporation | Semiconductor laminated substrate, semiconductor crystal substrate and semiconductor device and method of manufacturing the same |
JP2001192300A (en) * | 2000-01-04 | 2001-07-17 | Sharp Corp | Nitride-based compound semiconductor substrate and method of producing the same |
JP2002241198A (en) * | 2001-02-13 | 2002-08-28 | Hitachi Cable Ltd | GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME |
US6875629B2 (en) | 2001-06-06 | 2005-04-05 | Toyoda Gosei Co., Ltd. | III group nitride based semiconductor element and method for manufacture thereof |
US7422633B2 (en) | 2001-06-06 | 2008-09-09 | Ammono Sp. Zo. O. | Method of forming gallium-containing nitride bulk single crystal on heterogeneous substrate |
US7081162B2 (en) | 2001-06-06 | 2006-07-25 | Nichia Corporation | Method of manufacturing bulk single crystal of gallium nitride |
US6656615B2 (en) | 2001-06-06 | 2003-12-02 | Nichia Corporation | Bulk monocrystalline gallium nitride |
US7160388B2 (en) | 2001-06-06 | 2007-01-09 | Nichia Corporation | Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride |
US7252712B2 (en) | 2001-06-06 | 2007-08-07 | Ammono Sp. Z O.O. | Process and apparatus for obtaining bulk monocrystalline gallium-containing nitride |
US7374615B2 (en) | 2001-06-06 | 2008-05-20 | Ammono.Sp.Zo.O | Method and equipment for manufacturing aluminum nitride bulk single crystal |
US6897138B2 (en) | 2001-06-25 | 2005-05-24 | Toyoda Gosei Co., Ltd. | Method and apparatus for producing group III nitride compound semiconductor |
US6946370B2 (en) | 2001-09-03 | 2005-09-20 | Toyoda Gosei Co., Ltd. | Semiconductor crystal producing method |
US7132730B2 (en) | 2001-10-26 | 2006-11-07 | Ammono Sp. Z.O.O. | Bulk nitride mono-crystal including substrate for epitaxy |
US7057211B2 (en) | 2001-10-26 | 2006-06-06 | Ammono Sp. Zo.O | Nitride semiconductor laser device and manufacturing method thereof |
US7420261B2 (en) | 2001-10-26 | 2008-09-02 | Ammono Sp. Z O.O. | Bulk nitride mono-crystal including substrate for epitaxy |
US7335262B2 (en) | 2002-05-17 | 2008-02-26 | Ammono Sp. Z O.O. | Apparatus for obtaining a bulk single crystal using supercritical ammonia |
US7589358B2 (en) | 2002-05-17 | 2009-09-15 | Ammono Sp. Z O.O. | Phosphor single crystal substrate and method for preparing the same, and nitride semiconductor component using the same |
WO2004083499A1 (en) * | 2003-03-19 | 2004-09-30 | Tohoku Techno Arch Co., Ltd. | PROCESS FOR PRODUCING GaN SUBSTRATE |
US7641988B2 (en) | 2004-01-27 | 2010-01-05 | Hitachi Cable, Ltd. | Self-supported nitride semiconductor substrate and its production method, and light-emitting nitride semiconductor device using it |
JP2006004990A (en) * | 2004-06-15 | 2006-01-05 | Nichia Chem Ind Ltd | Growth method of nitride semiconductor layer |
JP4654611B2 (en) * | 2004-06-15 | 2011-03-23 | 日亜化学工業株式会社 | Method of growing nitride semiconductor layer |
US8142566B2 (en) | 2004-08-06 | 2012-03-27 | Mitsubishi Chemical Corporation | Method for producing Ga-containing nitride semiconductor single crystal of BxAlyGazIn1-x-y-zNsPtAs1-s-t (0<=x<=1, 0<=y<1, 0<z<=1, 0<s<=1 and 0<=t<1) on a substrate |
US8119499B2 (en) | 2005-08-25 | 2012-02-21 | Tohoku Techno Arch Co., Ltd. | Semiconductor substrate fabrication by etching of a peeling layer |
JP2007176790A (en) * | 2005-12-27 | 2007-07-12 | Samsung Corning Co Ltd | Method of fabricating multiple-freestanding gallium nitride substrate |
US7932114B2 (en) | 2007-10-05 | 2011-04-26 | Sumitomo Electric Industries, Ltd. | Method of manufacturing GaN substrate, method of manufacturing epitaxialwafer, method of manufacturing semiconductor device and epitaxialwafer |
US8471264B2 (en) | 2007-10-05 | 2013-06-25 | Sumitomo Electric Industries, Ltd. | Method of manufacturing GaN substrate, method of manufacturing epitaxialwafer, method of manufacturing semiconductor device and epitaxialwafer |
JP2010212461A (en) * | 2009-03-10 | 2010-09-24 | Oki Data Corp | Method of manufacturing semiconductor composite device, and semiconductor device |
JP2011254068A (en) * | 2010-05-07 | 2011-12-15 | Sumitomo Chemical Co Ltd | Semiconductor substrate |
WO2017221519A1 (en) * | 2016-06-20 | 2017-12-28 | ソニー株式会社 | Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate |
JPWO2017221519A1 (en) * | 2016-06-20 | 2019-04-11 | ソニー株式会社 | Nitride semiconductor element, nitride semiconductor substrate, method for manufacturing nitride semiconductor element, and method for manufacturing nitride semiconductor substrate |
Also Published As
Publication number | Publication date |
---|---|
JP3184717B2 (en) | 2001-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3184717B2 (en) | GaN single crystal and method for producing the same | |
US5770887A (en) | GaN single crystal | |
JP5276977B2 (en) | Semiconductor laminated structure, method for forming the same, and light emitting device | |
JP4939014B2 (en) | Group III nitride semiconductor light emitting device and method for manufacturing group III nitride semiconductor light emitting device | |
JP3749498B2 (en) | Crystal growth substrate and ZnO-based compound semiconductor device | |
JP3821232B2 (en) | Porous substrate for epitaxial growth, method for producing the same, and method for producing group III nitride semiconductor substrate | |
KR20080003913A (en) | Group 3-5 nitride semiconductor multilayer substrate, method for manufacturing group 3-5 nitride semiconductor free-standing substrate, and semiconductor element | |
WO2005015617A1 (en) | Semiconductor layer | |
JPH10247626A (en) | Method of growing gallium nitride on spinel substrate | |
JPH11135882A (en) | Compound semiconductor substrate, manufacture thereof, and light-emitting element | |
WO2015146069A1 (en) | Light emitting diode element | |
JP3105981B2 (en) | Semiconductor light emitting device | |
JP2002043618A (en) | Method for manufacturing nitride semiconductor | |
JPH11274560A (en) | Semiconductor element and manufacture thereof | |
JP2009067658A (en) | Nitride semiconductor ground substrate, nitride semiconductor-stacked substrate, nitride semiconductor self-standing substrate and method for producing nitride semiconductor ground substrate | |
JP2002241198A (en) | GaN SINGLE CRYSTAL SUBSTRATE AND METHOD FOR PRODUCING THE SAME | |
JPH07267796A (en) | Production of gallium nitride single crystal | |
JP2000114599A (en) | Semiconductor light emitting element | |
JP2003309071A (en) | GaN SEMICONDUCTOR CRYSTAL BASE MATERIAL | |
JP2002176196A (en) | Photonic device and its fabricating method | |
JP3463736B2 (en) | Semiconductor light emitting device and method of adjusting light emission intensity thereof | |
JPH09283799A (en) | Semiconductor light-emitting element | |
JP3757339B2 (en) | Method for manufacturing compound semiconductor device | |
JP2008053594A (en) | Method of forming nitride semiconductor layer | |
JP2004014587A (en) | Nitride compound semiconductor epitaxial wafer and light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090427 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090427 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090427 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090427 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090427 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100427 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110427 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130427 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140427 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |