JPH0674808B2 - Grooving method for ceramic dynamic bearings - Google Patents

Grooving method for ceramic dynamic bearings

Info

Publication number
JPH0674808B2
JPH0674808B2 JP2337845A JP33784590A JPH0674808B2 JP H0674808 B2 JPH0674808 B2 JP H0674808B2 JP 2337845 A JP2337845 A JP 2337845A JP 33784590 A JP33784590 A JP 33784590A JP H0674808 B2 JPH0674808 B2 JP H0674808B2
Authority
JP
Japan
Prior art keywords
groove
organic material
ceramic
laser light
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2337845A
Other languages
Japanese (ja)
Other versions
JPH04203618A (en
Inventor
ゆみ子 野田
一郎 神谷
良一 新荘
学 利光
良雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2337845A priority Critical patent/JPH0674808B2/en
Publication of JPH04203618A publication Critical patent/JPH04203618A/en
Publication of JPH0674808B2 publication Critical patent/JPH0674808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • F16C17/045Sliding-contact bearings for exclusively rotary movement for axial load only with grooves in the bearing surface to generate hydrodynamic pressure, e.g. spiral groove thrust bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミックス製動圧軸受の溝加工方法に関する
ものである。
The present invention relates to a groove processing method for a ceramic dynamic bearing.

〔従来技術〕[Prior art]

セラミックス製動圧軸受の加工方法の一つとして、Qス
イッチ付きNd:YAG(ネオジウム イットリウム アルミ
ニウム ガーネット)レーザ(以下、単に「YAGQスイッ
チパルスレーザ」と記す)装置を用いる方法がある。
One of the methods for processing ceramic dynamic pressure bearings is to use a Nd: YAG (neodymium yttrium aluminum garnet) laser with a Q switch (hereinafter simply referred to as "YAGQ switch pulse laser").

YAGQスイッチパルスレーザは、ピーク出力が大きくとれ
るため、セラミック加工性に優れたレーザ装置である。
また、装置の安定性、信頼性、価格面等から多くの利点
を有するものである。
The YAGQ-switched pulsed laser is a laser device that excels in ceramic workability because it has a large peak output.
In addition, it has many advantages in terms of stability, reliability, price, etc. of the device.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のようにYAGQスイッチパルスレーザは、セラミック
加工に優れているにもかかわらず、実際は下記のような
欠点があり、セラミックス製動圧軸受の溝加工には利用
されなかった。
As described above, the YAGQ switch pulse laser is excellent in ceramic processing, but actually has the following drawbacks and is not used for groove processing of ceramic dynamic pressure bearings.

(1)レーザ照射時間が経過するに従って当該加工対象
物に熱が蓄積し、これによりクラックの発生等による製
品の重大な欠陥を与える。
(1) As the laser irradiation time elapses, heat accumulates on the object to be processed, which causes serious defects in the product due to cracks and the like.

(2)溝外側面角部の堆積部の生成及び断面形状の非対
称性による性能への影響等の問題がある外、更にレーザ
装置及びレーザ光の特性から下記の問題がある。
(2) In addition to the problems such as the generation of deposits at the outer corners of the groove and the influence on the performance due to the asymmetry of the cross-sectional shape, there are the following problems due to the characteristics of the laser device and laser light.

(3)精度良く均一に加工するためには、加工対象面で
のレーザ光の吸収率が一定で、且つ当該部での吸収率が
高く、レーザ光を効率よく吸収することが望まれるが、
これらの条件は被加工物であるセラミック材料の下記の
要因により左右される。
(3) In order to perform uniform processing with high accuracy, it is desired that the absorption rate of the laser light on the surface to be processed is constant and the absorption rate at the relevant portion is high, so that the laser light is efficiently absorbed.
These conditions depend on the following factors of the ceramic material that is the work piece.

(a)材質及び成分等による物性 (b)材料の色 (c)表面粗さ (d)洗浄状態 (e)上記(a)〜(d)の均一性 (f)大量生産においては、各個体試料の均一性も要求
される。
(A) Physical properties depending on materials and components (b) Color of material (c) Surface roughness (d) Washing state (e) Uniformity of (a) to (d) above (f) Individual mass production Sample uniformity is also required.

(4)セラミックス基体に溝の形状及びパターンを正確
に描いて加工するためには、レーザ光照射位置の正確さ
が要求されるが、これは下記の要因により左右される。
(4) In order to accurately draw and process the shape and pattern of the groove on the ceramic substrate, the accuracy of the laser light irradiation position is required, but this depends on the following factors.

(4−1)レーザ発振器のポインティングスタビリティ
ー(レーザスポットが当った位置の安定性)の問題で、
実際には限界がある。その原因として、 (a)冷却水の温度の変動 (b)投入電力の変動及び励起ランプ光の変動 (c)レーザ発振器の据付部の振動 (e)伝送部及びその雰囲気 等がある。
(4-1) Due to the problem of pointing stability of the laser oscillator (stability of the position where the laser spot hits),
There are practical limits. The causes are (a) fluctuation of temperature of cooling water, (b) fluctuation of input power and fluctuation of excitation lamp light, (c) vibration of installation part of laser oscillator, (e) transmission part and its atmosphere.

(4−2)走査又は加工テーブルの問題がある。(4-2) There is a problem with the scanning or processing table.

(a)位置決め精度 (b)移動速度の制御及び等速性 (c)複雑な形状への対応 等である。(A) Positioning accuracy (b) Movement speed control and constant velocity (c) Handling of complicated shapes.

本発明は上述の点に鑑みてなされたもので、上記
(3),(4)の問題の解決ができるセラミックス製動
圧軸受の溝加工方法を提供することを目的とする。
The present invention has been made in view of the above points, and an object thereof is to provide a groove processing method for a ceramic dynamic pressure bearing capable of solving the problems (3) and (4).

〔課題を解決するための手段〕[Means for Solving the Problems]

上記課題を解決するため本発明は、焼結後のセラミック
ス製軸受基体の摺動面となる部分に表面仕上げを施し、
該摺動面にYAGレーザ光を選択的に且つ効率よく吸収す
る有機材料を所望の加工溝の形状パターンに均一に付着
し、該有機材料を付着してなる加工溝の形状パターンに
YAGQスイッチパルスレーザ光を照射することにより、セ
ラミックス製軸受基体の摺動面に該形状パターン通りの
溝を形成し、しかる後加工時の生成物の除去と同時に前
記付着した有機材料の残留部分を除去することを特徴と
する。
In order to solve the above problems, the present invention provides a surface finish on a portion which becomes a sliding surface of a ceramic bearing base body after sintering,
An organic material that selectively and efficiently absorbs YAG laser light is evenly attached to the sliding surface in a desired processed groove shape pattern, and a processed groove shape pattern is formed by applying the organic material.
By irradiating a YAGQ switch pulsed laser beam, a groove according to the shape pattern is formed on the sliding surface of the ceramic bearing base, and at the same time as removal of products during subsequent processing, the remaining portion of the adhered organic material is removed. It is characterized by removing.

〔作用〕[Action]

本発明はセラミックス製軸受基体の摺動面にYAGレーザ
光を選択的に且つ効率よく吸収する有機材料を所望の加
工溝の形状パターンに均一に付着し、該有機材料を付着
してなる加工溝の形状パターンにYAGQスイッチパルスレ
ーザ光を照射するので、軸受基体にYAGレーザ光の吸収
率の低いセラミック材料を用いた場合や加工面が鏡面仕
上げにより反射率が高い場合及び透過率が高い場合で
も、有機材料が極めて効率良くレーザ光を吸収し、スム
ーズに溝加工ができる。
The present invention uniformly adheres an organic material that selectively and efficiently absorbs YAG laser light to a sliding surface of a ceramic bearing base in a desired pattern of the shape of a processed groove, and forms the processed groove by adhering the organic material. Since the YAGQ switch pulsed laser light is irradiated to the shape pattern of, even if a ceramic material with a low absorptivity of the YAG laser light is used for the bearing base, or if the processed surface has a high reflectance due to mirror finishing and a high transmittance. The organic material absorbs the laser light extremely efficiently, and the groove can be smoothly processed.

また、レーザ光が被加工予定部分から多少ずれて照射さ
れても有機材料が選択的にレーザ光を吸収するので、溝
形状に影響を与えることなく、その結果位置決め精度を
軽減できる。
Further, even if the laser beam is irradiated with a slight deviation from the portion to be processed, the organic material selectively absorbs the laser beam, so that the groove shape is not affected and, as a result, the positioning accuracy can be reduced.

また、レーザ照射後に残留した有機材料を除去する際、
洗浄工程を兼ねるので工程を減らすことができる。
Also, when removing the organic material remaining after laser irradiation,
Since it also serves as a cleaning step, the number of steps can be reduced.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図(a),(b)はセラミックス製動圧軸受の溝加
工方法を説明するための図である。焼結後のセラミック
ス製軸受基体1の摺動面となる部分に表面仕上げを施
し、該摺動面に同図(a)の斜線を付した部分2aのよう
に、YAGレーザ光を効率よく吸収する黒色の有機材料を
同図(b)に示す加工溝2の形状パターンに均一に付着
する。この有機材料を付着したセラミックス製軸受基体
1をYAGレーザ加工装置に取り付け、有機材料を付着し
た部分2aにYAGQスイッチパルスレーザ光を照射する。レ
ーザ光の走査はXYテーブルを用い、溝2の形状、即ち有
機材料を付着した部分2aに沿ってYAGQスイッチパルスレ
ーザ光が照射されるように、テーブルを移動し、レーザ
光を照射する。このようにレーザ光の照射を繰り返すこ
とにより、セラミックス製軸受基体1の前記有機材料の
付着部分2aが除去され溝2が形成される。本実施例で
は、セラミック材として、Al2O3を用いYAGQスイッチパ
ルスレーザ光の繰り返し数を0.32kHzとし、XYテーブル
の移動速度を5m/secとして、セラミックス製軸受基体1
の表面に溝深さ10μm程度の動圧発生用の溝2を形成し
た。
FIGS. 1 (a) and 1 (b) are views for explaining a groove machining method for a ceramic dynamic pressure bearing. A surface finish is applied to the sliding surface of the ceramic bearing base body 1 after sintering, and the sliding surface is efficiently absorbed by the YAG laser light as shown by the shaded area 2a in FIG. The black organic material is uniformly attached to the shape pattern of the processed groove 2 shown in FIG. The ceramic bearing base 1 to which the organic material is attached is attached to a YAG laser processing apparatus, and the portion 2a to which the organic material is attached is irradiated with a YAGQ switch pulse laser beam. The XY table is used for scanning the laser light, and the table is moved and the laser light is irradiated so that the YAGQ switch pulse laser light is irradiated along the shape of the groove 2, that is, the portion 2a to which the organic material is attached. By repeating the irradiation of the laser beam in this manner, the organic material adhered portion 2a of the ceramic bearing base 1 is removed and the groove 2 is formed. In this embodiment, Al 2 O 3 is used as the ceramic material, the repetition rate of the YAGQ switch pulsed laser light is 0.32 kHz, and the moving speed of the XY table is 5 m / sec.
A groove 2 for generating a dynamic pressure having a groove depth of about 10 μm was formed on the surface of the.

次に、溝加工が施されたセラミックス製軸受基体1を1,
1−トリクロロエタン中に入れ、超音波洗浄を行ない、
セラミックス製軸受基体1の被加工部分に残留した有機
塗料を溶解すると共に、レーザ照射により、生成した酸
化物を除去及び洗浄し、第1図(b)に示すようにセラ
ミックス製軸受基体1に溝2が形成される。
Next, the grooved ceramic bearing base 1
Put in 1-trichloroethane, ultrasonically clean,
While the organic paint remaining on the processed portion of the ceramic bearing base 1 is dissolved, the generated oxide is removed and washed by laser irradiation, and grooves are formed in the ceramic bearing base 1 as shown in FIG. 1 (b). 2 is formed.

上記のようにセラミックス製軸受基体1の表面に動圧発
生用溝2の形状のレーザ光を効率良く吸収できる有機材
料を付着させることにより、YAGQスイッチパルスレーザ
光を照射した場合、有機材料部分にはレーザ光が効率良
く吸収されるのに対して、セラミック表面が露出してい
る部分はレーザ光が反射及び透過されるためレーザ光の
吸収が悪くなる。従って、レーザ光が有機材料を多少は
み出て照射されても、有機材料の形状通りに溝加工がで
き、有機材料の溝形状を精度よく形成することにより、
高精度の動圧発生用の溝2を形成できる。上記において
部分2aに付着する有機材料は、YAGレーザ光を選択的且
つ効率良く吸収できる材料であればどのようなものでも
よく、例えば、黒色顔料を添加したアクリル樹脂塗料、
顔料を添加したビニル樹脂塗料、顔料を添加したアルキ
ド樹脂塗料などペンキのようなものが適している。ま
た、液状或いはシート状のいずれでもよい。また、有機
材料の付着の方法は、描写、貼付等があるが、いずれの
方法を採用するかは、材料の性状により変化させればよ
い。
When an organic material capable of efficiently absorbing the laser light in the shape of the dynamic pressure generating groove 2 is attached to the surface of the ceramic bearing base 1 as described above, when the YAGQ switch pulse laser light is irradiated, the organic material portion is exposed. Laser light is efficiently absorbed, while the laser light is reflected and transmitted through the portion where the ceramic surface is exposed, the laser light absorption becomes poor. Therefore, even if the laser beam is projected to slightly protrude from the organic material, it is possible to perform groove processing according to the shape of the organic material, and by accurately forming the groove shape of the organic material,
It is possible to form the groove 2 for highly accurate dynamic pressure generation. In the above, the organic material attached to the portion 2a may be any material as long as it can selectively and efficiently absorb the YAG laser light, for example, an acrylic resin coating containing a black pigment,
Suitable paints such as pigmented vinyl resin paints and pigmented alkyd resin paints. Further, it may be in liquid form or sheet form. Further, the method of attaching the organic material includes drawing, pasting and the like, and which method is adopted may be changed depending on the property of the material.

なお、上記実施例にいては、YAGレーザ光の走査にXYテ
ーブルを移動させる方法を用いたが、これに替えてガル
バノ鏡によりレーザビームを伝送,走査するガルバメー
タ型オプティカルスキャナ方式、又はレーザビームを導
く光ファイバ先端を走査する光ファイバ方式のいずれで
もよい。また、本発明の溝加工方法はセラミックス製動
圧軸受の溝加工一般に適用でき、セラミックス製軸受基
体及び溝形状を問わず適用できる。
In the above embodiment, the method of moving the XY table was used to scan the YAG laser beam, but instead of this, a galvanometer type optical scanner method of transmitting and scanning the laser beam with a galvanometer mirror, or a laser beam was used. Any of the optical fiber methods for scanning the leading end of the optical fiber may be used. Further, the groove processing method of the present invention can be applied to general groove processing of ceramic dynamic pressure bearings, and can be applied to any ceramic bearing base and groove shape.

また、上記のような加工方法においては、一度加工条件
を設定すれば、同一寸法で精度の高いセラミックス製動
圧軸受の溝加工ができ、更に、加工工程の自動化を簡単
に行なうことができ、加工費等各種費用を大幅に低減で
きる。
Further, in the machining method as described above, once the machining conditions are set, the grooves of the ceramic dynamic pressure bearing of the same size and high accuracy can be machined, and further, the machining process can be easily automated. Various costs such as processing costs can be significantly reduced.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、セラミックス製軸受基体
の摺動面にYAGレーザ光を選択的に且つ効率よく吸収す
る有機材料を所望の加工溝の形状パターンに均一に付着
させ、この付着部分にYAGQスイッチパルスレーザ光を照
射するので以下のような優れた効果が得られる。
As described above, according to the present invention, an organic material that selectively and efficiently absorbs YAG laser light is uniformly adhered to the sliding surface of the ceramic bearing base in the shape pattern of the desired processed groove, and the adhered portion is Since the YAGQ switch pulsed laser light is emitted, the following excellent effects can be obtained.

(1)軸受基体にYAGレーザ光の吸収率の低いセラミッ
クス材料を用いた場合や加工面が鏡面仕上げにより反射
率が高い場合及び透過率が高い場合でも、有機材料が極
めて効率良くレーザ光を吸収するのでスムーズに溝加工
ができる。即ち、あらゆるセラミックス材料並びにその
加工面状態に左右されることなく、溝加工が行なえる。
(1) Even if the bearing base is made of a ceramic material with a low absorptivity of YAG laser light, or if the processed surface has a high reflectance due to mirror finishing or a high transmittance, the organic material absorbs the laser light extremely efficiently. Grooves can be processed smoothly. That is, grooving can be performed without being influenced by any ceramic material and its processed surface state.

(2)レーザ光が被加工予定部分から多少ずれて照射さ
れても有機材料が選択的にレーザ光を吸収するので、溝
形状に影響を与えることなく、その結果位置決め精度を
軽減できる。
(2) Since the organic material selectively absorbs the laser light even when the laser light is irradiated with a slight deviation from the portion to be processed, the positioning accuracy can be reduced without affecting the groove shape.

(3)レーザ照射後に残留した有機材料を除去する際、
洗浄工程を兼ねるので工程を減らすことができる。
(3) When removing the organic material remaining after laser irradiation,
Since it also serves as a cleaning step, the number of steps can be reduced.

(4)使用実績が多く安定したYAGQスイッチパルスレー
ザ光を使用するので、安定で信頼の高い加工ができる。
(4) Since stable YAGQ switch pulsed laser light is used, which has a long history of use, stable and reliable machining is possible.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)はセラミックス製動圧軸受の溝加
工方法を説明するための図である。 図中、1……セラミックス製軸受基体、2……溝。
FIGS. 1 (a) and 1 (b) are views for explaining a groove machining method for a ceramic dynamic pressure bearing. In the figure, 1 ... Ceramic bearing base, 2 ... Groove.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 利光 学 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 佐藤 良雄 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (56)参考文献 特開 平1−247566(JP,A) 特開 昭62−1886(JP,A) 特開 昭63−238992(JP,A) 特開 昭57−35682(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Manabu Toshiko 11-11 Haneda Asahi-cho, Ota-ku, Tokyo Ebara Corporation (72) Inventor Yoshio Sato 11-1 Haneda-asahi-cho, Ota-ku, Tokyo (56) References JP-A-1-247566 (JP, A) JP-A-62-1886 (JP, A) JP-A-63-238992 (JP, A) JP-A-57-35682 (JP, 35-682) A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】焼結後のセラミックス製軸受基体の摺動面
となる部分に表面仕上げを施し、該摺動面にYAGレーザ
光を選択的に且つ効率よく吸収する有機材料を所望の加
工溝の形状パターンに均一に付着し、該有機材料を付着
してなる加工溝の形状パターンにYAGQスイッチパルスレ
ーザ光を照射することにより、前記セラミックス製軸受
基体の摺動面に該形状パターン通りの溝を形成し、しか
る後加工時の生成物の除去と同時に前記付着した有機材
料の残留部分を除去することを特徴とするセラミック製
動圧軸受の溝加工方法。
1. A desired groove for processing an organic material that selectively and efficiently absorbs YAG laser light on the sliding surface of the sintered ceramic bearing base, which is to be a sliding surface. Of the processed groove uniformly adhered to the shape pattern of the organic material, and irradiating a YAGQ switch pulsed laser beam on the shape pattern of the processed groove to form a groove on the sliding surface of the ceramic bearing base according to the shape pattern. And a remaining portion of the adhered organic material is removed at the same time when the product is removed during subsequent processing, and a groove processing method for a ceramic dynamic pressure bearing.
【請求項2】前記有機材料の付着は描写又は転写或いは
貼付のいずれかにより付着することを特徴とする請求項
(1)記載のセラミックス製動圧軸受の溝加工方法。
2. The groove processing method for a ceramic dynamic pressure bearing according to claim 1, wherein the organic material is attached by drawing, transferring, or adhering.
JP2337845A 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings Expired - Lifetime JPH0674808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2337845A JPH0674808B2 (en) 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2337845A JPH0674808B2 (en) 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings

Publications (2)

Publication Number Publication Date
JPH04203618A JPH04203618A (en) 1992-07-24
JPH0674808B2 true JPH0674808B2 (en) 1994-09-21

Family

ID=18312516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2337845A Expired - Lifetime JPH0674808B2 (en) 1990-11-30 1990-11-30 Grooving method for ceramic dynamic bearings

Country Status (1)

Country Link
JP (1) JPH0674808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170298990A1 (en) * 2016-04-18 2017-10-19 Caterpillar Inc. Self-lubricating roller bearing and methods of making and using self-lubricating roller bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965043A (en) * 1996-11-08 1999-10-12 W. L. Gore & Associates, Inc. Method for using ultrasonic treatment in combination with UV-lasers to enable plating of high aspect ratio micro-vias
DE102009054096A1 (en) * 2009-11-12 2011-05-19 Dentaurum Gmbh & Co. Kg Method of making an orthodontic element
CH706791B1 (en) * 2011-06-01 2016-10-31 Centre De Rech De L'industrie Belge De La Céramique Asbl Mixing ceramic particles and method of manufacture of ceramic parts from such a mixture.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5735682A (en) * 1980-08-08 1982-02-26 Nippon Seiko Kk Formation of groove for generating dynamic pressure
JPS621886A (en) * 1985-06-25 1987-01-07 Matsushita Electric Ind Co Ltd Fluid bearing shaft
JPS63238992A (en) * 1987-03-27 1988-10-05 Nippon Seiko Kk Method for forming grooves for generating dynamic pressure
JPH01247566A (en) * 1988-03-29 1989-10-03 Mitsubishi Electric Corp Production of fluid bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170298990A1 (en) * 2016-04-18 2017-10-19 Caterpillar Inc. Self-lubricating roller bearing and methods of making and using self-lubricating roller bearing

Also Published As

Publication number Publication date
JPH04203618A (en) 1992-07-24

Similar Documents

Publication Publication Date Title
JP3001816B2 (en) Laser scribing on glass using Nd: YAG laser
CN104625415B (en) Femtosecond laser prepares method and the device of bionic super-hydrophobic micro nano surface
CN109821823A (en) A kind of CO2Laser/ps pulsed laser and ns pulsed laser compound cleaning method
CN104741798B (en) A kind of complex foci space-time synchronous hole-drilling system and method
JPH02104487A (en) Laser beam machine
CN109954966A (en) The method for carrying out Treatment of Metal Surface by femtosecond laser
JP3257157B2 (en) CO2 laser drilling device and method
JP2011218384A (en) Laser processing method for transparent material
JPH0674808B2 (en) Grooving method for ceramic dynamic bearings
CN114473227A (en) Laser processing method for corrosion-resistant black sculpture of stainless steel
JPH09141480A (en) Ablation machining method
JP2002001561A (en) Oval hole machining method and its apparatus
CN115981104A (en) Nanosecond laser-based direction control method for metal surface hundred-nanometer stripe structure
Rizvi et al. Laser micromachining: new developments and applications
JPS5933091A (en) Laser working method
JPH04203616A (en) Machining method for dynamic pressure bearing made of ceramics
CN113573488A (en) System for producing conductive patterns by selectively activating insulating materials by combination of laser and chemical
JPH0639575A (en) Laser beam machine
JPS62168688A (en) Laser beam machining device
Ito et al. Formation of Fine Periodic Structures on Back Surface of Si Substrate by a Femtosecond Laser at 1552 nm.
JPH0321276B2 (en)
CN114289412A (en) Laser cleaning-microtexture composite processing equipment and process
CN118455713A (en) Dual pulse laser processing method based on infrared femtosecond and ultraviolet femtosecond
JPH01289585A (en) Method and device for laser marking and tape for laser marking
RU2153988C1 (en) Pattern forming method