JPH064364B2 - Pneumatic radial tires for trucks and buses - Google Patents

Pneumatic radial tires for trucks and buses

Info

Publication number
JPH064364B2
JPH064364B2 JP59264780A JP26478084A JPH064364B2 JP H064364 B2 JPH064364 B2 JP H064364B2 JP 59264780 A JP59264780 A JP 59264780A JP 26478084 A JP26478084 A JP 26478084A JP H064364 B2 JPH064364 B2 JP H064364B2
Authority
JP
Japan
Prior art keywords
rib
tread
groove
wear
shoulder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59264780A
Other languages
Japanese (ja)
Other versions
JPS61143205A (en
Inventor
賢一 本村
守 真々田
宏 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59264780A priority Critical patent/JPH064364B2/en
Priority to GB8530353A priority patent/GB2170153B/en
Publication of JPS61143205A publication Critical patent/JPS61143205A/en
Publication of JPH064364B2 publication Critical patent/JPH064364B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • B60C11/042Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag further characterised by the groove cross-section

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主としてトラック・バス、それもとくに良路
での高速走行を含めた使途で広く用いられている、リブ
タイヤトレッドパターンをそなえる空気入りラジアルタ
イヤにつき、そのトレッドの耐偏摩耗性を効果的に高め
ることによって有利にタイヤの摩耗寿命を向上させるよ
うに改良した、新規なトレッドパターンを提案しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention mainly relates to trucks and buses, and particularly to air having a rib tire tread pattern which is widely used for purposes including high-speed driving on good roads. It is an object of the present invention to propose a new tread pattern for a filled radial tire, which is improved so as to effectively improve the wear life of the tire by effectively increasing the uneven wear resistance of the tread.

一般に良路高速走行に供されるトラック・バス用空気入
りラジアルタイヤには、通常リブタイプトレッドパター
ンが適合し、このパターンはタイヤのトレッドを通常2
〜4本つまり複数の幅広主溝により、(溝本数+1)本
のリブを区画形成してなる。
Generally, the rib type tread pattern is suitable for pneumatic radial tires for trucks and buses which are generally used for high-speed running on good roads.
Up to four, that is, a plurality of wide main grooves form (ribber number + 1) ribs.

しかしこのリブ区画の形成については、トレッドの幅方
向にわたる接地圧分布をなるべくは一様ならしめる考慮
が払われてきたにも拘らず、トレッドの外側に位置する
ショルダーリブにいわゆる偏摩耗が頻発した。
However, with regard to the formation of the rib sections, so-called uneven wear frequently occurred on the shoulder ribs located outside the tread, even though consideration was given to making the contact pressure distribution across the width of the tread as uniform as possible. .

この偏摩耗は、タイヤの使用初期にショルダーリブの外
端縁であらわれ始めるエッジ欠損が発端になり、これを
核としてアョルダーリブの全体に及ぶ肩落ち摩耗、ない
しは波状摩耗などの局部的な摩損つまり偏摩耗に発展
し、さらにはこれが幅広主溝をこえセンターリブに波及
してトレッド外観を著しく崩す多角形摩耗などの異常摩
耗にもわたり、これらの偏摩耗や異常摩耗は何れもタイ
ヤの性能(タイヤの摩耗寿命、振動乗心地性、耐ウェッ
ト性、更生利用性など)を著しく阻害する。
This uneven wear starts from an edge defect that begins to appear at the outer edge of the shoulder rib at the beginning of use of the tire, and with this as a core, shoulder wear wear over the entire shoulder rib, or local wear such as wavy wear, that is, uneven wear is caused. It develops into wear, and further, it goes through abnormal wear such as polygonal wear that crosses the wide main groove and spreads over the center rib to significantly impair the tread appearance. Wear life, vibration riding comfort, wet resistance, reusability, etc.) are significantly impaired.

(従来の技術) 上記した偏摩耗は遊動輪としての前輪に用いた場合、車
両の外側に位置するトレッド半部において特に発生度合
の激しいことから、タイヤのローテーションを行うこと
で対策されることもあったが、手間のかかることから実
行を期し難い上に、ローテーションには適合し難いよう
なトレッドパターンの改良も多くなりつつあり、偏摩耗
回避の実効を伴わない。
(Prior Art) When the above-mentioned uneven wear is applied to the front wheel as the idle wheel, the occurrence degree is particularly severe in the tread half portion located outside the vehicle, and therefore it can be prevented by rotating the tire. However, it is difficult to execute because it is time-consuming, and the tread pattern that is difficult to adapt to rotation is also being improved, and it is not effective to avoid uneven wear.

またトレッドの幅全体にわたって摩耗を均一にし、かつ
あわせてタイヤの地面上の付着性を改善することを目指
して、2本の幅広の主溝と数本の幅狭の副溝とを併用
し、とくに副溝を主溝間及び主溝とトレッド端間のほぼ
中央に配置することが特公昭45-801号公報に開示されて
いる。
Also, with the aim of making the wear uniform over the entire width of the tread and also improving the adhesion on the ground of the tire, two wide main grooves and several narrow auxiliary grooves are used together, Particularly, it is disclosed in Japanese Patent Publication No. 45-801 that the sub-grooves are arranged between the main grooves and between the main grooves and the tread ends at substantially the center.

しかしながら、このような主溝と副溝との併用だけでは
なお前記したような偏摩耗の解決には事実上役立たない
ことが判明している。
However, it has been found that the combined use of the main groove and the sub groove is not practically effective in solving the uneven wear as described above.

一方特開昭58-194606号公報には、トラックバス用の非
駆動車輪タイヤのトレッドが、その両側端で角張ったス
クウェアショルダータイプであるとき、いわゆるレール
効果と呼ばれる操行上の難点を生じこれを回避するため
に、トレッドの両側端にてその周面からの段下りをなす
側方リブを幅の狭い円周溝により区画し、とくにこの側
方リブの頂部幅を円周溝の最大深さにほぼ等しくして、
ラウンドショルダータイプトレッドによるのと同等に横
方向接地力を高め得ることが、そのために円周方向グル
ープの数を増す在来の解決策を講じたようなとき、該グ
ループの間のリブの幅が狭くなることに基づく偏摩耗の
発生にあわせ開示されてはいるが、トレッドの側端で生
じるエッジ欠損を端緒とする肩落ち摩耗の如き局部的な
摩損つまり偏摩耗やさらにはその進展による異常摩耗へ
の進展の防止対策については一切言及されてはいない
し、またそのような効果も期待され得ない。
On the other hand, in JP-A-58-194606, when the tread of a non-driving wheel tire for a truck bus is a square shoulder type in which both side edges are square, a so-called rail effect, which is a difficulty in operation, is caused. In order to avoid it, the side ribs that step down from the peripheral surface at both ends of the tread are divided by narrow circumferential grooves, and the top width of these side ribs is especially the maximum depth of the circumferential groove. Is almost equal to
Being able to increase lateral grounding force as well as with a round shoulder type tread, such as when taking the conventional solution of increasing the number of circumferential groups, results in a rib width between the groups Although it is disclosed according to the occurrence of uneven wear due to narrowing, localized wear such as shoulder drop wear caused by edge defects at the side edge of the tread, that is, uneven wear and abnormal wear due to its progress No mention is made of measures to prevent the progress of the development, and no such effect can be expected.

さらに、新品時および使用初期には溝深さが十分に深く
てトレッドゴムの剛性も比較的小さいので、サイドフォ
ースが作用した場合にトレッド端部のゴムの動きが大き
くなって、このトレッド端部に設けた段差に起因して細
溝内側でのエッジが早期に欠損する恐れがある。このよ
うにして使用初期にエッジの欠損が生じるとその後の偏
摩耗の進展が著しくなり問題である。
Furthermore, since the groove depth is deep enough and the rigidity of the tread rubber is relatively small at the time of new use and at the beginning of use, the movement of the rubber at the tread end portion becomes large when side force acts, and this tread end portion There is a possibility that the edge inside the narrow groove may be damaged early due to the step provided on the. In this way, if the edge is damaged in the initial stage of use, the uneven wear is significantly developed thereafter, which is a problem.

(発明が解決しようとする問題点) 本発明は、上記したようなリブタイプトレッドパターン
をそなえるトラック・バス用空気入りラジアルタイヤに
不可避とされたトレッド偏摩耗の進展を有利に軽減して
タイヤの摩耗寿命を大幅に向上させることを目的とする
ものである。
(Problems to be Solved by the Invention) The present invention advantageously reduces the progress of uneven tread wear, which is inevitable in pneumatic radial tires for trucks and buses having a rib type tread pattern as described above, to reduce tire wear. The purpose is to significantly improve the life.

(問題点を解決するための手段) 本発明はタイヤの外周に沿って延びる複数の幅広主溝に
よりトレッドをその幅方向にわたる実質的に一様な接地
圧力分布の下で、両側のショルダーリブと、それらの間
に位置する少数のセンターリブとに区画し、少なくとも
片側のショルダーリブには、これと隣接する幅広主溝に
比しより狭幅をなす1本の副溝を配設してショルダーリ
ブをさらに二分した、リブタイプトレッドパターンをそ
なえる空気入りラジアルタイヤにおいて、上記副溝は、
トレッドの端縁から測ってショルダーリブの幅(A)に対
して25〜40%に相当する隔たり(B)をおき、かつタイヤ
の負荷転動による接地域でのみ溝壁同士が実質上接触す
る溝幅をもって、タイヤの外周に沿い延びる配列によ
り、ショルダーリブを、外リブと内リブとに区画するこ
とによって、該外リブに生起される専ら径差摩耗に基く
犠牲作用の下に、内リブの方へ向うトレッド偏摩耗の進
展を軽減すること、 を特徴とするトラック・バス用空気入りラジアルタイヤ
である。
(Means for Solving the Problems) The present invention has a plurality of wide main grooves extending along the outer circumference of a tire to allow a tread to have shoulder ribs on both sides under a substantially uniform contact pressure distribution over the width direction. , A small number of center ribs located between them, and at least one shoulder rib is provided with one sub-groove having a width narrower than that of the wide main groove adjacent to the shoulder rib. In a pneumatic radial tire having a rib type tread pattern, which is further divided into two ribs, the above sub groove is
There is a distance (B) equivalent to 25-40% of the width (A) of the shoulder rib measured from the edge of the tread, and the groove walls substantially contact only in the contact area due to the load rolling of the tire. By dividing the shoulder rib into an outer rib and an inner rib by an arrangement extending along the outer circumference of the tire with a groove width, the inner rib is sacrificed solely due to the difference in wear caused in the outer rib. This is a pneumatic radial tire for trucks and buses, which is characterized by reducing the development of uneven wear of the tread toward the side.

ここで第1図には、本発明を適用したタイヤサイズ1000
R20の重荷重用空気入りラジアルタイヤのトレッドパタ
ーンの一例を部分的な展開平面で示し、第2図では断面
を示した。
FIG. 1 shows a tire size 1000 to which the present invention is applied.
An example of the tread pattern of a heavy-duty pneumatic radial tire of R20 is shown in a partially developed plane, and a cross section is shown in FIG.

タイヤの内部構造については、ラジアルカーカスと、そ
のクラウン部を取り囲んで配置された剛性の高いベルト
と、その外周部を取り囲むトレッドゴムとを組み合わせ
たこの種のタイヤとしてはごく一般的なもの故、具体的
な説明は省略する。
Regarding the internal structure of the tire, a radial carcass, a highly rigid belt arranged to surround the crown portion thereof, and a tread rubber that surrounds the outer peripheral portion thereof are very common as a tire of this type. Detailed description is omitted.

トレッド1は、その外周に沿ってジグザグ状に延びる複
数(この例では3本)の幅広主溝2により、トレッド1
の両外側に位置する2本のショルダーリブ3とトレッド
1のより中央域に位置する数本以内(この例では2本)
のセンターリブ4に区画されている。
The tread 1 has a plurality of (three in this example) wide main grooves 2 extending in a zigzag shape along the outer periphery thereof, so that the tread 1
Two shoulder ribs 3 located on both outer sides of the tread 1 and a few in the center of the tread 1 (two in this example)
It is divided into the center ribs 4 of.

図示したタイヤサイズにおいてトレッド1は幅Tは200m
m、タイヤ軸方向断面におけるトレッドの外周面の曲率
半径、いわゆるクラウンRは520mm、主溝2の幅W2は11
mm、従ってリブ3,4の平均幅はほぼ42mmであり、、ま
た幅広主溝2の深さd2は14mmである。
Width T of the tread 1 is 200m
m, the radius of curvature of the outer peripheral surface of the tread in the tire axial section, the so-called crown R is 520 mm, and the width W 2 of the main groove 2 is 11
mm, therefore the average width of the ribs 3, 4 is approximately 42 mm and the depth d 2 of the wide main groove 2 is 14 mm.

幅広主溝2はタイヤの負荷転動時、接地領域において、
溝壁同士が接触しない程度の幅広のものであり、好まし
くはその幅W2はトレッドの接地領域の幅Tの4〜8%
とする。
The wide main groove 2 is provided in the contact area when the tire rolls under load.
The groove walls are so wide that they do not come into contact with each other, and the width W 2 is preferably 4 to 8% of the width T of the ground contact area of the tread.
And

ショルダーリブ3は、周方向の連続性を実質上阻害する
ようなタイヤの回転軸方向の横溝を含まない。
The shoulder rib 3 does not include a lateral groove in the rotational axis direction of the tire that substantially impedes continuity in the circumferential direction.

各々のショルダーリブ3はさらにタイヤの周方向に沿っ
てジグザグ状に延びる1本の幅狭の副溝5により外リブ
6と内リブ7に区分し、ここに、副溝5は、トレッド幅
Tの3%以下より好ましくは0.3〜2%の溝幅で幅広主
溝2の溝深さに対して少なくとも30%で同等以下の溝深
さを有することがのぞましい。
Each shoulder rib 3 is further divided into an outer rib 6 and an inner rib 7 by one narrow sub-groove 5 extending in a zigzag shape along the tire circumferential direction, and the sub-groove 5 has a tread width T. 3% or less, more preferably 0.3 to 2%, and at least 30% of the groove width of the wide main groove 2 is preferable.

副溝5はトレッド端縁10からの隔りBがショルダーリブ
3の幅Aの25%以上〜40%以下すなわち0.25≦(B/
A)≦0.4となるような位置に配置している。さらに好
ましくは30%以下である。
The sub-groove 5 has a distance B from the tread edge 10 of 25% to 40% of the width A of the shoulder rib 3, that is, 0.25 ≦ (B /
A) It is arranged in a position such that ≦ 0.4. It is more preferably 30% or less.

なお、ショルダーリブ3上の副幅5により相互に分割さ
れた外リブ6および内リブ7の幅は、いずれもセンター
リブ4の幅W4よりも小とするのが、接地圧のバランス
という点から最も好ましい。
The width of the outer rib 6 and the inner rib 7 divided by the sub-width 5 on the shoulder rib 3 is smaller than the width W 4 of the center rib 4 in order to balance the ground pressure. To most preferred.

図示例においてジグザグ状に延びる副溝5は、ジグザグ
ピッチPが23mmであり、ポイントハイトHが3mmであ
る。なお、リブの幅は、リブの稜線がジグザグ状である
場合そのジグザグ状稜線の振りの中心をリブの端部とし
て測定するものとする。
In the illustrated example, the sub groove 5 extending in a zigzag shape has a zigzag pitch P of 23 mm and a point height H of 3 mm. The rib width is measured when the ridgeline of the rib is zigzag-shaped and the center of swing of the zigzag-shaped ridgeline is taken as the end of the rib.

第2図において、副溝5はトレッド表面に対しほぼ垂直
に設けるとは限らず、溝開口に立てたトレッド表面の法
線nに対し小さな角度αをもつように切り込んでもよ
い。最も好ましくは、第2図に示すように、法線nに対
し20゜以下の角度α(この例ではαは8°)をもって外
側に傾斜して切り込むのがよい。
In FIG. 2, the sub-groove 5 is not necessarily provided substantially perpendicular to the tread surface, and may be cut so as to form a small angle α with respect to the normal line n of the tread surface which is erected in the groove opening. Most preferably, as shown in FIG. 2, it is preferable to incline outward at an angle α of 20 ° or less with respect to the normal line n (α is 8 ° in this example).

なお、先にのべた通り、ショルダーリブ3の偏摩耗はタ
イヤを車両に装着した場合に車両の外側に位置するトレ
ッド半分で特に発生度合の激しいことから、場合によっ
ては副溝5を片側のショルダーリブにのみ設け、この副
溝5を設けたショルダーリブ3が車両の外側にくるよう
にタイヤを装着して使用し得るのはいうまでもない。
As mentioned above, the uneven wear of the shoulder ribs 3 is particularly severe in the tread half located outside the vehicle when the tire is mounted on the vehicle. It goes without saying that the tire can be mounted and used so that the shoulder rib 3 provided only on the rib and having the sub-groove 5 is on the outside of the vehicle.

(作用) 発明者らは、トレッドのショルダーリブにおけるエッジ
落ち欠損を発端とし、これを核として成長・進展する偏
摩耗の機構を、接地圧分布および路面との間の摩擦力
(剪断力)の大きさ等につき種々研究を行なつた。
(Operation) The inventors have established a mechanism of uneven wear that grows and develops with the edge drop defect in the shoulder rib of the tread as a starting point, and develops the contact pressure distribution and the frictional force (shear force) between the road surface. Various studies were conducted on the size and the like.

まずエッジ落ち欠損については、コーナリング操作によ
りタイヤは地面からの反力によるサイドフォースを受け
てショルダーリブ3の外側縁での接地圧が局部的に高く
なり、すべり最も大きくなることによって起る。
First, the edge drop defect occurs when the tire receives a side force due to a reaction force from the ground due to the cornering operation, and the ground contact pressure at the outer edge of the shoulder rib 3 locally becomes high, resulting in the largest slip.

一般に摩耗量Vは V=A×E、(A:単位摩耗エネルギー当り摩耗量、
E:摩耗エネルギー) であらわされ、ここで摩耗エネルギーEは、 E=∫F・dl(F:摩擦力、dl:すべり量)、 さらに摩擦力Fは、 F=μ×P(μ:摩擦係数、P:接地圧) でそれぞれあらわされる。
Generally, the wear amount V is V = A × E, (A: wear amount per unit wear energy,
E: wear energy), where wear energy E is E = ∫F · dl (F: friction force, dl: slip amount), and friction force F is F = μ × P (μ: friction coefficient) , P: ground pressure).

従って摩耗量は接地圧が高くすべり量も大きい程、多く
なり、上記のようにして接地圧が高くなり、すべり量も
大きくなるショルダーリブ3の外端縁において、タイヤ
の使用初期にエッジ落ち欠損が発生するのはやむを得な
い。
Therefore, the wear amount increases as the ground contact pressure increases and the slip amount increases, and as described above, the ground contact pressure increases and the slip amount also increases. Is unavoidable.

このエッジ落ち欠損は、サイドフォースを受けた部分で
生じるからこれが核となり、エッジ落ち欠損の生じてい
ないショルダーリブ表面とエッジ落ち欠損を起した摩耗
表面とにタイヤ走行中の回転半径の差が生じることで、
直進走行中にいわゆる引き摺りによる摩耗を生じて摩耗
段差があらわれ、通常(径差摩耗)と呼ばれる。
This edge drop defect occurs at the portion subjected to the side force, and this becomes the core, and a difference in the radius of gyration during tire running occurs between the shoulder rib surface where the edge drop defect does not occur and the wear surface where the edge drop defect occurs. By that,
During straight running, wear due to so-called dragging occurs and a wear step appears, which is usually called (diameter difference wear).

その後は上記サイドフォースに基くエッジ落ち欠損と径
差摩耗とが繰返し起ることによって摩耗段差が深さ方向
にまたリブ幅方向にも拡大してショルダーリブ3の全体
に及ぶ肩落ち摩耗に至る。
After that, the edge drop defect and the diameter difference wear due to the side force repeatedly occur, so that the wear step expands in the depth direction and in the rib width direction to reach the shoulder drop wear over the entire shoulder rib 3.

また同じエッジ落ち欠損が発端となって、ショルダーリ
ブ3の周りの一部分に働くサイドフォース入力の周上で
の不均一、ショルダーリブ3の外周におけるリムフィッ
ト性の如何も加えた外径のばらつきも相まって、不規則
不均一な入力がショルダーリブ3の外端縁に作用するた
め、ショルダーリブ3の幅方向の摩耗成長速度がリブの
全周にわたって異なることによって摩耗表面が波打ち状
を呈する波状摩擦に至る。
Also, the same edge drop defect is the starting point, and unevenness on the circumference of the side force input acting on a part around the shoulder rib 3, unevenness of the outer diameter of the shoulder rib 3 such as rim fitting property, etc. In combination, irregular and non-uniform input acts on the outer edge of the shoulder rib 3, so that the wear growth rate in the width direction of the shoulder rib 3 is different over the entire circumference of the shoulder rib 3 to cause wavy friction in which the wear surface has a wavy shape. Reach

この波状摩耗は幅広主溝2により遮られて次第にショル
ダーリブ3の凹凸がなされて上記肩落ち摩耗に進展する
か、或は幅広主溝を越えてセンターリブにまで延び、こ
れを非円形化する多角形摩耗にまで発展する。
This corrugated wear is blocked by the wide main groove 2 and the unevenness of the shoulder rib 3 is gradually made to progress to the above-mentioned shoulder drop wear, or it extends beyond the wide main groove to the center rib and is made non-circular. Develops into polygonal wear.

このような偏摩耗の進展につき、本発明に従うトレッド
パターンでは、ショルダーリブ3に配置する副溝5の位
置の適切な配置の下で著しく軽減される。
With the progress of such uneven wear, in the tread pattern according to the present invention, the position of the sub-groove 5 arranged on the shoulder rib 3 is remarkably reduced under proper arrangement.

すなわちトレッド1の端縁から測ってショルダーリブ3
の幅Aに対し25〜40%に相当する隔りBをおいてタイヤ
の外周に沿って延びる副溝5の配列にてショルダーリブ
3を外リブ6と内リブ7とに区画することにより、外リ
ブ6には、エッジ落ち欠損を発端とする径差摩耗に基く
犠牲作用を生じるが、これによってその後の内リブに向
う偏摩耗はもとよりセンターリブの方へ向ってひろがる
ような進展が有利に回避されるのであり、この犠牲作用
による外リブ6の内リブ7に対する段差は、タイヤ使用
中不断に維持される。
That is, the shoulder rib 3 measured from the edge of the tread 1
By dividing the shoulder ribs 3 into the outer ribs 6 and the inner ribs 7 with the arrangement of the sub-grooves 5 extending along the outer periphery of the tire with a gap B corresponding to 25 to 40% with respect to the width A of The outer rib 6 has a sacrificial action based on the difference in diameter wear starting from the edge drop defect, which advantageously promotes not only the uneven wear to the inner rib but also the spread to the center rib. This is avoided, and the step difference between the outer rib 6 and the inner rib 7 due to this sacrificial action is maintained continuously during use of the tire.

かくして外リブ6は、走行中のタイヤに働くサイドフォ
ースを受けたときに、内リブ7に比しより低い平均接地
圧並びに幅方向剪断力を受け、副溝のない場合にはショ
ルダーリブの側端縁に集中していた剪断力も分散して著
しく低減される。
Thus, the outer rib 6 receives a lower average grounding pressure and a shearing force in the width direction than the inner rib 7 when subjected to the side force exerted on the running tire. The shearing force concentrated on the edge is also dispersed and significantly reduced.

この外リブ6における平均接地圧及び幅方向剪断力の分
散低減は、副溝5の配置が、ショルダーリブ3の幅Aの
40%をこえるトレッド1の端縁からの過大な隔りBの下
では事実上もたらされず、また25%未満になると、内リ
ブ7の外側端での接地圧が相対的に大きくなって不適当
である。
The distribution of the average ground pressure and the shearing force in the width direction of the outer rib 6 is reduced by adjusting the sub-groove 5 so that the width A of the shoulder rib 3 is smaller than that of the shoulder rib 3.
It is practically not brought under the excessive distance B from the edge of the tread 1 which exceeds 40%, and when it is less than 25%, the ground contact pressure at the outer end of the inner rib 7 becomes relatively large, which is unsuitable. Is.

要するにショルダーリブ3に発生しまたさらに進展する
前記偏摩耗は、コーナリング時に発生するサイドフォー
スと直進走行での引摺りによるショルダーリブ3の側端
縁における局部的なエッジ落ち欠損が核となってショル
ダーリブ3の外周に沿い、また幅方向そして深さ方向へ
と逐次進展してこのエッジ落ち欠損から偏摩耗に成長発
展するのに対し本発明は、ショルダーリブ3の特定位置
に配置した幅狭な1本の副溝5によりショルダーリブ3
につき、適正な幅の外リブ6を内リブ7から区分するこ
とにより、上記の偏摩耗の核の発生に起因する偏摩耗へ
の進展を有効に抑制する。
In short, the uneven wear that occurs in the shoulder ribs 3 and further develops is mainly due to the side force generated during cornering and the local edge drop defect at the side edge of the shoulder ribs 3 due to the dragging during straight running. Along with the outer circumference of the rib 3 and in the width direction and the depth direction, the edge drop defect grows and develops to uneven wear. On the other hand, according to the present invention, the shoulder rib 3 has a narrow width. Shoulder rib 3 with one sub groove 5
Therefore, by dividing the outer rib 6 having an appropriate width from the inner rib 7, the progress of uneven wear due to the occurrence of the uneven wear nucleus is effectively suppressed.

すなわち、上記特定位置に配置した副溝5は、サイドフ
ォースが働いた場合のショルダーリブ3の外リブ6の側
端にかかる接地圧を適正に減少させて、上記偏摩耗の核
となるエッジ落ち欠損自体が発生するのを低減すること
に加え、外リブ6及び内リブ7に生ずる幅方向そしてリ
ブの外周に沿う剪断力の差異を適正にすることにより、
すなわち外リブに発生する幅方向剪断力を減少させる一
方トレッド外周に沿う剪断力は増加させることによって
外リブ6は先に摩耗する犠牲作用を生じ、外リブ6が走
行中は接地して内リブ7に加わる力を効果的に軽減しか
つ内リブ7は副溝5により隔離されていることにより、
トレッド端部から発生する偏摩耗のショルダーリブ3上
での進展を有効に軽減するのに寄与するのである。
That is, the auxiliary groove 5 arranged at the specific position appropriately reduces the ground contact pressure applied to the side end of the outer rib 6 of the shoulder rib 3 when the side force acts, and the edge drop that becomes the core of the uneven wear is reduced. In addition to reducing the occurrence of the defect itself, by optimizing the difference in the shearing force generated in the outer rib 6 and the inner rib 7 in the width direction and along the outer circumference of the rib,
That is, by reducing the shearing force generated in the outer ribs in the width direction and increasing the shearing force along the outer circumference of the tread, the outer ribs 6 have a sacrificial effect of being worn first, and the outer ribs 6 come into contact with the inner ribs while the outer ribs 6 are running. By effectively reducing the force applied to 7 and separating the inner rib 7 by the sub-groove 5,
This contributes to effectively reducing the progress of uneven wear generated from the tread end portion on the shoulder rib 3.

第1図に示したところにおいて副溝5のショルダーリブ
3上におけるトレッド端縁10からの距離Bが平均接地圧
および軸方向剪断力に及ぼす影響を事実走行結果によ
り、さらに詳細に説明する。
The effect of the distance B from the tread edge 10 on the shoulder rib 3 of the auxiliary groove 5 on the average ground pressure and the axial shearing force as shown in FIG. 1 will be explained in more detail by actually running results.

タイヤサイズ1000R20、3本溝タイヤを装着した車両の
走行時に、タイヤのトレッド端10に約300Kgのサイドフ
ォースが作用するとき、トレッド1のショルダーリブ3
上の外リブ6および内リブ7上の踏み込みからけり出し
に至るまでの間における平均接地圧を第3図に示す。副
溝5の位置がB/Aで30%の場合は丸印にて示すように
なり、外リブ6の平均接地圧P6は内リブ7の平均接地
圧P7より十分に低い。また、この平均接地圧P6は第3
図に比較のために示した副溝位置がB/Aで50%の場合
における外リブ6の平均接地圧P60に比較しても、また
十分に低い。なお、内リブ7の平均接地圧P7,P70
ほぼ同等である。
Shoulder rib 3 of tread 1 when side force of about 300 kg acts on the tread end 10 of the tire when a vehicle equipped with a tire size of 1000R20 and 3 groove tires is running.
FIG. 3 shows the average ground contact pressure from the time when the upper outer rib 6 and the inner rib 7 are stepped on to the time when they are pushed out. When the position of the sub groove 5 is 30% in B / A, it is indicated by a circle, and the average ground pressure P 6 of the outer rib 6 is sufficiently lower than the average ground pressure P 7 of the inner rib 7. Further, this average ground pressure P 6 is the third
Compared with the average ground pressure P 60 of the outer rib 6 when the sub groove position shown in the figure for comparison is 50% in B / A, it is also sufficiently low. The average ground pressures P 7 and P 70 of the inner rib 7 are almost the same.

また、走行時に、タイヤのトレッド1に約300Kgのサイ
ドフォースが作用するとき、トレッド1のショルダーリ
ブ3の外リブ6および内リブ7に発生する軸方向剪断力
についても副溝5のショルダーリブ3上の位置B/Aに
より、第4図に示すようになる。
Also, when a side force of about 300 kg is applied to the tread 1 of the tire during running, the axial shearing force generated on the outer rib 6 and the inner rib 7 of the shoulder rib 3 of the tread 1 also affects the shoulder rib 3 of the auxiliary groove 5. The position B / A above results in the state shown in FIG.

すなわち副溝の位置がB/Aで30%(図中丸印で示す)
とB/Aで50%(図中菱形印で示す)の場合の外リブ6
上での軸方向剪断力を比較すると、B/Aが30%の場合
の方が十分に低く、サイドフォースが外リブ6端つまり
トレッド端に集中していないことがわかる。
That is, the position of the sub groove is 30% in B / A (indicated by a circle in the figure)
And outer rib 6 when B / A is 50% (shown by the diamond mark in the figure)
Comparing the above axial shear forces, it can be seen that the case where B / A is 30% is sufficiently low, and the side force is not concentrated at the outer rib 6 end, that is, the tread end.

第3図に示した平均接地圧、第4図に示した軸方向剪断
力に及ぼすB/Aの影響は、タイヤサイズがトラック・
バス用空気入りラジアルタイヤの範畴で、異なるときも
ほぼ同様であり、例えばタイヤサイズが1000R20で溝が
4本溝である場合の結果を第5図,第6図に、またタイ
ヤサイズが750R20、3本溝である事例につき第7図、第
8図、そして同サイズ4本溝の場合を第9図、第10図に
てそれぞれ示したとおりである。
The effect of B / A on the average ground pressure shown in FIG. 3 and the axial shearing force shown in FIG.
Pneumatic radial tires for buses are almost the same when they are different. For example, the tire size is 1000R20 and the groove is 4 grooves. The results are shown in Figs. 5 and 6, and the tire size is 750R20. The case of three grooves is shown in FIGS. 7 and 8, and the case of four grooves of the same size is shown in FIGS. 9 and 10, respectively.

次に上述したエッジ落ち欠損にはじまる偏摩耗とその抑
制につき第11図〜第13図に基づいてより詳しく述べる。
Next, the uneven wear starting from the above-mentioned edge drop defect and its suppression will be described in more detail with reference to FIGS. 11 to 13.

(1) エッジ落ち欠損 (a) ショルダーリブ3に副溝5を設けない場合(第11
図A) 負荷時にトレッドゴムのつぶれにより軸方向剪断力τが
第11図B(イ)のように発生する(実線)。またサイド
フォース入力時には第11図B(ロ)のτ1,τ2のように
入力側の負担が大きくなる。(破線) ここで、トレッド中央部に向かって+をとる。
(1) Edge drop defect (a) When sub-groove 5 is not provided on shoulder rib 3 (No. 11)
Fig. A) Axial shearing force τ is generated as shown in Fig. 11B (a) due to the collapse of the tread rubber during loading (solid line). Further, when the side force is input, the load on the input side becomes large like τ 1 and τ 2 in FIG. 11B (b). (Dashed line) Here, + is taken toward the central part of the tread.

(b) ショルダーリブ3に主溝と同等の幅の溝Gをかり
に設ける場合(第12図A) 負荷時に同様にトレッドゴムのつぶれにより軸方向剪断
力τが第12図B(イ)のように溝Gによる区分リブにそ
れぞれ発生する。サイドフォース入力時には、リブ剛性
(a)のときより低下したことで曲げ変形が大きくなり、
(a)の場合よりそれぞれ入力側の各区分リブ端での負担
が第12図B(ロ)のように大きくなる。
(b) When the shoulder rib 3 is provided with a groove G having a width equal to that of the main groove (Fig. 12A), the axial shearing force τ is also as shown in Fig. 12B (A) due to the crushing of the tread rubber when loaded. Are generated in the dividing ribs by the groove G, respectively. Rib rigidity when inputting side force
Since it is lower than that in (a), the bending deformation increases,
The load at the end of each partition rib on the input side is larger than in the case of (a), as shown in FIG. 12B (b).

(c) ショルダーリブ3に副溝5を設ける場合(第13図
A) 負荷時に副溝5が閉じ第13図B(イ)のよう閉じ、副溝
周辺のトレッドゴムのつぶれが抑制されるため、この部
分の剪断力は(b)に比較してより小さく0に近づく。サ
イドフォース入力時には、副溝5が閉じているので(b)
に比較してショルダーリブ3が一体として挙動する。加
えて副溝5があることで(a)に比較して全体の曲げ変形
量が減少し(変形が分割される)ショルダー外側端の軸
方向剪断力τの上昇が小さい。
(c) When the sub-groove 5 is provided on the shoulder rib 3 (Fig. 13A) When the load is applied, the sub-groove 5 closes and closes as shown in Fig. 13B (a) to prevent the tread rubber around the sub-groove from being crushed. , The shear force of this part is smaller than that of (b) and approaches 0. When the side force is input, the auxiliary groove 5 is closed (b)
The shoulder rib 3 behaves as a unit in comparison with the above. In addition, the presence of the sub-groove 5 reduces the entire amount of bending deformation (deformation is divided) as compared with (a), and the increase in the axial shearing force τ at the shoulder outer end is small.

以上のように負荷時に接触する副溝5をショルダーリブ
3に設けることによってサイドフォースが作用した時の
トレッド端縁への力の集中が抑えられて分散化され、こ
れにより外リブ6のエッジ落ち欠損自体の発生を抑制す
ることができる。負荷転動時に接触する副溝5により、
内リブ7の外側縁への力の集中も抑えられこの部分での
エッジ落ち欠損の発生も抑えられる。
As described above, by providing the shoulder ribs 3 with the auxiliary grooves 5 that come into contact with each other when the load is applied, the concentration of force on the tread edge when side force is applied is suppressed and dispersed, whereby the edge drop of the outer rib 6 occurs. The occurrence of the defect itself can be suppressed. By the sub-groove 5 that comes into contact when the load rolls,
The concentration of force on the outer edge of the inner rib 7 is also suppressed, and the occurrence of edge drop defects at this portion is also suppressed.

(2)犠牲作用 第11図Aに示した従来に比較してエッジ落ち欠損は極め
て遅くではあるが外リブ6に第14図のように生じるのは
やむをえないが、こうして僅かに外径の小さくなった部
分を核とする径差摩耗に基づき段差が生じる。このと
き、接地圧が低い外リブ6はトレッド1の外周に沿う剪
断力が段差量の増加とともに増加するため、より先に摩
耗し(犠牲作用)、一方内リブ7は接地圧が高くトレッ
ド外周に沿う剪断力は生じないため摩耗が抑えられる。
このようにして外リブ6が優先的に摩耗して摩耗段差が
拡がるが、接地面内で外リブが接地しなくなる限界付近
に達するとそこで段差は維持される。
(2) Sacrificial action Although the edge drop defect is extremely slow compared to the conventional case shown in FIG. 11A, it is unavoidable that the outer rib 6 occurs as shown in FIG. 14, but the outer diameter is slightly reduced. A step is generated due to the difference in wear centered on the broken portion. At this time, the outer rib 6 having a low ground contact pressure is worn earlier (sacrificing action) because the shearing force along the outer circumference of the tread 1 increases with an increase in the step amount, while the inner rib 7 has a higher ground contact pressure and the outer circumference of the tread. Wear is suppressed because no shearing force is generated along.
In this way, the outer ribs 6 are preferentially worn to widen the wear step, but the step is maintained there when reaching a limit in the ground contact surface where the outer rib does not contact the ground.

(3)なぜ副溝より内側には犠牲作用に基づく摩耗が進展
しないか (a)副溝を設けない場合(第14図A,B) エッジ落ち欠損が生じた初期にまずそ段差による径差摩
耗によって深さ方向に摩耗は進展し、ある段差以上には
ならないが、幅方向の摩耗の進展を見ると、摩耗して段
下がりとなった部分とその他の部分の間に第14図Bのよ
うに凸部pができる。段下がり部分は負荷転動時に接地
面内では路面に接触するので、凸部を支点として軸方向
に曲げ変形dが生じる。したがって、サイドフォースを
受けたときこの凸部pの接地圧が極度に高くなって摩耗
し(エッジ落ち欠損と同じ原理)、順次ショルダーリブ
3の内方に摩耗が進んでいくことになり、最終的には主
溝2に達する。
(3) Why does wear due to sacrificial action not progress inside the sub-groove (a) When no sub-groove is provided (Figs. 14A and 14B) The difference in diameter due to the step difference is initially generated when the edge drop defect occurs. Although the wear progresses in the depth direction due to wear and does not exceed a certain step, the progress of the wear in the width direction reveals that between the part that is worn down and the other part is as shown in FIG. 14B. As shown in FIG. Since the step-down portion contacts the road surface within the ground contact surface during load rolling, bending deformation d occurs in the axial direction with the convex portion as a fulcrum. Therefore, when the side force is applied, the ground contact pressure of the convex portion p becomes extremely high and wears (the same principle as the edge drop defect), and the wear gradually progresses inward of the shoulder ribs 3, and finally To reach the main groove 2.

(b)細溝を設ける場合(第15図A,B) 犠牲作用により段下がりとなった外リブ6が接地面内で
路面とす接触するときでも、副溝5により内リブ7とは
不連続となっているため、内リブ7端を支点とする曲げ
変形が生じにくくなるのでサイドフォースを受けたとき
でも接地圧の上昇が抑えられる。したがって、核の再発
生は防止される。
(b) In case of providing a narrow groove (FIGS. 15A and B) Even when the outer rib 6 stepped down due to the sacrificial action comes into contact with the road surface within the ground contact surface, the auxiliary groove 5 prevents the inner rib 7 from contacting. Since it is continuous, bending deformation with the end of the inner rib 7 as a fulcrum is less likely to occur, so that an increase in ground contact pressure can be suppressed even when a side force is applied. Therefore, the re-emergence of nuclei is prevented.

(4)全体の摩耗の進行 前述のように犠牲作用により外リブ6が段下がりとな
る。
(4) Progress of overall wear As described above, the outer rib 6 is lowered due to the sacrificial action.

段差は一定のところで維持されるが、微視的に見ると径
差摩耗とサイドフォースによる摩耗の繰り返しとなって
いる。すなわち、径差摩耗が進み過ぎて一定より段差が
大きくなるとサイドフォースによる内リブ7を含めた副
溝より内側のトレッド全体の摩耗が優先し、細溝より内
側が摩耗し過ぎて一定より段差が小さくなると径差摩耗
が優先して再び段差が大きくなる方向になる。この様な
挙動を繰り返して、段差をほぼ一定に保ったまま摩耗末
期まで均一な摩耗を達成することができる。
Although the step is maintained at a constant position, microscopically, it is repeated wear due to the difference in diameter and wear due to side force. That is, if the difference in diameter wear becomes excessive and the step becomes larger than a certain level, the wear of the entire tread inside the sub-groove including the inner rib 7 due to the side force is prioritized, and the inside of the fine groove becomes too worn and the step becomes more than a certain level. If it becomes smaller, the difference in wear will be given priority, and the step will be increased again. By repeating such behavior, it is possible to achieve uniform wear until the end of wear while keeping the level difference substantially constant.

なお径差摩耗(引き摺り摩耗)については第16図に示す
ようにタイヤの軸方向にことなる外径(R1およびR
2)をなす部分がある場合、大径部R1では小径部R2
に比べて接地圧が高くなり大径部は路面との滑りをほと
んど生じること無く回転して進む。従って大径部R1が
進む距離はほぼタイヤが一体として進む距離となる。こ
れに対して、小径部R2は外径が小さいにもかかわらず
一回転する間に進む距離は、タヤが一体として進む距離
すなわち大径部R1が一回転に進む距離に等しくならざ
るを得ないので、この接地圧の低い小径部にずれが生じ
る。このずれによりタイヤ外周の接線方向に剪断力が働
くため小径部が優先的に摩耗していくことになる。
As for the diameter difference wear (striking wear), as shown in FIG. 16, the outer diameters (R1 and R
When there is a portion forming 2), the large diameter portion R1 has a small diameter portion R2.
The ground contact pressure is higher than that of the above, and the large diameter part rotates and advances with almost no slippage with the road surface. Therefore, the distance traveled by the large-diameter portion R1 is substantially the distance traveled by the tire as a unit. On the other hand, although the outer diameter of the small diameter portion R2 is small, the distance traveled during one rotation must be equal to the distance traveled by Taya as a unit, that is, the distance traveled by the large diameter portion R1 in one rotation. Therefore, a deviation occurs in the small diameter portion where the ground contact pressure is low. Due to this deviation, a shearing force acts in the tangential direction on the outer circumference of the tire, so that the small diameter portion is preferentially worn.

このように外径の小さい部分が優先的に摩耗する現象を
径差摩耗という。
Such a phenomenon in which a portion having a small outer diameter is preferentially worn is called diameter difference wear.

実施例 第1、2図に示したところと同等の3本の幅広主溝2に
より4本のリブを区画してなるタイプのトレッドパター
ンを有し、副溝5の有無および配置位置の異なる内部構
造の同一なサイズ10.00R20のトラック、バス用ラジアル
タイヤを数種類用意して本発明のタイヤI1〜I3の効果
を比較タイヤC1〜C5と対比した。
Example An interior having a tread pattern of a type in which four ribs are divided by three wide main grooves 2 equivalent to those shown in FIGS. track of the same size 10.00R20 structures were compared with those of Comparative tire C 1 -C 5 the effect of the tire I 1 ~I 3 of the present invention by several prepared radial tires for buses.

副溝5を設けたものはその本数を両ショルダーリブ3の
各々につき1本ずつとし、その深さd5、幅W5、傾斜角
度αをそれぞれ12mm、1.5mm、8°に、また、副溝のジ
グザグピッチPは23mm、ポイントハイトHは3mmに統一
した。
The number of sub-grooves 5 is one for each of the shoulder ribs 3, and the depth d 5 , width W 5 , and inclination angle α are 12 mm, 1.5 mm, and 8 °, respectively. The zigzag pitch P of the groove is 23 mm and the point height H is 3 mm.

各タイヤは何れもトレッド幅Tは200mm、クラウンRは5
20mmであり、幅広主溝2の深さd2および幅W2をそれぞ
れ14mm、11mm、ショルダーリブ3上の幅Aに対する隔た
りBの比B/Aを表1このように種々に異ならせた。
Each tire has a tread width T of 200 mm and a crown R of 5
20 mm, the depth d 2 and the width W 2 of the wide main groove 2 were 14 mm and 11 mm, respectively, and the ratio B / A of the distance B to the width A on the shoulder rib 3 was varied as shown in Table 1.

また、比較タイヤC1〜C4は副溝配置の不適合、C5
副溝なしとした外は第1,2図に示すものと同じであ
る。
The comparative tires C 1 to C 4 are the same as those shown in FIGS. 1 and 2 except that the sub-groove arrangement is incompatible and C 5 has no sub-groove.

これらのタイヤを用いて100%良路、、平均速度80Km/
h、規定荷重の条件下で実車走行テストを行い、5万Km
走行時点での偏摩耗のありさまを調べた結果は次のとお
りである。
100% good road with these tires, average speed 80km /
h, the actual vehicle running test under the condition of specified load, 50,000km
The results of examining the uneven wear at the time of running are as follows.

ショルダーリブ3の偏摩耗は先に述べた通り基本的には
エッジ落ち欠損から肩落ち摩耗、波状摩耗、多角形摩耗
へと進行していくが、上記のテスト後にセンターリブ4
の偏摩耗が発生していない外周部分からトレッド端に向
かって新品時のクラウン形状にならって引いた延長と、
実際に偏摩耗を来しているトレッドの断面輪郭との間の
ギャップを偏摩耗領域として、この偏摩耗領域につきタ
イヤ外周上における最大深さを段差量(mm)として測定
し、またこの偏摩耗領域のタイヤ断面内における面積
を、偏摩耗面積(mm2)として測定し、それらの測定結果
につき本発明タイヤI1の成績を100とする指数表示
にて、偏摩耗の状況の目視所見とともに、表1に掲げ
た。
The uneven wear of the shoulder ribs 3 basically proceeds from edge drop defects to shoulder drop wear, corrugated wear, and polygonal wear as described above.
The extension that was pulled from the outer peripheral part where uneven wear of No. 1 toward the tread end following the crown shape at the time of new article,
The gap between the cross-sectional contour of the tread that actually causes uneven wear is defined as the uneven wear region, and the maximum depth on the tire outer circumference of this uneven wear region is measured as the step amount (mm). The area in the tire cross section of the region was measured as an uneven wear area (mm 2 ), and the index of the result of the tire I 1 of the present invention was set to 100 for these measurement results, together with a visual observation of the uneven wear condition, Listed in Table 1.

この結果から明らかな通り、本発明のタイヤI1〜I
3は、ショルダーリブ3全体としての摩耗による落ち高
を低く抑えることができて、比較タイヤC1,C2
3,C4およびC5のショルダーリブ3に見られるよう
な偏摩耗はほとんど発生しなかった。なお、外リブ6に
生じる犠牲作用による摩耗そのものは外観上も性能上も
それほど大きな問題とはならないものである。
As is clear from these results, the tires I 1 to I of the present invention are
3 is able to reduce the fall height due to wear of the entire shoulder rib 3, Comparative tire C 1, C 2,
Almost no uneven wear as seen in the shoulder ribs 3 of C 3 , C 4 and C 5 occurred. It should be noted that the wear itself due to the sacrificial action that occurs in the outer rib 6 does not pose a serious problem in terms of appearance and performance.

(発明の効果) 以上のようにして、本発明によれば、リブタイプのトレ
ッドパターンを有するトラック・バス用空気入りラジア
ルタイヤの、特にショルダーリブ、さらにはセンターリ
ブにも及ぶ偏摩耗を有利に軽減し、タイヤ全体としての
摩耗寿命を大幅に向上させることができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to advantageously reduce uneven wear of a pneumatic radial tire for trucks and buses having a rib type tread pattern, particularly shoulder ribs and even center ribs. However, the wear life of the tire as a whole can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図、第2図は本発明に係るトラック・バス用空気入
りラジアルタイヤの一例を示すトレッド要部の展開図と
断面図であり、第3〜10図はそれぞれのショルダーリブ
3上の副溝位置と平均接地圧および軸方向剪断力との関
係を示す比較グラフ第11図〜第16図は摩耗挙動説明図で
ある。 1…トレッド 2…幅広主溝 3…ショルダーリブ 4…センターリブ 5…副溝 6…外リブ 7…内リブ 10…トレッドの側縁 A…ショルダーリブの幅 B…副溝のトレッド端からの距離
1 and 2 are a development view and a cross-sectional view of a main part of a tread showing an example of a pneumatic radial tire for trucks and buses according to the present invention, and FIGS. 3 to 10 are subordinates on respective shoulder ribs 3. Comparative graphs showing the relationship between the groove position and the average contact pressure and the axial shearing force FIGS. 11 to 16 are explanatory views of wear behavior. 1 ... Tread 2 ... Wide main groove 3 ... Shoulder rib 4 ... Center rib 5 ... Sub groove 6 ... Outer rib 7 ... Inner rib 10 ... Side edge of tread A ... Shoulder rib width B ... Distance from sub tread end

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−194606(JP,A) 特開 昭56−157606(JP,A) 特開 昭55−44028(JP,A) 特開 昭54−136002(JP,A) ─────────────────────────────────────────────────── --- Continuation of the front page (56) Reference JP-A-58-194606 (JP, A) JP-A-56-157606 (JP, A) JP-A-55-44028 (JP, A) JP-A-54- 136002 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タイヤの外周に沿って延びる複数の幅広主
溝によりトレッドをその幅方向にわたる実質的に一様な
接地圧力分布の下で、両側のショルダーリブと、それら
の間に位置する少数のセンターリブとに区画し、少なく
とも片側のショルダーリブには、これと隣接する幅広主
溝に比しより狭幅をなす1本の副溝を配設してショルダ
ーリブをさらに二分した、リブタイプトレッドパターン
をそなえる空気入りラジアルタイヤにおいて、 上記副溝は、トレッドの端縁から測ってショルダーリブ
の幅(A)に対して25〜40%に相当する隔たり(B)をおき、
かつタイヤの負荷転動による接地域でのみ溝壁同士が実
質上接触する溝幅をもって、タイヤの外周に沿い延びる
配列により、ショルダーリブを、外リブと内リブとに区
画することによって、該外リブに生起される専ら径差摩
耗に基く犠牲作用の下に、内リブの方へ向うトレッド偏
摩耗の進展を軽減すること、 を特徴とするトラック・バス用空気入りラジアルタイ
ヤ。
1. A tread with a plurality of wide main grooves extending along the outer periphery of a tire under a substantially uniform contact pressure distribution across the width of the tread, and a plurality of shoulder ribs located on both sides of the shoulder rib. The rib-type tread is further divided into two by dividing one of the center ribs into at least one shoulder rib and arranging one sub-groove having a width narrower than that of the adjacent wide main groove. In a pneumatic radial tire having a pattern, the auxiliary groove has a distance (B) corresponding to 25 to 40% with respect to the width (A) of the shoulder rib measured from the edge of the tread,
In addition, by dividing the shoulder rib into an outer rib and an inner rib by an arrangement that extends along the outer periphery of the tire with a groove width in which the groove walls substantially contact each other only in the contact area due to the load rolling of the tire, A pneumatic radial tire for trucks and buses, which is characterized by reducing the progress of uneven wear of the tread toward the inner ribs under the sacrificial effect based on the difference in diameter wear caused by the ribs.
JP59264780A 1984-12-14 1984-12-14 Pneumatic radial tires for trucks and buses Expired - Lifetime JPH064364B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59264780A JPH064364B2 (en) 1984-12-14 1984-12-14 Pneumatic radial tires for trucks and buses
GB8530353A GB2170153B (en) 1984-12-14 1985-12-10 Pneumatic radial tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264780A JPH064364B2 (en) 1984-12-14 1984-12-14 Pneumatic radial tires for trucks and buses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63039992A Division JPS63232007A (en) 1988-02-23 1988-02-23 Pneumatic radial tire for heavy load use

Publications (2)

Publication Number Publication Date
JPS61143205A JPS61143205A (en) 1986-06-30
JPH064364B2 true JPH064364B2 (en) 1994-01-19

Family

ID=17408086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264780A Expired - Lifetime JPH064364B2 (en) 1984-12-14 1984-12-14 Pneumatic radial tires for trucks and buses

Country Status (1)

Country Link
JP (1) JPH064364B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046642B4 (en) * 2008-11-20 2016-06-30 The Yokohama Rubber Co., Ltd. A heavy duty pneumatic tire

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860543B2 (en) * 1987-01-26 1999-02-24 横浜ゴム株式会社 Pneumatic radial tire for heavy loads
JPH03208707A (en) * 1989-10-23 1991-09-11 Bridgestone Corp Tread of pneumatic radial tire for heavy load
JPH068081B2 (en) * 1989-11-10 1994-02-02 株式会社ブリヂストン Pneumatic tire
JP3652867B2 (en) * 1997-12-19 2005-05-25 株式会社ブリヂストン Heavy duty pneumatic tire
JP4316324B2 (en) 2003-08-08 2009-08-19 横浜ゴム株式会社 Pneumatic tire
US9751365B2 (en) 2011-09-13 2017-09-05 The Goodyear Tire & Rubber Company High mileage truck tire tread
JP6599218B2 (en) * 2015-11-18 2019-10-30 Toyo Tire株式会社 Pneumatic tire

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136002A (en) * 1978-04-08 1979-10-22 Bridgestone Corp Pneumatic radial tire for heavy car running on good highway at high speed
JPS5544028A (en) * 1978-09-21 1980-03-28 Bridgestone Corp Radial tire for heavy car
JPS56157606A (en) * 1980-05-10 1981-12-04 Yokohama Rubber Co Ltd:The Pneumatic radial tire for automobile
US4480671A (en) * 1982-04-26 1984-11-06 Michelin Recherche Et Technique S.A. Tread and heavy duty tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009046642B4 (en) * 2008-11-20 2016-06-30 The Yokohama Rubber Co., Ltd. A heavy duty pneumatic tire

Also Published As

Publication number Publication date
JPS61143205A (en) 1986-06-30

Similar Documents

Publication Publication Date Title
JP2617713B2 (en) Pneumatic radial tire for heavy loads
US6488064B1 (en) Sacrificial ribs for improved tire wear
US4798236A (en) High performance tire tread
US5131444A (en) Heavy duty pneumatic tires including stepped tread zones for preventing uneven wearing
US6102092A (en) Tire having sacrificial bridging
US4995437A (en) Heavy duty pneumatic radial tires including a bent groove in the side face of the tread
JPH09226323A (en) Pair of pneumatic tires
JPH0891023A (en) Radial tire for taxi
JPH064364B2 (en) Pneumatic radial tires for trucks and buses
JPH0288311A (en) Pneumatic tire
JPH0872508A (en) Heavy load pneumatic tire
JP2698396B2 (en) Pneumatic tires for trucks and buses
JP4358572B2 (en) Off-the-road tires
JPH05229307A (en) Radial tire for heavy load
JPH1071811A (en) Pneumatic tire for heavy load use
JP2000016024A (en) Pneumatic radial tire
JPH0234404A (en) Heavy duty pneumatic radial tire
JP2744612B2 (en) Pneumatic tires for heavy loads that prevent uneven wear
JP3539450B2 (en) Pneumatic radial tire for heavy loads
JPH0159121B2 (en)
JP3200162B2 (en) Pneumatic tire
JP3509363B2 (en) Pneumatic radial tire for heavy loads
US4905747A (en) Pneumatic radial tire shoulder structure
JP2544556B2 (en) Radial tires for heavy loads
JP2744611B2 (en) Heavy duty pneumatic tires

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term