JPH0634437A - Integrated nonlinear waveguide type spectrometer - Google Patents

Integrated nonlinear waveguide type spectrometer

Info

Publication number
JPH0634437A
JPH0634437A JP5105780A JP10578093A JPH0634437A JP H0634437 A JPH0634437 A JP H0634437A JP 5105780 A JP5105780 A JP 5105780A JP 10578093 A JP10578093 A JP 10578093A JP H0634437 A JPH0634437 A JP H0634437A
Authority
JP
Japan
Prior art keywords
waveguide
reflector
raised guide
organic
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5105780A
Other languages
Japanese (ja)
Inventor
Daryoosh Vakhshoori
ヴァクショーリ ダリヨーシュ
George J Zydzik
ジョン ヅィクヅィック ジョーシ゛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AT&T Corp
Original Assignee
American Telephone and Telegraph Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by American Telephone and Telegraph Co Inc filed Critical American Telephone and Telegraph Co Inc
Publication of JPH0634437A publication Critical patent/JPH0634437A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • G01J3/0259Monolithic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE: To realize the integration of a spectrometer by providing a non-linear waveguide where a raised guide shape having a multi cycle structure comprising a plurality of composite semiconductor layers forms a circular arch having a specific radius of curvature, and an organic body-dielectric body waveguide refracting from the focus plane of a reflection mirror of an organic material plate on a dielectric layer. CONSTITUTION: Light radiation of a various wavelengths is reverse-propagated in the direction, mutually reversal, supplied at both ends of a raises guides. With no change in reference radiation w0, the radiation in the opposite direction is injected at various wavelengths in the entire range. Owing to non-linearity of the raised guide 12, synthesized frequency signal is introduced in upward direction of a reflection mirror 16, and then bounced into an organic layer 15 of an organic body-dielectric body waveguide 18, and propagated, in parallel to surfaces 20 and 21, to the reflection light 17, and then re-refracted at the opposite end part of a waveguide 14. A signal 22 from the guide 12 is combined to the waveguide 18 through reflection to light with the mirror 16. Another reflection mirror 17 is used to combine the light from the surface of a detection waveguide. With this, the signal from an integration structure becomes visible, so the integration of a detector with a circuit becomes possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、集積非直線導波路型分
光計に関する。
FIELD OF THE INVENTION This invention relates to integrated nonlinear waveguide spectrometers.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】光学分
光計は、必要とされる色分散を発生させるために、逆伝
播χ2 非直線導波路相互作用を使用する導波路装置であ
る。これらの装置において、基準案内モードは、面放射
する合成周波数信号を発生させるために、逆伝播入力赤
外線信号と相互作用する。上方転換された可視信号が放
射される角度は、基準案内モードと入力信号の波長の差
の関数になる。基準波長を固定することによって、入力
信号の周波数スペクトルは、遠視野において上方転換さ
れた信号の角スペクトルにマップされる。非直線パラメ
トリック導波路型分光計の物理的な原理は図3及び4に
示される。非直線導波路は、従来の分光計において回折
格子として作用する。一方は基準モードであり他方は入
力信号である、2つの逆伝播波は、相互作用して、運動
量保存の法則により限定される角度で導波路の上部表面
から放射する面放射合成周波数信号を発生する。逆伝播
ビームのうちの一方(基準ビーム)が固定波長を有して
いる場合、他方の逆伝播ビーム(入力信号)の周波数ス
ペクトルは、遠視野において合成周波数信号の角スペク
トルにマップされる。例えば、アール・ノーマンディン
(R.Normandin) 等による“Monolithic,Surface-Emittin
g Semiconductor Visible Lasers and Spectrometers f
or WDM Fiber Communication System ”,IEEE Journal
of Quantum Electronics, Vol.27,No.6,June 1991,pag
es 1520-1530や、ディー・バクシューリ(D.Vakhshoori)
及びダブリュー・ワング(W.Wang)による“Integrable S
emiconductor Optical Correlator Parametric Spectro
meter for Communication Systems ”,Journal of Lig
htwave Technology,Vol.9,No.7,July 1991,pages 906-9
17を参照。
BACKGROUND OF THE INVENTION Optical spectrometers are waveguide devices that use back-propagating χ 2 nonlinear waveguide interactions to produce the required chromatic dispersion. In these devices, the reference guide mode interacts with the back-propagating input infrared signal to produce a surface emitting composite frequency signal. The angle at which the upconverted visible signal is emitted is a function of the difference between the reference guiding mode and the wavelength of the input signal. By fixing the reference wavelength, the frequency spectrum of the input signal is mapped to the angular spectrum of the upconverted signal in the far field. The physical principle of a non-linear parametric waveguide spectrometer is shown in FIGS. The non-linear waveguide acts as a diffraction grating in a conventional spectrometer. Two counter-propagating waves, one of which is the reference mode and the other of which is the input signal, interact to generate a surface-radiation-synthesized frequency signal that radiates from the upper surface of the waveguide at an angle limited by the law of conservation of momentum. To do. If one of the counter-propagating beams (reference beam) has a fixed wavelength, the frequency spectrum of the other counter-propagating beam (input signal) is mapped in the far field to the angular spectrum of the composite frequency signal. For example, Earl Normandin
(R. Normandin) et al. “Monolithic, Surface-Emittin
g Semiconductor Visible Lasers and Spectrometers f
or WDM Fiber Communication System ”, IEEE Journal
of Quantum Electronics, Vol.27, No.6, June 1991, pag
es 1520-1530 and D. Vakhshoori
And “Integrable S” by W. Wang
emiconductor Optical Correlator Parametric Spectro
meter for Communication Systems ”, Journal of Lig
htwave Technology, Vol.9, No.7, July 1991, pages 906-9
See page 17.

【0003】非直線導波路に注入される放射線から緑色
または青色光を発生させるのに有効になるであろう非直
線導波路の構造は、ディー・バクシューリ(D.Vakhshoor
i)等によるConference on Lasers and Electro-Optics
Technical Digest,Series 1991,(Optical Society of A
merica,WAshington,D.C.) Vol.10,page 134 や、アール
・ノーマンディン(R.Normandin) 及びアール・エル・ウ
ィリアムズ(R.L.Williams)によるConference on Lasers
and Electro-Optics Technical Digest,Series 1991,
(Optical Society of America,WAshington,D.C.) Vol.1
0,page 136 や、ディー・バクシューリ(D.Vakhshoori)
等による“Blue-Green Surface-EmittingSecond Harmon
ic Generation of(111)B GaAs”,Applied Physics Let
ters,Vol.59,No.8,19 August 1991,pages 896-898や、
ディー・バクシューリ(D.Vakhshoori)による“Analysis
of Visible Surface-Emitting Second-Harmonic Gener
ations”,Journal of Applied Physics,Vol.70,No.10,
15 November 1991,pages 5205-5210によって示唆され
た。このような構造は、ペアになっている各層がペアに
なっている他の層と異なる構成を有する、ペアにされた
交互の複合半導体層から構成される多層構造を含むであ
ろう。しかしながら、複合半導体基板上に近視野乃至遠
視野をマップすることができる結像装置を非直線パラメ
トリック分光計に提供することが一層望ましい。
A non-linear waveguide structure that would be effective in generating green or blue light from radiation injected into the non-linear waveguide is D. Vakhshoor.
Conference on Lasers and Electro-Optics by i) etc.
Technical Digest, Series 1991, (Optical Society of A
(merica, WAshington, DC) Vol.10, page 134 and Conference on Lasers by R. Normandin and RL Williams.
and Electro-Optics Technical Digest, Series 1991,
(Optical Society of America, WAshington, DC) Vol.1
0, page 136 and D.Vakhshoori
“Blue-Green Surface-EmittingSecond Harmon by
ic Generation of (111) B GaAs ”, Applied Physics Let
ters, Vol.59, No.8,19 August 1991, pages 896-898,
“Analysis” by D. Vakhshoori
of Visible Surface-Emitting Second-Harmonic Gener
ations ”, Journal of Applied Physics, Vol.70, No.10,
15 November 1991, pages 5205-5210 Suggested by. Such a structure would include a multi-layer structure composed of alternating composite semiconductor layers in pairs, with each layer in the pair having a different configuration than the other layers in the pair. However, it would be more desirable to provide a non-linear parametric spectrometer with an imaging device that can map near-field to far-field on a composite semiconductor substrate.

【0004】[0004]

【課題を解決するための手段】本発明は、ポリイミド導
波路フォーカス反射鏡を備えた非直線導波路型分光計の
集積を具体化する。導波路型分光計は、回折格子の動作
をシミュレートして必要とされる色分散を発生させるた
めに、非直線逆伝播χ2 相互作用を使用する。近視野乃
至遠視野をマップして種々の波長成分を分離するため
に、有機体−誘電体(例えばポリイミド/SiO2)導波路
と、45°のRIEエッチングされた反射鏡は、凹面フ
ォーカス集積反射鏡をシミュレートするために組み立て
られた。反射鏡の焦平面で測定されたスポットサイズ
は、理論的予言に従って約1.6オングストロームのス
ペクトル分解能に対応する約0.7μmであった。本装
置は、良好なスペクトル分解能を有するが、実際の変換
効率は理論的予言より小さくなる。100mWの基準及
び入力信号が用いられた時、変換信号は理論的には0.
1mWのオーダーになるであろう。低信号出力レベルに
対してさえも、本集積装置は、可視出力を利用すること
ができかつ高出力変換効率を必要としない応用(すなわ
ち、1.5μm及び1.3μm赤外線信号を検出するこ
とができないシリコンPIN検出器及び回路を備えた集
積)に用いることができる。
The present invention embodies the integration of a nonlinear waveguide spectrometer with a polyimide waveguide focus reflector. Waveguide spectrometers use nonlinear backpropagating χ 2 interactions to simulate the behavior of a diffraction grating to produce the required chromatic dispersion. Organic-dielectric (eg polyimide / SiO 2 ) waveguides and 45 ° RIE-etched mirrors for mapping near-field to far-field to separate various wavelength components are used for concave focus integrated reflection. Assembled to simulate a mirror. The spot size measured in the focal plane of the reflector was about 0.7 μm, corresponding to a spectral resolution of about 1.6 Å according to theoretical predictions. The device has good spectral resolution, but the actual conversion efficiency is less than the theoretical prediction. When a 100 mW reference and input signal is used, the converted signal is theoretically 0.
It will be on the order of 1 mW. Even for low signal output levels, the present integrated device can detect applications where the visible output is available and high output conversion efficiency is not required (ie, 1.5 μm and 1.3 μm infrared signals can be detected. Integrated with a silicon PIN detector and circuitry that cannot.

【0005】[0005]

【実施例】本発明は、非直線パラメトリック導波路型分
光計が有機体−誘電体導波路と共に集積された集積光学
装置である。反応イオンエッチング(RIE)でエッチ
ングされた45度の角度の反射鏡は、非直線隆起ガイド
で発生した面光を表面に平行に反射させかつ有機体−誘
電体導波路内に結合させるために、導波路の両端に作ら
れた。好適な実施態様において、1.6 の分解能を有
する集積非直線導波路型分光計は、長さ2mmの円形領
域を有する非直線周期的GaAs/AlGaAs 隆起ガイド構造を
長さ4mmのポリイミド/SiO2導波路と共に集積するこ
とにより幅4mm長さ7mmのGaAs基板上に形成され
た。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an integrated optical device in which a nonlinear parametric waveguide spectrometer is integrated with an organic-dielectric waveguide. A 45 degree angle reflector mirror etched by reactive ion etching (RIE) reflects the surface light generated by the non-linear ridge guide parallel to the surface and couples into the organic-dielectric waveguide. Made on both ends of the waveguide. In a preferred embodiment, an integrated non-linear waveguide spectrometer with a resolution of 1.6 uses a non-linear periodic GaAs / AlGaAs raised guide structure with a circular area of 2 mm in length and a polyimide / SiO 2 of 4 mm in length. It was formed on a GaAs substrate with a width of 4 mm and a length of 7 mm by integrating it with a waveguide.

【0006】集積光学装置は、図面の図1及び2に概略
的に示される。図1は集積光学装置の平面図、図2は集
積光学装置の側断面図である。例示のため、集積装置の
寸法は尺度が引かれていない。
An integrated optical device is shown schematically in FIGS. 1 and 2 of the drawings. 1 is a plan view of the integrated optical device, and FIG. 2 is a side sectional view of the integrated optical device. For illustration purposes, the dimensions of the integrated device are not scaled.

【0007】数字10で一般的に示された集積光学装置
は、結晶質の複合半導体基板11と、隆起ガイド13を
含む多量子井領域12と、誘電体層14と、両端に45
°反射鏡16及び17を備えた有機ポリマー材料層15
とを含む。誘電体層14及び有機体層15は、18とし
て一般的に名づけられた有機体−誘電体導波路を形成す
る。誘電体材料は、有機体材料より低い屈折率を有し、
有機体−誘電体導波路のためのクラッド層を形成する。
An integrated optical device, generally designated by the numeral 10, is a crystalline composite semiconductor substrate 11, a multi-quantum well region 12 including raised guides 13, a dielectric layer 14, and 45 on both ends.
° Organic polymer material layer 15 with reflectors 16 and 17
Including and Dielectric layer 14 and organic layer 15 form an organic-dielectric waveguide, generally designated as 18. Dielectric materials have a lower index of refraction than organic materials,
Form a cladding layer for the organic-dielectric waveguide.

【0008】集積光学装置は、交互構成の複数の薄膜層
で形成される領域12を有する基板11上に製作され
る。製作は、絶縁された隆起ガイド13を限定するため
に、領域12に一組の溝19をエッチングする工程と、
領域12の上面20一面及び溝19内に誘電体層14を
沈積する工程と、誘電体層14の全面21に、光を通す
有機ポリマー材料層15を沈積する工程とを含む。平板
状の有機体−誘電体導波路18は、有機体層に導波路の
輪郭を限定しかつ望ましい形状に有機体層をエッチング
することにより形成される。隆起ガイド13は、ウェハ
の平坦さを保つために、ドライエッチングされた溝19
によって限定された。溝を除いて、ウェハは、その後に
続く有機体−誘電体導波路18と45°反射鏡16及び
17の製作を容易にするために平坦に保たれる。図1に
おいて点線で示された隆起ガイド13は、中間部分の円
形弓形23と両端の直線部分24とから構成される。小
さな円形弓形は、円形弓形23を直線部24と円滑に相
互接続することができる。模範的な実施態様において、
基板11はGaAsからなり、領域12及び隆起ガイド13
はGaAs/AlGaAs 多層、多周期構造からなる。各周期は、
GaAsの薄膜層と、xが0.7から1までの範囲である場
合のAlx Ga1-xAs の薄膜層とにより形成される。各層の
厚さは、隆起ガイドで発生した可視光の1/2波長(λ
/2)に等しい。好適な実施態様において、誘電体材料
はSiO2(n=1.47)であり、有機体材料はポリイミ
ド/SiO2導波路を形成するポリイミド(n=1.6)で
ある。基板11は厚さ約150μmであり、領域12は
厚さ約1.5μmであり、溝19は幅1〜2μm深さ約
2μmであり、隆起ガイドは幅2〜3μm高さ約2μm
であり、誘電体層は厚さ約0.5μmであり、有機体層
15は厚さ2〜3μmである。装置全体は、長さ4mm
幅約2mmの導波路18を備えて、約4×7mmのサイ
ズになっている。反射鏡16及び17は、隆起ガイドの
円形弓形と同様に円形弓形で限定されている。円形弓形
は4mmの曲率半径を持っている。45°反射鏡は、こ
こに参照により含まれる、エル・エイ・コルドリン(L.
A.Coldrean)及びジェイ・エイ・レンツラー(J.A.Rentsc
hler)により"Directional Reactive-Ion-Etching of In
P with CL2 Containing Gases",Journal of Vacuum Sci
ence Technology,Vol.19,No.2,July/August 1981,pages
225-230 に開示された技術と同様なやり方で反応イオ
ンエッチング(RIE)でエッチングされる。
The integrated optical device is fabricated on a substrate 11 having a region 12 formed of alternating thin film layers. Fabrication comprises etching a set of grooves 19 in the region 12 to define the insulated raised guides 13,
The method includes depositing the dielectric layer 14 on the entire upper surface 20 of the region 12 and the groove 19, and depositing a light-permeable organic polymer material layer 15 on the entire surface 21 of the dielectric layer 14. The planar organic-dielectric waveguide 18 is formed by limiting the waveguide contour to the organic layer and etching the organic layer to the desired shape. The raised guide 13 has a groove 19 that is dry-etched to maintain the flatness of the wafer.
Limited by Except for the grooves, the wafer is kept flat to facilitate the subsequent fabrication of the organic-dielectric waveguide 18 and 45 ° mirrors 16 and 17. The raised guide 13 shown by a dotted line in FIG. 1 is composed of a circular arcuate shape 23 at an intermediate portion and straight line portions 24 at both ends. The small circular arch can smoothly interconnect the circular arch 23 with the straight portion 24. In an exemplary embodiment,
The substrate 11 is made of GaAs and has a region 12 and a raised guide 13.
Consists of GaAs / AlGaAs multi-layer, multi-period structure. Each cycle is
It is formed by a thin film layer of GaAs and a thin film layer of Al x Ga 1-x As when x is in the range of 0.7 to 1. The thickness of each layer is 1/2 wavelength (λ
Equal to / 2). In the preferred embodiment, the dielectric material is SiO 2 (n = 1.47) and the organic material is polyimide / n = 1.6 forming a polyimide / SiO 2 waveguide. The substrate 11 has a thickness of about 150 μm, the region 12 has a thickness of about 1.5 μm, the groove 19 has a width of 1 to 2 μm and a depth of about 2 μm, and the raised guide has a width of 2 to 3 μm and a height of about 2 μm.
The dielectric layer has a thickness of about 0.5 μm, and the organic layer 15 has a thickness of 2 to 3 μm. The entire device is 4 mm long
The waveguide 18 having a width of about 2 mm is provided, and the size is about 4 × 7 mm. The reflectors 16 and 17 are limited to a circular arc similar to the circular arc of the raised guide. The circular bow has a radius of curvature of 4 mm. The 45 ° mirror is incorporated by reference herein, L. A. Cordulin (L.
A. Coldrean) and Jay A. Lenzler (JARentsc
hler) by "Directional Reactive-Ion-Etching of In
P with CL 2 Containing Gases ", Journal of Vacuum Sci
ence Technology, Vol.19, No.2, July / August 1981, pages
It is etched by reactive ion etching (RIE) in a manner similar to the technique disclosed in 225-230.

【0009】動作において、種々の波長の光放射線が、
隆起ガイド12の両端に供給され、その結果相互に反対
の方向に逆伝播する。基準放射線ω0 を表わした、隆起
の一方向に入る放射線は変わらずに維持されるが、反対
方向から供給された放射線は、全範囲の種々の波長で注
入され得る。隆起ガイドの非直線性のため、合成周波数
信号は、45°反射鏡16に向かう上向き方向に導か
れ、そこで有機体−誘電体導波路18の有機体層15内
の方へ右に90°はねかえされ、面20または21に平
行に反射鏡17の方向に伝播し、導波路14の反対側の
端部にあるそこで放射線は再び屈折する。隆起ガイドか
らの上方転換された信号22は、45°反射鏡16の右
への反射によって有機体−誘電体導波路に結合されるの
で、円形の位相前面を形成し、導波路から4mm離れた
焦平面のポイントに焦点を合わせるだろう。その焦平面
において、検出用導波路の表面から出る光を結合するた
めに、別の45°反射鏡が用いられる。光導波路から出
る放射線の伝播方向は、反射鏡17の傾きの方向及び角
度によって決定される。この場合、反射鏡は導波路の平
らな表面に対して45°になっているので、放射線は上
向きの方向に屈折し、そこで検出することができる。焦
平面において集積検出器アレイで検出するために、表面
19の方へ戻る信号を基板でもしくは基板上で結合する
ために、反対の45°の反射鏡を用いることができる。
In operation, light radiation of various wavelengths
It is supplied to both ends of the raised guide 12 and as a result back-propagates in opposite directions. The radiation entering one direction of the ridge, which represents the reference radiation ω 0 , remains unchanged, but the radiation supplied from the opposite direction can be injected at various wavelengths in the entire range. Due to the non-linearity of the ridge guides, the composite frequency signal is directed in the upward direction towards the 45 ° mirror 16 where it is 90 ° to the right towards the organic layer 15 of the organic-dielectric waveguide 18. It is bounced back and propagates parallel to the surface 20 or 21 in the direction of the reflector 17, where the radiation is refracted again at the opposite end of the waveguide 14. The upconverted signal 22 from the raised guide is coupled into the organic-dielectric waveguide by reflection to the right of the 45 ° mirror 16 so that it forms a circular phase front and is 4 mm away from the waveguide. It will focus on the focal plane point. In that focal plane, another 45 ° mirror is used to couple the light exiting the surface of the detection waveguide. The propagation direction of the radiation emitted from the optical waveguide is determined by the tilt direction and angle of the reflecting mirror 17. In this case, the reflector is at 45 ° to the flat surface of the waveguide, so that the radiation is refracted in the upward direction and can be detected there. The opposite 45 ° reflector can be used to couple the signal back to the surface 19 at or on the substrate for detection with the integrated detector array in the focal plane.

【0010】従来の分光計の分解能は、そのピーク点か
らその最初の極小点までの信号の空間的位置を移動させ
る、入力波長の変化として限定される。この場合、長さ
2mmの非直線隆起ガイド例えば13によって口径を定
められたフォーカス反射鏡例えば16のために、焦平面
における信号のピーク点及び最初の極小点の空間的位置
により反射鏡の中心で範囲を定められる角度は次のとお
りである。
The resolution of a conventional spectrometer is limited as the change in input wavelength that moves the spatial position of the signal from its peak point to its first local minimum. In this case, for a focus reflector eg 16 which is calibrated by a 2 mm long non-linear ridge guide eg 13 at the center of the reflector due to the spatial position of the signal peak and the first local minimum in the focal plane. The angles that can be defined are as follows.

【0011】[0011]

【数1】 ここで、λs 、n及びdはそれぞれ、合成周波数波長、
ポリイミド/SiO2導波路の有効指数、曲がった反射鏡の
口径である。これに反して、入力波長(図3)の変化に
よる放射角度の変化は次のとおりである。
[Equation 1] Where λ s , n and d are the composite frequency wavelength,
Effectiveness index of polyimide / SiO 2 waveguide, aperture of curved mirror. On the contrary, the change of the radiation angle due to the change of the input wavelength (FIG. 3) is as follows.

【0012】[0012]

【数2】 ここで、λ、λ0 、n、n0 、ns はそれぞれ、入力基
本及び基準波長、入力及び基準ビームに対するGaAs/AlG
aAs 隆起ガイドの有効指数、合成周波数信号に対するポ
リイミド/SiO2導波路の有効指数である。
[Equation 2] Here, λ, λ 0 , n, n 0 , and n s are the GaAs / AlG for the input fundamental and reference wavelengths and the input and reference beams, respectively.
aAs Elevation guide effective index, polyimide / SiO 2 waveguide effective index for composite frequency signals.

【0013】式2の3行目は、λが概ねλ0 でありλ0
が約1.0μmの場合に対して上記パラメーターの値を
近似することにより得られる。次に、分光計の分解能は
次のとおり見積もられる。
In the third line of equation 2, λ is approximately λ 0 and λ 0
Is about 1.0 μm and is obtained by approximating the values of the above parameters. The resolution of the spectrometer is then estimated as:

【0014】[0014]

【数3】 [Equation 3]

【0015】反射鏡17から測定された出力は黒と白が
反対に記録される。図6に、45°反射鏡17から放射
する可視青色信号を表わしかつ円形反射鏡の焦平面に位
置する2個の小点を示す。Nd:YAGからのレーザー光は、
波長λ0 =1.064μmを有する基準ビームω0 とし
て用いられた。調整可能なTi−サファイアレーザー光
は、それぞれ波長λ1 =0.9734μm及びλ2
0.9724μmを有する入力信号ω1 及びω2 として
用いられた。記録は、まず調整可能なレーザーをλ1
0.9734μmに調整し、基準ビーム及び第1の入力
信号ビームを隆起ガイドの両端に送り、薄膜を上方転換
された信号に露出し、次に、薄膜を動かさずに、調整可
能なレーザーをλ2 =0.9724μmに調整し、同じ
薄膜をその次の位置において次の上方転換された信号に
再露出することによって行なわれる。λ1 及びλ2 から
上方転換された信号は、スペクトル的に1nm離れてお
り、このスポットは焦平面で空間的に4μm分離され
る。信号スポットサイズ(FWHM)は、理論通りに
1.6 のスペクトル分解能に対応する2波長の各々に
対して約0.7μmになることが測定された。数個の小
半径スポット(図示しない)が、2個の主要なピークの
回りに表われた。これらは、おそらく、その理想的円形
弓形からの、多数の反射と曲がったGaAs/AlGaAs 非直線
導波路の偏差の可能性との結果である。非直線隆起ガイ
ドから有機体−誘電体導波路までの結合損失と青色の上
方転換された信号の波長におけるこの導波路の伝播損失
は大きくなるように思われる。したがって、信号出力は
理論により予言された値よりずっと少なかった。この信
号は、100mWの基準及び入力信号が用いられた時、
理論的に0.1mWのオーダーになるはずである。それ
にもかかわらず、集積構造からの信号は肉眼で見えるの
で、装置は、シリコン検出器及び回路との集積、すなわ
ち、1.5μm及び1.3mum赤外線信号を検出する
ことができない、シリコンPIN 検出器及び回路との集積
を必要とする応用に用いることができる。
The output measured from the reflector 17 is recorded in black and white opposite. FIG. 6 shows the two dots that represent the visible blue signal emanating from the 45 ° reflector 17 and lie in the focal plane of the circular reflector. The laser light from Nd: YAG is
It was used as a reference beam ω 0 having a wavelength λ 0 = 1.064 μm. The tunable Ti-sapphire laser light has wavelengths λ 1 = 0.9734 μm and λ 2 =, respectively.
Used as input signals ω 1 and ω 2 with 0.9724 μm. For recording, first adjust the adjustable laser with λ 1 =
Adjusted to 0.9734 μm, sending the reference beam and the first input signal beam across the ridge guide, exposing the thin film to the upconverted signal, and then moving the tunable laser to λ without moving the thin film. 2 = 0.9724 μm, and re-exposing the same film at the next location to the next upconverted signal. The signals upconverted from λ 1 and λ 2 are spectrally 1 nm apart and the spots are spatially separated by 4 μm in the focal plane. The signal spot size (FWHM) was measured to be about 0.7 μm for each of the two wavelengths, which theoretically corresponds to a spectral resolution of 1.6. Several small radius spots (not shown) appeared around the two major peaks. These are probably the result of the large number of reflections and possible deviations of the bent GaAs / AlGaAs nonlinear waveguide from its ideal circular arch. The coupling loss from the non-linear raised guide to the organic-dielectric waveguide and the propagation loss of this waveguide at the wavelength of the blue upconverted signal appear to be large. Therefore, the signal output was much less than the value predicted by theory. This signal, when 100mW reference and input signal is used,
Theoretically, it should be on the order of 0.1 mW. Nevertheless, since the signal from the integrated structure is visible to the naked eye, the device is integrated with the silicon detector and the circuit, ie the silicon PIN detector, which cannot detect 1.5 μm and 1.3 um infrared signals. And for applications requiring integration with circuits.

【0016】非直線GaAs/AlGaAs 隆起ガイドを備えた集
積分光計は、100個のGaAs基板で成長させられた。こ
れは、面ではねかえる合成周波数の発生のため、TE及
びTMの両モードが存在するに違いないことを意味す
る。TMモードとしての基準ビームと逆反射するTEモ
ードとしての入力信号を結合することにより、最初の近
似値において2次高調波は発生しないので、これは、実
際上非直線パラメトリック導波路型分光計に対する利点
になる。
An integrated spectrometer with a non-linear GaAs / AlGaAs raised guide was grown on 100 GaAs substrates. This means that both TE and TM modes must be present due to the generation of synthetic frequencies that are repulsive in terms. This is practically for a non-linear parametric waveguide spectrometer, since by combining the reference beam as the TM mode and the input signal as the TE mode, which is retroreflected, no second harmonic is generated in the first approximation. It will be an advantage.

【0017】追加的な利点及び変形は当業者に容易に思
い浮かぶであろう。したがって、本発明は、その広い態
様において、特定の詳細、表示された装置、及び図示さ
れ説明された例示の実施例に制限されない。よって、付
随の特許請求の範囲及びそれらの同等物により限定され
るような一般的な本発明の概念の精神または範囲に反す
ることなく、種々の変形を行なうことができる。
Additional advantages and variations will readily suggest themselves to those skilled in the art. Accordingly, the invention in its broader aspects is not limited to the specific details, devices shown, and the exemplary embodiments shown and described. Thus, various modifications may be made without departing from the spirit or scope of the general inventive concept as limited by the appended claims and their equivalents.

【図面の簡単な説明】[Brief description of drawings]

【図1】曲がったGaAs/AlGaAs 隆起ガイドと、隆起ガイ
ドの平面に対して45°に位置決めされた曲がった反射
鏡を両端に有する、ポリイミド/SiO2平板導波路とを備
えた集積分光計の概略図の平面図を示す図である。
FIG. 1 shows an integrated spectrometer with a curved GaAs / AlGaAs raised guide and a polyimide / SiO 2 plate waveguide with bent reflectors at both ends positioned at 45 ° to the plane of the raised guide. It is a figure which shows the top view of a schematic diagram.

【図2】45°角度の反射鏡が面光をポリイミド/SiO2
平板導波路の内外に結合する集積分光計の概略図の側断
面図を示す図である。
[Fig. 2] A 45 ° angle reflector reflects surface light on polyimide / SiO 2
FIG. 6 shows a side cross-sectional view of a schematic diagram of an integrated spectrometer coupled into and out of a plate waveguide.

【図3】入力信号の周波数スペクトルが遠視野において
上方転換された信号の角スペクトルにどのようにマップ
されるかを示す図である。
FIG. 3 shows how the frequency spectrum of the input signal maps to the angular spectrum of the upconverted signal in the far field.

【図4】入力信号の周波数スペクトルが遠視野において
上方転換された信号の角スペクトルにどのようにマップ
されるかを示す図である。
FIG. 4 shows how the frequency spectrum of the input signal maps to the angular spectrum of the upconverted signal in the far field.

【図5】逆伝播する、固定波長の基準モード及び種々の
波長の入力信号を伴う隆起ガイドの概略図を示す図であ
る。
FIG. 5 shows a schematic diagram of a backpropagating raised guide with a fixed wavelength reference mode and input signals of various wavelengths.

【図6】基準波長と2種類のTi−サファイレーザー波長
の相互作用から生じる、焦平面における青色信号に相当
する2つのスポットの概略図を示す図である。
FIG. 6 shows a schematic diagram of two spots corresponding to a blue signal in the focal plane resulting from the interaction of a reference wavelength and two types of Ti-sapphi laser wavelengths.

【符号の説明】[Explanation of symbols]

10 集積光学装置 13 隆起ガイド 16、17 反射鏡 18 有機体−誘電体導波路 19 溝 10 Integrated Optical Device 13 Raised Guide 16, 17 Reflector 18 Organic-Dielectric Waveguide 19 Groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ダリヨーシュ ヴァクショーリ アメリカ合衆国 07076 ニュージャーシ ィ,スコッチ プレインズ,アパートメン ト アール,パーク アヴェニュー 519 (72)発明者 ジョーシ゛ ジョン ヅィクヅィック アメリカ合衆国 07832 ニュージャーシ ィ,コロンビア,ルート 1 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Darijos Vaksholi United States 07076 New Jersey, Scotch Plains, Apartment Men, Park Avenue 519 (72) Inventor Joe John Zickzick United States 07832 New Jersey, Colombia, Root 1

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非直線パラメトリック導波路型分光計
と、該非直線導波路の上に横断的に位置決めされた、細
長い有機体−誘電体導波路とを基板上に含む集積光学装
置であって、 前記非直線導波路は、その隆起ガイドの中央部分の形状
が予め選択された曲率半径を有する円形弓形を形成して
おり、 前記隆起ガイドは、各組における1つの層の構成が当該
組の別の層の構成と異なる、複数組の複合半導体層から
なる多周期構造を有し、 前記有機体−誘電体導波路は、薄い誘電体層に載せた、
有機体材料からなる細長い平板の形状になっており、有
機体材料より低い屈折率を有する誘電体層は、有機体材
料に対して底部クラッド層として作用し、前記有機体材
料の平板は両端部分に45度反射鏡を有し、各反射鏡
は、隆起ガイドと同じ曲率半径を有する円形弓形により
限定され、一方の反射鏡は、前記円形弓形上に載せられ
ると共に前記隆起ガイドから放射する可視放射線の進路
を横切っており、その結果前記放射線は、有機体材料か
らなる平板内にそらされ、平板の反対側の端部ある反射
鏡にぶつかった後、その反射鏡の焦平面から屈折するこ
とを特徴とする集積光学装置。
1. An integrated optical device comprising a non-linear parametric waveguide spectrometer on a substrate, and an elongated organic-dielectric waveguide transversely positioned on the non-linear waveguide. In the non-linear waveguide, the shape of the central portion of the raised guide forms a circular arc shape having a preselected radius of curvature, and the raised guide has a structure in which one layer in each set is different from that of the other set. A multi-periodic structure composed of a plurality of sets of composite semiconductor layers, wherein the organic-dielectric waveguide is placed on a thin dielectric layer.
The dielectric layer, which has a shape of an elongated flat plate made of an organic material and has a lower refractive index than the organic material, acts as a bottom clad layer for the organic material, and the flat plate of the organic material has both end portions. 45 degree reflectors, each reflector being defined by a circular arc having the same radius of curvature as the raised guide, one reflector being mounted on the circular arch and emitting visible radiation from the raised guide. That the radiation is deflected into a flat plate of organic material, hits a mirror at the opposite end of the flat plate, and then refracts from the focal plane of that mirror. Characterized integrated optical device.
【請求項2】 請求項1の装置において、前記隆起ガイ
ドは、GaAs基板上の多周期構造の表面に形成された一組
の溝によって限定され、前記多周期構造はGaAs/AlGaAs
の交互層からなる複数の周期から構成される装置。
2. The apparatus of claim 1, wherein the raised guide is defined by a set of grooves formed in the surface of the multi-periodic structure on a GaAs substrate, the multi-periodic structure being GaAs / AlGaAs.
A device composed of a plurality of cycles of alternating layers of.
【請求項3】 請求項2の装置において、前記組の各々
は、GaAs層と、xが0.7乃至1にわたる場合のAlxGa
1-xAs層からなる装置。
3. The device of claim 2, wherein each of said sets comprises a GaAs layer and Al x Ga when x ranges from 0.7 to 1.
A device consisting of 1-x As layers.
【請求項4】 請求項2の装置において、各層の厚さ
は、隆起ガイドで発生した可視放射線の波長の1/2に
等しい装置。
4. The device of claim 2, wherein the thickness of each layer is equal to one-half the wavelength of visible radiation generated by the raised guide.
【請求項5】 請求項1の装置において、前記有機体材
料製の平板はポリイミドからなる装置。
5. The device according to claim 1, wherein the flat plate made of an organic material is made of polyimide.
【請求項6】 請求項1の装置において、前記誘電体材
料はSiO2からなる装置。
6. The device of claim 1, wherein the dielectric material comprises SiO 2 .
【請求項7】 請求項1の装置において、前記反射鏡は
隆起ガイドの平面に関して同じ方向に45°傾けられ、
その結果前記他方の反射鏡に到達する放射線は基板から
離れて上向き方向に導かれる装置。
7. The apparatus of claim 1, wherein the reflector is tilted 45 ° in the same direction with respect to the plane of the raised guide,
As a result, the radiation arriving at the other reflector is directed away from the substrate in an upward direction.
【請求項8】 請求項1の装置において、平板の反対側
の端部にある反射鏡は、隆起ガイドに載せられた45°
反射鏡の方向と反対方向に45°傾けられ、その結果前
記他方の反射鏡に到達する放射線は基板の方に導かれる
装置。
8. The apparatus of claim 1, wherein the reflector at the opposite end of the plate is mounted on a raised guide at 45 °.
A device that is tilted at 45 ° in the direction opposite to the direction of the reflector so that the radiation reaching the other reflector is directed towards the substrate.
JP5105780A 1992-05-08 1993-05-07 Integrated nonlinear waveguide type spectrometer Withdrawn JPH0634437A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/881,021 US5216727A (en) 1992-05-08 1992-05-08 Integrated nonlinear waveguide spectrometer
US881021 1992-05-08

Publications (1)

Publication Number Publication Date
JPH0634437A true JPH0634437A (en) 1994-02-08

Family

ID=25377616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5105780A Withdrawn JPH0634437A (en) 1992-05-08 1993-05-07 Integrated nonlinear waveguide type spectrometer

Country Status (4)

Country Link
US (1) US5216727A (en)
EP (1) EP0570124B1 (en)
JP (1) JPH0634437A (en)
DE (1) DE69307013T2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177490B2 (en) 2003-03-20 2007-02-13 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide
KR20140029232A (en) * 2012-08-30 2014-03-10 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5317657A (en) * 1992-07-30 1994-05-31 International Business Machines Corporation Extrusion of polymer waveguides onto surfaces
US5866801A (en) * 1993-01-19 1999-02-02 Regents Of The University Of California Universal penetration test apparatus with fluid penetration sensor
US5467639A (en) * 1993-01-19 1995-11-21 Mayo Foundation For Medical Education And Research Universal penetration test apparatus and method
US5633453A (en) * 1993-01-19 1997-05-27 Mayo Foundation For Medical Education And Research Universal penetration test apparatus and method
US5825799A (en) * 1995-05-25 1998-10-20 Northwestern University Microcavity semiconductor laser
US5878070A (en) * 1995-05-25 1999-03-02 Northwestern University Photonic wire microcavity light emitting devices
US5790583A (en) * 1995-05-25 1998-08-04 Northwestern University Photonic-well Microcavity light emitting devices
DE19717015A1 (en) * 1997-04-23 1998-10-29 Inst Mikrotechnik Mainz Gmbh Miniaturized optical component and method for its production
US5960024A (en) 1998-03-30 1999-09-28 Bandwidth Unlimited, Inc. Vertical optical cavities produced with selective area epitaxy
US6760357B1 (en) 1998-04-14 2004-07-06 Bandwidth9 Vertical cavity apparatus with tunnel junction
US6535541B1 (en) 1998-04-14 2003-03-18 Bandwidth 9, Inc Vertical cavity apparatus with tunnel junction
US6493371B1 (en) 1998-04-14 2002-12-10 Bandwidth9, Inc. Vertical cavity apparatus with tunnel junction
US5991326A (en) 1998-04-14 1999-11-23 Bandwidth9, Inc. Lattice-relaxed verticle optical cavities
US6487231B1 (en) 1998-04-14 2002-11-26 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6493372B1 (en) 1998-04-14 2002-12-10 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6493373B1 (en) 1998-04-14 2002-12-10 Bandwidth 9, Inc. Vertical cavity apparatus with tunnel junction
US6487230B1 (en) 1998-04-14 2002-11-26 Bandwidth 9, Inc Vertical cavity apparatus with tunnel junction
DE19841736C2 (en) * 1998-09-11 2000-08-10 Max Planck Gesellschaft Light coupler for broadband radiation in the microwave to infrared range
US6226425B1 (en) 1999-02-24 2001-05-01 Bandwidth9 Flexible optical multiplexer
US6275513B1 (en) 1999-06-04 2001-08-14 Bandwidth 9 Hermetically sealed semiconductor laser device
US6233263B1 (en) 1999-06-04 2001-05-15 Bandwidth9 Monitoring and control assembly for wavelength stabilized optical system
WO2002054120A1 (en) * 2000-12-28 2002-07-11 Keio University Optical signal processing circuit and method of producing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3948583A (en) * 1974-12-09 1976-04-06 Bell Telephone Laboratories, Incorporated Isolation of passive devices and integration with active devices in optical waveguiding circuits
US3978426A (en) * 1975-03-11 1976-08-31 Bell Telephone Laboratories, Incorporated Heterostructure devices including tapered optical couplers
US4611886A (en) * 1983-12-29 1986-09-16 At&T Bell Laboratories Integrated optical circuit package
EP0560412A3 (en) * 1987-03-16 1993-12-08 Siemens Ag Arrangement of optical-integrated spectrometer and method for making the same
FR2633401B1 (en) * 1988-06-24 1990-10-05 Labo Electronique Physique SEMICONDUCTOR DEVICE COMPRISING AN INTEGRATED LIGHT GUIDE WHICH HAS AT LEAST ONE RECLINED AND ONE CURVED PART

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177490B2 (en) 2003-03-20 2007-02-13 Fujitsu Limited Optical waveguide, optical device, and method of manufacturing optical waveguide
KR20140029232A (en) * 2012-08-30 2014-03-10 아반스트레이트 가부시키가이샤 Method and apparatus for making glass sheet

Also Published As

Publication number Publication date
DE69307013D1 (en) 1997-02-13
US5216727A (en) 1993-06-01
DE69307013T2 (en) 1997-07-10
EP0570124A1 (en) 1993-11-18
EP0570124B1 (en) 1997-01-02

Similar Documents

Publication Publication Date Title
JPH0634437A (en) Integrated nonlinear waveguide type spectrometer
US10670782B2 (en) Dispersionless and dispersion-controlled optical dielectric metasurfaces
US5365541A (en) Mirror with photonic band structure
JP6293675B2 (en) Wavelength tunable external cavity laser diode with GRSM for OCT
US6700664B1 (en) Optical channel monitoring device
US6757463B2 (en) Narrowband resonant transmitter
US7460302B2 (en) Dynamic optical devices
US11391866B2 (en) High quality factor non-uniform metasurfaces
US12117606B2 (en) MEMs phased-array for LiDAR applications
US20080285919A1 (en) Curved grating spectrometer with very high wavelength resolution
US8462338B1 (en) Curved grating spectrometer and wavelength multiplexer or demultiplexer with very high wavelength resolution
Zory Laser oscillation in leaky corrugated optical waveguides
US20230280633A1 (en) Free-space Beam Steering Systems, Devices, and Methods
US5111466A (en) Optical multilayer structures for harmonic laser emission
JPH0611750A (en) Optical device and optical scanning device
US20230378720A1 (en) Vertical laser emitter and manufacturing method thereof
US5173915A (en) Semiconductor laser device
KR102503761B1 (en) Metasurface Doublet-integrated Bidirectional grating antenna and beam steering device using the same
US6684003B2 (en) All optical switch for optical integrated circuits
US7091506B2 (en) Semiconductor surface-field emitter for T-ray generation
US20120091550A1 (en) Spectroscopy and spectral imaging methods and apparatus
Armin et al. Compact silicon nitride circular grating reflectors
JP2934535B2 (en) Waveguide type tunable ring laser
KR102614185B1 (en) Polymer optical ic-based laser integrated two-dimensional beam scanner and manufacturing method thereof
US20240192052A1 (en) Method of detecting photons and photon detector arrangement

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000801