JPH06229715A - Three-dimensional coordinate measuring apparatus - Google Patents

Three-dimensional coordinate measuring apparatus

Info

Publication number
JPH06229715A
JPH06229715A JP30803593A JP30803593A JPH06229715A JP H06229715 A JPH06229715 A JP H06229715A JP 30803593 A JP30803593 A JP 30803593A JP 30803593 A JP30803593 A JP 30803593A JP H06229715 A JPH06229715 A JP H06229715A
Authority
JP
Japan
Prior art keywords
light
emitted
staff
dimensional coordinate
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30803593A
Other languages
Japanese (ja)
Other versions
JP3300998B2 (en
Inventor
Kikuo Shimura
菊雄 志村
Haruo Tani
晴夫 谷
Hidekazu Yamamuro
英一 山室
Kenji Taniura
憲治 谷浦
Kou In
江 尹
Yuichi Ohashi
祐一 大橋
Hiroyuki Tsuchikane
裕幸 土金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sokkia Co Ltd
Original Assignee
Sokkia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sokkia Co Ltd filed Critical Sokkia Co Ltd
Priority to JP30803593A priority Critical patent/JP3300998B2/en
Publication of JPH06229715A publication Critical patent/JPH06229715A/en
Application granted granted Critical
Publication of JP3300998B2 publication Critical patent/JP3300998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain highly accurate measurements by providing a main body, a staff, and a processor, calculating the three-dimensional coordinates at the measuring end of the staff abutted on a measuring point based on a detected horizontal angle, and obtaining a signal having high S/N ratio without receiving the light reflected on a reflecting means. CONSTITUTION:Upon rotation of the rotating section 4 of main body 1, lights 5a, 5b transmitted from a light transmitting means 6a are reflected sequentially on the reflecting means, e.g. corner prisms 151-153, of a staff. Reflected lights, corresponding in number to the prisms 151-153, are received by the light receiving section of a light receiving means for the light 5a. On the contrary, the light 5b is reflected sequentially on the prisms 153, 152, 151 in reverse order to the light 5a and received by the light receiving section of a second light receiving means. Horizontal angle is detected instantaneously upon detection of each reflected light and fed to a processor. The processor calculates the position 14 (three-dimensional coordinates) at the measuring end of the staff based on the detected horizontal angle, position of the main body 1, constants in the arrangement of the transmitted lights 5a, 5b, and constants in the arrangement of the prisms 151-153 of the staff.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ある地点の三次元の位
置を測定する三次元座標測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional coordinate measuring device for measuring the three-dimensional position of a point.

【0002】[0002]

【従来の技術】従来、ある地点(目標点)Pの三次元の
位置を測定するために、その目標点Pに対して基準にな
る位置0からの距離Dと基準の方向からの方向角θhお
よび水平面からの高度角θvを測定することにより算出
する方法が実用化されている。概念図を示す図9により
更に詳細に説明すると、基準の位置0にトータルステー
ションを設置し、目標点の鉛直線上のP(x,y,z)
点にコーナープリズムを置き、トータルステーションに
組み込まれている光波距離計によって基準の位置0とコ
ーナープリズム間の距離を求め、トータルステーション
の視準望遠鏡によってコーナープリズムを視準して、ト
ータルステーションに組み込まれているロータリーエン
コーダによって基準の方向からの方向角θhおよび水平
面からの高度角θvを計ることにより、目標点Pの三次
元座標P(x,y,z)が算出される。
2. Description of the Related Art Conventionally, in order to measure a three-dimensional position of a certain point (target point) P, a distance D from a position 0 serving as a reference with respect to the target point P and a direction angle θh from a reference direction. And a method of calculating by measuring the altitude angle θv from the horizontal plane has been put into practical use. This will be described in more detail with reference to FIG. 9 showing a conceptual diagram. A total station is installed at the reference position 0, and P (x, y, z) on the vertical line of the target point is set.
The corner prism is placed at the point, the distance between the reference position 0 and the corner prism is obtained by the optical distance meter incorporated in the total station, the corner prism is collimated by the collimation telescope of the total station, and it is incorporated in the total station. The three-dimensional coordinate P (x, y, z) of the target point P is calculated by measuring the direction angle θh from the reference direction and the altitude angle θv from the horizontal plane by the rotary encoder.

【0003】[0003]

【発明が解決しようとする課題】従来のトータルステー
ションによる方法では、目標点にスタッフを垂直に立
て、トータルステーションの視準望遠鏡でコーナープリ
ズムを視準しなければならないので、取扱いが面倒であ
るとともに時間がかかるという不都合があった。また効
率よく多数の地点の位置を求めるためには、トータルス
テーションを操作し、目標点のコーナープリズムを視準
する人と、コーナープリズムを次の目標点に移動し、ト
ータルステーションの方向へコーナープリズムを向けて
設置する人との最低2人の作業者が必要であり、また目
標点で測定結果を知りたい場合やトータルステーション
側からコーナープリズム側に指示を出したい、あるいは
その逆の場合など、何等かの方法、例えば身ぶり手振り
や別にトランシーバーなどを使用して両者の間で通信す
る必要があった。また、トータルステーションで直接視
準できないような物陰や、コーナープリズムを目標点の
鉛直線上に直接置くことが難しい壁や天井などのような
場所にある目標点の測定は作業上非常に面倒であった。
In the conventional method using the total station, it is necessary to raise the staff vertically to the target point and collimate the corner prism with the collimating telescope of the total station, which is troublesome and time-consuming. There was an inconvenience of this. In addition, in order to efficiently obtain the positions of many points, operate the total station, move the corner prism to the next target point with the person who collimates the corner prism of the target point, and direct the corner prism toward the total station. There is a need for at least two workers with the person who installs it, and when you want to know the measurement result at the target point or want to give an instruction from the total station side to the corner prism side, or vice versa. There was a need to communicate between the two using methods such as gesturing and gesturing or using a separate transceiver. Also, measuring the target point in a place such as a wall or ceiling where it is difficult to place the corner prism directly on the vertical line of the target point, which is difficult to collimate directly at the total station, was very troublesome in work. .

【0004】本発明は、上述のような従来の課題を解決
するためになされたもので、視準望遠鏡でコーナープリ
ズムを視準する必要がなく、且つスタッフを垂直に立て
なくても測定することができる三次元座標測定装置を提
供することを目的とし、また、ただ一人の作業者で測定
を行なうことができ、かつ作業者が測定結果などのデー
タを常にその場で利用できて作業を効率化することがで
きる三次元座標測定装置を提供することを目的とするも
のである。
The present invention has been made in order to solve the above-mentioned conventional problems, and it is not necessary to collimate a corner prism with a collimating telescope, and it is possible to perform measurement without standing the staff vertically. The purpose is to provide a three-dimensional coordinate measuring device capable of performing the measurement, and the measurement can be performed by only one worker, and the worker can always use the data such as the measurement result on the spot to improve the work efficiency. It is an object of the present invention to provide a three-dimensional coordinate measuring device that can be realized.

【0005】又、反射手段にプリズムを用いた場合には
プリズムで反射される光の他、ガラス面で反射される光
や壁等で反射される光を受光するという欠点があるが、
本発明は、受光手段がガラス面等で反射される光を受光
せずS/N比の良い信号を得て、測定精度の高い測定値
を得ることをも目的とする。
Further, when a prism is used as the reflecting means, there is a drawback that in addition to the light reflected by the prism, the light reflected by the glass surface and the light reflected by the wall are received.
Another object of the present invention is to obtain a signal with a high S / N ratio by the light receiving means without receiving light reflected by a glass surface or the like to obtain a measurement value with high measurement accuracy.

【0006】[0006]

【課題を解決するための手段】上記目的の1つを達成す
るためには、請求項1記載の発明は、装置本体とスタッ
フと処理装置とから成り、該装置本体は、鉛直軸回りに
回転する回転部に鉛直軸回りに互いに適当な角度離され
て配置され、第1及び第2の出射光を夫々鉛直軸に対し
て互いに反対方向に適当な角度傾けた平面内で且つ適当
な発散角を持たせて出射させる第1及び第2の送光手段
と、該第1及び第2の送光手段から出射されかつ前記ス
タッフで反射された第1及び第2の出射光を夫々受光し
電気信号に変換する第1及び第2の受光手段と、該第1
及び第2の受光手段が前記第1及び第2の出射光を夫々
受光した瞬間の水平角を検出する水平角検出手段とを具
備し、前記スタッフは、測定地点に押しあてる測定端と
それから所定の間隔をおいて配置された3個以上の反射
手段とを具備し、前記処理装置は、前記装置本体とスタ
ッフのどちらか一方に配設され、前記水平角検出手段で
検出した水平角から測定地点に押しあてたスタッフの測
定端の三次元座標を算出するものであることを特徴と
し、上記目的の他の1つを達成するために請求項2記載
の発明は、前記装置本体は、前記スタッフとの間の通信
を行なう通信手段を有し、前記スタッフは前記装置本体
との通信を行なう通信手段と、前記三次元座標等を表示
する表示装置とを有することを特徴とする。
In order to achieve one of the above-mentioned objects, the invention according to claim 1 comprises an apparatus main body, a staff, and a processing apparatus, and the apparatus main body rotates about a vertical axis. And a divergence angle within a plane in which the first and second emitted light beams are inclined in opposite directions with respect to the vertical axis by appropriate angles with respect to the vertical axis. And first and second light transmitting means for emitting the light, and first and second light emitted from the first and second light transmitting means and reflected by the stuff, respectively, to receive and generate electricity. First and second light receiving means for converting into a signal, and the first
And a second light receiving means, and a horizontal angle detecting means for detecting a horizontal angle at the moment when the first and second emitted lights are received, respectively. And three or more reflecting means arranged at intervals of, the processing device is disposed in either one of the device body and the staff, and is measured from the horizontal angle detected by the horizontal angle detecting device. In order to achieve another one of the above objects, the invention according to claim 2 is characterized in that the device main body is characterized in that the three-dimensional coordinates of the measurement end of the staff pressed against the point are calculated. It is characterized in that it has a communication means for communicating with a staff member, and the staff member has a communication means for communicating with the apparatus body and a display device for displaying the three-dimensional coordinates and the like.

【0007】又、上記目的の他の1つを達成するため
に、請求項11記載の発明は、前記送光手段の射出する
射出光は直線偏光の光であり、前記受光手段に前記直線
偏光の光の偏光面と同じ方向の偏光軸を有する偏光板フ
ィルターを備えた請求項1乃至請求項10記載の三次元
座標測定装置であり、請求項12記載の発明は、前記送
光手段の射出する射出光は直線偏光の光であり、前記反
射手段は前記射出光の偏光面に対して主軸が約45度傾
いた1/4波長板を入射面及び射出面に備え、前記受光
手段は前記射出光の偏光面に対して偏光軸が90度傾い
た偏光板フィルターを備えた請求項1乃至請求項10記
載の三次元座標測定装置であり、請求項13記載の発明
は、前記送光手段の射出する光は円偏光の射出円偏光光
であり、前記反射手段は入射面及び射出面に同じ向きの
主軸を有する1/4波長板を備え、前記受光手段は受光
1/4波長板と偏光フィルターとを備え、前記受光1/
4波長板と前記偏光フィルターとは、前記射出円偏光光
とは逆向きの回転の円偏光光を透過させるように互いに
配置されたことを特徴とする請求項1乃至請求項10記
載の三次元座標測定装置である。
In order to achieve another one of the above objects, the invention according to claim 11 is that the light emitted from the light transmitting means is linearly polarized light, and the light receiving means has the linearly polarized light. The three-dimensional coordinate measuring device according to any one of claims 1 to 10, further comprising a polarizing plate filter having a polarization axis in the same direction as the plane of polarization of the light, and the invention according to claim 12 is the emission of the light transmitting means. The emitted light is linearly polarized light, and the reflecting means includes a quarter-wave plate whose principal axis is inclined about 45 degrees with respect to the polarization plane of the emitted light on the incident surface and the emitting surface, and the light receiving means is The three-dimensional coordinate measuring device according to any one of claims 1 to 10, further comprising a polarizing plate filter having a polarization axis inclined by 90 degrees with respect to a plane of polarization of the emitted light. The light emitted by the circularly polarized light is circularly polarized light. Includes a quarter wave plate having a principal axis in the same direction on the incident and exit surfaces, the light receiving means comprises a polarization filter and the light receiving quarter-wave plate, the light receiving 1 /
11. The three-dimensional structure according to claim 1, wherein the four-wave plate and the polarizing filter are arranged so as to transmit circularly polarized light having a rotation opposite to that of the emitted circularly polarized light. It is a coordinate measuring device.

【0008】[0008]

【作用】請求項1に記載の発明によれば、図1において
装置本体1の回転部4が回転すると、第1及び第2の送
光手段から出射された一対の平面状の出射光5a,5b
は図1に示すように、スタッフ2の反射手段例えば各コ
ーナープリズム151,152,153で順次反射され、
第1の出射光5aに対しては、コーナープリズムの個数
分の回数の反射光が第1の受光手段の受光部に受光され
る。同様に第2の出射光5bに対しては第1の出射光5
aとは逆の順に各コーナープリズム153,152,15
1で反射され第2の受光手段の受光部に受光され、各反
射光が受光された瞬間の水平角が水平角検出手段て検出
され、処理装置に入力される。処理装置は、検出された
水平角、装置本体の位置、第1及び第2の出射光の配置
の定数及びスタッフのコーナープリズムの配置の定数よ
りスタッフの測定端の位置(三次元座標)を計算する。
According to the first aspect of the present invention, when the rotating portion 4 of the apparatus main body 1 rotates in FIG. 1, a pair of plane emission lights 5a emitted from the first and second light transmitting means, 5b
As shown in FIG. 1, the reflection means of the stuff 2, for example, the corner prisms 15 1 , 15 2 and 15 3 are sequentially reflected,
With respect to the first outgoing light 5a, reflected light is received by the light receiving portion of the first light receiving means as many times as the number of corner prisms. Similarly, for the second outgoing light 5b, the first outgoing light 5
Each corner prism 15 3 , 15 2 , 15 in the reverse order of a
The light is reflected by 1 and received by the light receiving portion of the second light receiving means, and the horizontal angle at the moment when each reflected light is received is detected by the horizontal angle detecting means and input to the processing device. The processing device calculates the position (three-dimensional coordinates) of the stuff measurement end from the detected horizontal angle, the position of the device body, the constants of the first and second emitted light positions, and the constants of the stuff corner prisms. To do.

【0009】なお、図1に示すようにスタッフを縦に配
置する場合ばかりでなく、スタッフを横に配置して三次
元座標の測定を行うこともあり、そのときには第1の射
出光5aが各コーナープリズム151,152,153
反射されれば、第2射出光5bもそれと同じ順に反射さ
れる。
Not only when the staffs are arranged vertically as shown in FIG. 1, but also when the staffs are arranged horizontally to measure the three-dimensional coordinates, at that time, the first emitted light 5a is emitted. When reflected by the corner prisms 15 1 , 15 2 , 15 3 , the second emitted light 5b is also reflected in the same order.

【0010】請求項2に記載の発明によれば、計算によ
り得られたスタッフの測定端の三次元座標は通信手段で
スタッフに送られスタッフに配設された表示器に表示さ
れ、あるいは水平角検出手段により検出された水平角が
通信手段によりスタッフに送られ、スタッフに配置され
た処理装置で計算された前記三次元座標は前記表示器に
表示される。
According to the second aspect of the present invention, the three-dimensional coordinates of the measurement end of the staff obtained by the calculation are sent to the staff by the communication means and displayed on the display provided in the staff, or the horizontal angle. The horizontal angle detected by the detection means is sent to the staff by the communication means, and the three-dimensional coordinates calculated by the processing device arranged in the staff are displayed on the display.

【0011】前記処理装置により行なわれる目標点の三
次元座標の計算は、以下のような理論に基づいて行なわ
れる。地図等を作成するための基準となる三次元直交座
標系を測量座標系と呼ぶことにし、目標点の座標はこの
座標で求めるものとする。
The calculation of the three-dimensional coordinates of the target point performed by the processing device is performed based on the following theory. The three-dimensional Cartesian coordinate system, which serves as a reference for creating maps and the like, is called the surveying coordinate system, and the coordinates of the target point are determined by these coordinates.

【0012】その前提として以下の事項が既知であると
する。 a) 測量座標系での装置本体の基準となる点の三次元座
標。装置本体の基準となる点を、一対の出射光の平面と
装置本体の回転軸(鉛直軸)との交点、すなわち、測量
座標系の原点(0,0,0)とする。測量座標系のX軸
は原点を通る東西方向の直線であり、東方向を正とし、
Y軸は原点を通る南北方向の直線であり、北方向を正と
し、Z軸は原点を通る鉛直線であり、上方を正とする。
It is assumed that the following matters are known as its premise. a) Three-dimensional coordinates of the reference point of the device body in the survey coordinate system. The reference point of the apparatus body is defined as the intersection of the plane of the pair of emitted light and the rotation axis (vertical axis) of the apparatus body, that is, the origin (0,0,0) of the survey coordinate system. The X axis of the survey coordinate system is a straight line in the east-west direction that passes through the origin, and the east direction is positive,
The Y axis is a straight line in the north-south direction that passes through the origin, the north direction is positive, and the Z axis is a vertical line that passes through the origin, and the upper side is positive.

【0013】b) 水平角を示すエンコーダの出力が0の
瞬間での前記一対の出射光が形成する2平面の方程式
は、 a0X+b0Y+c0Z=0 (1) d0X+e0Y+f0Z=0 (2) (1)式は第1の送光手段の出射光の平面の方程式であ
り、a0,b0,c0はその係数である。また(2)式は第2
の送光手段の出射光の平面の方程式であり、d0,e0
0はその係数である。
B) The equation of the two planes formed by the pair of emitted lights at the moment when the output of the encoder showing the horizontal angle is 0 is: a 0 X + b 0 Y + c 0 Z = 0 (1) d 0 X + e 0 Y + f 0 Z = 0 (2) (1) is an equation of the plane of the light emitted from the first light transmitting means, and a 0 , b 0 , c 0 are the coefficients thereof. Equation (2) is the second
Is the equation of the plane of the light emitted from the light transmitting means of d 0 , e 0 ,
f 0 is the coefficient.

【0014】c) スタッフ固有の座標系での座標として
与えられた例えば3個のコーナープリズムと測定端の相
対的位置関係。 スタッフ固有の座標系は、スタッフ先端の測定端を原点
[座標値(0,0,0)]とし、この原点と少なくとも
3個のコーナープリズムのうち原点ともっとも離れてい
るコーナープリズムを結ぶ直線をz軸とし、原点より当
該コーナープリズムに向う方向を正とする。原点を通り
z軸に直角でスタッフの前後方向の直線をy軸とし、後
方向を正とするものである。スタッフは目標点に測定端
が押し当てられて固定されているものとする。装置本体
の回転部が回転し、第1及び第2の送光手段から出射す
る一対の光がスタッフのコーナープリズムで反射して第
1及び第2受光手段の受光部で夫々受光された瞬間の水
平角が水平角検出手段で検出されるので、その瞬間の夫
々の光の平面の方程式が水平角を示すエンコーダの出力
が0の時の夫々の平面を夫々の水平角だけ回転した平面
の方程式として得ることができる。すなわち、第1及び
第2の出射光の平面が第j番目のコーナープリズム上に
ある瞬間の平面の方程式は、 ajX+bjY+cjZ=0 (3) djX+ejY+fjZ=0 (4) 第1番目の出射光が第j番目のコーナープリズム上にあ
る瞬間のエンコーダの出力をαjとすると、(3)式中の係
数aj,bj,cjは(1)式中の係数より下記のように計算
される。 aj=a0cos αj+b0sin αj (5) bj=−a0sin αj+b0cos αj (6) cj=c0 (7) 同様に、第2番目の出射光が第j番目のコーナープリズ
ム上にある瞬間のエンコーダの出力をβjとすると、(4)
式中の係数dj,ej,fjは(2)式中の係数より下記のよ
うに計算される。 dj=d0cos βj+e0sin βj (8) ej=−d0sin βj+e0cos βj (9) fj=f0 (10) (3)(4)式の方程式で表される2つの光の平面は、測量座
標系の空間で交差し、その交線は装置本体の基準となる
点(測量座標系の原点0(0,0,0))と該1個のコ
ーナープリズムの光学的な中心を結ぶ直線であり、その
方程式は(3)(4)式で表わされる2つの平面の方程式から
求めることができる。
C) Relative positional relationship between, for example, three corner prisms given as coordinates in the staff-specific coordinate system and the measuring end. The staff-specific coordinate system uses the measurement end at the stuff tip as the origin [coordinate value (0,0,0)], and a straight line connecting this origin and the corner prism farthest from the origin among at least three corner prisms. The z-axis is used, and the direction from the origin toward the corner prism is positive. The straight line in the front-back direction of the stuff that passes through the origin and is perpendicular to the z-axis is the y-axis, and the rear direction is positive. It is assumed that the staff is fixed by pressing the measuring end to the target point. At the moment when the rotating portion of the apparatus body rotates, a pair of light emitted from the first and second light transmitting means is reflected by the corner prism of the staff and received by the light receiving portions of the first and second light receiving means, respectively. Since the horizontal angle is detected by the horizontal angle detecting means, the equation of the plane of each light at that moment indicates the horizontal angle. The equation of the plane obtained by rotating each plane when the output of the encoder is 0 by each horizontal angle. Can be obtained as That is, the equation of the plane at the moment when the planes of the first and second emitted lights are on the j-th corner prism is as follows: ajX + bjY + cjZ = 0 (3) djX + ejY + fjZ = 0 (4) Assuming that the output of the encoder at the moment on the th corner prism is αj, the coefficients aj, bj, cj in the equation (3) are calculated from the coefficients in the equation (1) as follows. aj = a 0 cos αj + b 0 sin αj (5) bj = −a 0 sin αj + b 0 cos αj (6) cj = c 0 (7) Similarly, the second output light is on the jth corner prism. If the encoder output at a certain moment is βj, (4)
The coefficients dj, ej, and fj in the equation are calculated from the coefficients in the equation (2) as follows. dj = d 0 cos βj + e 0 sin βj (8) ej = −d 0 sin βj + e 0 cos βj (9) fj = f 0 (10) Two light planes expressed by the equations (3) and (4) Intersect in the space of the survey coordinate system, and the line of intersection is the point that serves as the reference of the device body (origin 0 (0,0,0) of the survey coordinate system) and the optical center of the one corner prism. It is a straight line that connects, and its equation can be obtained from the equations of the two planes expressed by equations (3) and (4).

【0015】[0015]

【数1】 [Equation 1]

【0016】上記交線の方程式は上式において、lj,
mjおよびnjは直線の方向余弦であり、(5)〜(10)式で
表される係数により下記のように計算される。
The above equation of the intersection line is given by
mj and nj are the direction cosines of a straight line, and are calculated as follows by the coefficients represented by the equations (5) to (10).

【0017】[0017]

【数2】 [Equation 2]

【0018】(3)〜(15)式を3個のコーナープリズムに
適用することにより装置本体の基準となる点と3個のコ
ーナープリズムとを結ぶ直線の方程式(16)(17)(18)を得
る。
By applying the equations (3) to (15) to the three corner prisms, the equations (16), (17) and (18) of the straight line connecting the reference point of the apparatus main body and the three corner prisms To get

【0019】[0019]

【数3】 [Equation 3]

【0020】(16)(17)(18)は第1番目、第2番目及び第
3番目のコーナープリズムの測量座標系における三次元
座標を満足するので、下記の条件式をたてることができ
る。
Since (16), (17) and (18) satisfy the three-dimensional coordinates in the survey coordinate system of the first, second and third corner prisms, the following conditional expressions can be established. .

【0021】[0021]

【数4】 [Equation 4]

【0022】上式中(X1,Y1,Z1)(X2,Y2
2)(X3,Y3,Z3)は、夫々第1番目、第2番目及
び第3番目のコーナープリズムの測量座標系における三
次元座標であり、未知数である。上記3式中には6個の
条件式と9個の未知数が含まれ、このままでは解くこと
ができない。そこで既知である3個のコーナープリズム
間の距離を未知数で表わす下記の3個の条件式を加える
ことにより、未知数で3個のコーナープリズムの測量座
標系における三次元座標を求めることができる。
In the above equation, (X 1 , Y 1 , Z 1 ) (X 2 , Y 2 ,
Z 2 ) (X 3 , Y 3 , Z 3 ) are three-dimensional coordinates in the survey coordinate system of the first, second, and third corner prisms, respectively, and are unknowns. The above three expressions include 6 conditional expressions and 9 unknowns, and cannot be solved as they are. Therefore, by adding the following three conditional expressions that represent the known distances between the three corner prisms with unknowns, the three-dimensional coordinates in the survey coordinate system of the three corner prisms can be obtained with unknowns.

【0023】[0023]

【数5】 [Equation 5]

【0024】(22)(23)(24)式中の(x1,y1,z1
(x2,y2,z2)(x3,y3,z3)は夫々第1番目,
第2番目及び第3番目のコーナープリズムのスタッフ固
有の座標系における三次元座標であり、既知である。
(22) (23) (24) in the equation (x 1 , y 1 , z 1 )
(X 2 , y 2 , z 2 ) (x 3 , y 3 , z 3 ) are the first,
It is a known three-dimensional coordinate in the staff-specific coordinate system of the second and third corner prisms.

【0025】次にスタッフの測定端の測量座標系におけ
る三次元座標を求める。それにはスタッフ固有の座標系
から測量座標系への座標変換の変換係数を求めることが
必要である。変換係数は、3個の回転要素と3個のシフ
ト量とから成り、すでに求まっている3個のコーナープ
リズムの測量座標系での座標と対応するスタッフ固有の
座標系における座標を使って求められる。
Next, the three-dimensional coordinates of the staff at the measurement end in the survey coordinate system are obtained. For that purpose, it is necessary to obtain the conversion coefficient of the coordinate conversion from the staff-specific coordinate system to the survey coordinate system. The conversion coefficient is composed of three rotation elements and three shift amounts, and is calculated using the coordinates in the survey coordinate system of the three corner prisms that have already been calculated and the corresponding coordinates in the staff-specific coordinate system. .

【0026】測量座標とスタッフ座標との関係は、行列
式を使って下記のように表わすことができる。
The relationship between the surveying coordinates and the staff coordinates can be expressed as follows using a determinant.

【0027】[0027]

【数6】 [Equation 6]

【0028】(25)式において(X,Y,Z)および
(x,y,z)はそれぞれ同一点の測量座標系及びスタ
ッフ固有の座標系の座標であり、X0,Y0,Z0はシフ
ト量,κ,ψ,ωは回転角である。コーナープリズムの
スタッフ固有の座標系の座標は既知であり、また測量座
標系の座標も前段階で求まっているから、未知数はシフ
ト量と回転角の6個のパラメータである。
In the equation (25), (X, Y, Z) and (x, y, z) are coordinates of the surveying coordinate system and the staff-specific coordinate system of the same point, respectively, and X 0 , Y 0 , Z 0. Is the shift amount, and κ, ψ, and ω are the rotation angles. Since the coordinates of the coordinate system peculiar to the staff of the corner prism are known, and the coordinates of the surveying coordinate system are also obtained in the previous stage, the unknowns are six parameters of the shift amount and the rotation angle.

【0029】第1番目,第2番目及び第3番目の3個の
コーナープリズムに対して(25)式をたてることにより6
個の未知数を含む9個の条件式ができるので、最小二乗
法等を利用して6個の未知数(X0,Y0,Z0,κ,
ψ,ω)の最適値を求める。
By constructing the equation (25) for the first, second and third three corner prisms, 6
Since nine conditional expressions including unknowns can be made, six unknowns (X 0 , Y 0 , Z 0 , κ,
Find the optimal value of ψ, ω).

【0030】スタッフ先端の測定端のスタッフ固有の座
標系の座標は既知であり、(25)式で表わされる座標変換
式の未知数(X0,Y0,Z0,κ,ψ,ω)はすでに求
まっているので、これを(25)式に代入することによりス
タッフ先端の測定端の測量座標系の座標を計算する。ス
タッフの測定端のスタッフ固有の座標系の座標は前述の
ように(0,0,0)と定義しているので、結果的には
スタッフの測定端の測量座標系の座標はシフト量
(X0,Y0,Z0)と一致する。
The coordinates in the coordinate system peculiar to the staff at the measurement end at the stuff tip are known, and the unknowns (X 0 , Y 0 , Z 0 , κ, ψ, ω) in the coordinate conversion equation expressed by the equation (25) are Since it has already been obtained, by substituting this into Eq. (25), the coordinates of the measuring coordinate system of the measuring end of the staff tip are calculated. The coordinates of the staff-specific coordinate system at the measuring end of the staff are defined as (0, 0, 0) as described above, and as a result, the coordinates of the surveying coordinate system at the measuring end of the staff are the shift amount (X 0 , Y 0 , Z 0 ).

【0031】請求項11記載の発明によれば、受光手段
が備えた偏光板フィルターは送光手段の射出する直線偏
光光の偏光面と同じ方向の偏光軸を有しているので、該
直線偏光光の偏光面とは異なる偏光面を有する光を透過
させない作用を営む。
According to the eleventh aspect of the invention, since the polarizing plate filter provided in the light receiving means has a polarization axis in the same direction as the polarization plane of the linearly polarized light emitted from the light transmitting means, It acts to prevent the transmission of light having a polarization plane different from that of light.

【0032】請求項12の発明によれば、反射手段が備
える、射出光の偏光面に対して主軸が約45度傾いた1
/4波長板は反射光の偏光面の方向を射出光の偏光面の
方向から90度傾ける作用を営み、偏光軸が前記射出光
の偏光面に対して90度傾いた偏光板フィルターは、前
記90度傾いた偏光面を有する反射光とは異なる偏光面
を有する光を透過させない作用を営む。
According to the twelfth aspect of the present invention, the main axis of the reflecting means is inclined about 45 degrees with respect to the plane of polarization of the emitted light.
The / 4 wave plate acts to tilt the direction of the plane of polarization of the reflected light by 90 degrees from the direction of the plane of polarization of the emitted light, and the polarizing plate filter whose polarization axis is tilted 90 degrees with respect to the plane of polarization of the emitted light is It acts to prevent the transmission of light having a polarization plane different from the reflected light having a polarization plane inclined by 90 degrees.

【0033】請求項13記載の発明によれば、前記送光
手段の射出する光は円偏光の射出円偏光光であり、前記
反射手段は入射面及び射出面に同じ向きの主軸を有する
1/4波長板を備えているので、射出手段の射出した射
出円偏光光は、前記1/4波長板を透過して前記反射手
段で反射され、次いで前記1/4波長板の裏面に入射し
てこれを透過すると、例えば右回転の射出円偏光光は左
回転の円偏光光になる等、前記射出円偏光光とは逆向き
の円偏光光となる。前記受光手段は受光1/4波長板と
偏光フィルターとを備え、前記受光1/4波長板と前記
偏光フィルタとは、前記射出円偏光光とは逆向きの回転
の円偏光光を透過させるように互いに配置されているの
で、窓等で反射された前記射出円偏光光と同じ向きの円
偏光光は受光手段に到達しない。
According to the thirteenth aspect of the present invention, the light emitted from the light transmitting means is circularly polarized light which is emitted circularly polarized light, and the reflecting means has the principal axes of the same direction on the incident surface and the exit surface. Since the four-wavelength plate is provided, the emitted circularly polarized light emitted from the emission unit is transmitted through the quarter-wave plate and reflected by the reflection unit, and then enters the back surface of the quarter-wave plate. After passing through this, for example, the right-handed circularly polarized outgoing light becomes the left-handed circularly polarized light, and becomes circularly polarized light in the opposite direction to the outgoing circularly polarized light. The light receiving means includes a light receiving quarter-wave plate and a polarization filter, and the light receiving quarter-wave plate and the polarization filter transmit circularly polarized light having a rotation opposite to that of the emitted circularly polarized light. The circularly polarized light having the same direction as the emitted circularly polarized light reflected by the window or the like does not reach the light receiving means.

【0034】[0034]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1及び2において、1は装置本体,2はスタッフ
である。装置本体1には、図2に示すように鉛直に配置
された回転軸3の回りに回転可能な回転部4が設けら
れ、回転部4には、第1及び第2の出射光5a,5bを
出射する第1及び第2の送光手段6a,6bと第1及び
第2の受光手段7a,7b(図6)と回転軸3の回転角
を検出するエンコーダ、水平角検出回路、処理装置及び
通信装置(図7,図8)と通信手段として電波を使用す
る場合にはアンテナ8が搭載されており、回転部4は適
当な速度で一方向に回転する。
Embodiments of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, 1 is an apparatus main body and 2 is a staff. As shown in FIG. 2, the apparatus body 1 is provided with a rotating portion 4 which is rotatable around a vertically arranged rotating shaft 3, and the rotating portion 4 has first and second emitted lights 5a and 5b. Encoder for detecting the rotation angle of the first and second light transmitting means 6a, 6b for emitting light, the first and second light receiving means 7a, 7b (FIG. 6) and the rotation axis 3, a horizontal angle detection circuit, and a processing device Also, when using radio waves as a communication means with the communication device (FIGS. 7 and 8), the antenna 8 is mounted, and the rotating unit 4 rotates in one direction at an appropriate speed.

【0035】第1及び第2の送光手段6a,6bは、図
3に明示するように、夫々光源9a,9b、コリメータ
レンズ10a,10b及びシリンドリカルリンズ11
a,11bとから成り、光源9a,9bからでた適当な
周波数で強度変調された光がコリメータレンズ10,1
0bによって平行光にされ、シリンドリカルレンズ11
a,11bによって平面状に約90°に発散されて夫々
第1の出射光5a及び第2の出射光5bを出射する。第
1の送光手段6aのコリメータレンズ10aの光軸12
aは略水平に配置され、シリンドリカルレンズ11aの
円筒面の軸はコリメータレンズ10aの光軸12aに直
交しかつ水平に対し約45°傾けられているため、第1
の出射光5aが作る平面は水平に対して約45゜だけ逆
に傾き、発散の中央の方向は略水平になる。第2の送光
手段6bのコリメータレンズ10bの光軸12aはコリ
メータレンズ10aの光軸12aに対して水平面内で約
90°離れ、かつシリンドリカルレンズ11bの軸はシ
リンドリカルレンズ11aと反対の方向に水平に対して
約45°傾けられているため、第1の出射光5a及び第
2の出射光5bが作る平面は2つのコリメータレンズ1
0a,10bの光軸12a,12bの中央の方向に対し
て対称の位置関係を呈し、逆ハの字型を呈している。第
1及び第2の出射光5a,5bの発散角及びアライメン
トの角度は45°,90°に限定する必要はなく、これ
らの光が交差しないように角度を決める。第1及び第2
の受光手段7a,7bの受光部13a,13bは、図4
に示すように、夫々第1及び第2のシリンドリカルレン
ズ11a,11bの中心からコーナープリズム(後述)
の有効径以内の距離Lで、第1及び第2の出射光5a,
5bが形成する平面内に配置される。かくして第1及び
第2の出射光5a,5bが形成する面がコーナープリズ
ムの光学的中心を通過した時、第1送光手段6a,コー
ナープリズム及び第1の受光手段7aの受光部13aと
第2送光手段6b,コーナープリズム及び第2の受光手
段7bの受光部13bが夫々同一平面内に位置され、そ
の時の希望する水平角を検出することができる。
As shown in FIG. 3, the first and second light transmitting means 6a and 6b respectively include light sources 9a and 9b, collimator lenses 10a and 10b, and a cylindrical rinse 11 respectively.
a and 11b, and the light intensity-modulated from the light sources 9a and 9b at an appropriate frequency is collimator lenses 10 and 1
0b makes parallel light, and the cylindrical lens 11
The first and second outgoing lights 5a and 5b are respectively diverged by about 90 degrees in a plane by a and 11b. The optical axis 12 of the collimator lens 10a of the first light transmitting means 6a
a is arranged substantially horizontally, and the axis of the cylindrical surface of the cylindrical lens 11a is orthogonal to the optical axis 12a of the collimator lens 10a and is inclined by about 45 ° with respect to the horizontal.
The plane formed by the emitted light 5a is inclined by about 45 ° with respect to the horizontal, and the direction of the center of divergence is substantially horizontal. The optical axis 12a of the collimator lens 10b of the second light transmitting means 6b is separated from the optical axis 12a of the collimator lens 10a by about 90 ° in the horizontal plane, and the axis of the cylindrical lens 11b is horizontal in the direction opposite to the cylindrical lens 11a. The plane formed by the first emitted light 5a and the second emitted light 5b is inclined by about 45 ° with respect to the two collimator lenses 1
It has a symmetrical positional relationship with respect to the central direction of the optical axes 12a and 12b of 0a and 10b, and has an inverted C-shape. The angles of divergence and alignment of the first and second emitted lights 5a and 5b do not need to be limited to 45 ° and 90 °, and the angles are determined so that these lights do not intersect. First and second
The light receiving portions 13a and 13b of the light receiving means 7a and 7b of FIG.
As shown in, corner prisms (described later) from the centers of the first and second cylindrical lenses 11a and 11b, respectively.
At a distance L within the effective diameter of the first and second emitted lights 5a,
It is arranged in the plane formed by 5b. Thus, when the surfaces formed by the first and second emitted lights 5a and 5b pass through the optical center of the corner prism, the first light sending means 6a, the corner prism and the light receiving portion 13a of the first light receiving means 7a The two light sending means 6b, the corner prism, and the light receiving portion 13b of the second light receiving means 7b are located in the same plane, and the desired horizontal angle at that time can be detected.

【0036】スタッフ2は、図5に示すように適当な長
さを有し、一端(測定端)14で目標点を指示できるよ
うに尖った形状になっている。スタッフ2には、例えば
3個のコーナープリズム151,152,153が固設さ
れ、コーナープリズム152はコーナープリズム151
152を結ぶ直線から僅か偏位されている。このように
コーナープリズム152を僅かに偏位させると、スタッ
フ2の前記直線回りの回転に起因する測定誤差を消去す
ることができ、また端部が曲がっているスタッフの一端
(測定端)の座標を計測する場合に都合がよい。また、
コーナープリズム151と152間と、コーナープリズム
152と153間の距離が異なるように配置されている。
コーナープリズム151,152,153を不等間隔に配
置すると、検出された水平角からスタッフ2の一端が上
方にあるのかあるいは下方にあるのかを判別することが
できる。測定端14からコーナープリズム153までの
長さは使用し易い適当な長さにする。スタッフ2の上部
には、通信手段として例えば電波を使用した場合、アン
テナ16が取付けられ、スタッフ2のコーナープリズム
151,152,153の設置面とは反対面には表示器
(図7,図8)を装着し、通信装置(図7,図8)を内
蔵するケース18が取付けられる。
The staff 2 has an appropriate length as shown in FIG. 5, and has a sharp shape so that a target point can be indicated at one end (measurement end) 14. For example, three corner prisms 15 1 , 15 2 , 15 3 are fixedly provided on the staff 2, and the corner prism 15 2 is slightly deviated from the straight line connecting the corner prisms 15 1 and 15 2 . By slightly displacing the corner prism 15 2 in this way, the measurement error caused by the rotation of the stuff 2 around the straight line can be eliminated, and the end of the stuff having a bent end (measurement end) can be eliminated. This is convenient when measuring coordinates. Also,
The distance between the corner prisms 15 1 and 15 2 and the distance between the corner prisms 15 2 and 15 3 are different.
By arranging the corner prisms 15 1 , 15 2 and 15 3 at unequal intervals, it is possible to determine from the detected horizontal angle whether one end of the stuff 2 is above or below. The length from the measurement end 14 to the corner prism 15 3 is set to an appropriate length that is easy to use. An antenna 16 is attached to the upper part of the staff 2 when, for example, a radio wave is used as a communication means, and an indicator (Fig. 7) is provided on the surface opposite to the installation surface of the corner prisms 15 1 , 15 2 and 15 3 of the staff 2. , FIG. 8), and a case 18 having a built-in communication device (FIGS. 7, 8) is attached.

【0037】前記第1及び第2の受光手段7a,7b
は、図6に示すように、受光素子から成る受光部13
a,13bが、増幅器19,検波回路20及びハイパス
フイルタ21を介してコンパレータ22に接続されて構
成されている。この構成によれば、受光された光から電
気信号パルスが得られる。ハイパスフイルタ21のカッ
トオフ周波数は、コーナープリズム151,152,15
3からの反射光のうちで最もパルス幅の大きい最短使用
距離での反射光による受信信号の持つ周波数帯域以上を
通過させるように設定され、その周波数より低い壁など
での反射による不要光の信号をカットするから、コンパ
レータ22からコーナープリズムからの反射光による受
信信号のみ得られる。
The first and second light receiving means 7a, 7b
Is, as shown in FIG.
a and 13b are connected to a comparator 22 via an amplifier 19, a detection circuit 20 and a high pass filter 21. According to this structure, an electric signal pulse can be obtained from the received light. The cut-off frequency of the high-pass filter 21 is the corner prisms 15 1 , 15 2 , 15
Of the reflected light from 3 , the reflected light at the shortest use distance with the largest pulse width is set to pass the frequency band of the received signal or higher, and the signal of unnecessary light due to reflection on a wall lower than that frequency Therefore, only the received signal due to the reflected light from the corner prism is obtained from the comparator 22.

【0038】スタッフ2は、測定時にコーナープリズム
151,152,153がおよそ装置本体1の方向に向い
ていれば、どのような傾きで目標点に接していてもよ
く、例としてスタッフ2が測定端14を下にしておよそ
鉛直に立てられている場合について説明する。装置本体
1の回転部4が回転し、第1の出射光5aがまずコーナ
ープリズム151に入射し、第1の受光部13aに反射
光を返す。同様に第1の出射光5aは順次コーナープリ
ズム152,153に入射し、第1の受光部13aに反射
光を返す。次に、第2の出射光5bがコーナープリズム
153,152,151の順に入射し、第2の受光部13
bに反射光を返す。第1及び第2の受光部13a,13
bには夫々3回の反射光が入力し、コンパレータ23か
ら夫々3個の電気信号パルス、合計で6個の電気信号パ
ルスが出力し、この電気信号パルスが図7に示すように
水平角検出回路23に入力する。エンコーダ24が接続
された水平角検出回路23は、各電気信号パルスが入力
した瞬間にエンコーダ24の出力を読み取って処理装置
25に入力する。処理装置は25は、予め、装置本体1
の位置、出射光の配置の定数およびスタッフ2の測定端
14に対するコーナープリズム151,152,153
配置の定数が入力されているので、これらと入力された
6個の水平角の値からスタッフ2の測定端14の三次元
座標を計算する。測定値は、処理装置25に接続された
通信装置26のアンテナ8からスタッフ2に送出され、
スタッフ2のアンテナ27、通信装置28を経て表示器
29に表示される。
The staff 2 may be in contact with the target point at any inclination as long as the corner prisms 15 1 , 15 2 and 15 3 are oriented in the direction of the apparatus main body 1 at the time of measurement. A case will be described in which the measurement end 14 is placed vertically with the measurement end 14 facing downward. Rotating the rotation part 4 of the apparatus main body 1, a first outgoing light 5a is first incident on the corner prisms 15 1 and returns the reflected light to the first light receiving portion 13a. Similarly, the first emitted light 5a sequentially enters the corner prisms 15 2 and 15 3 and returns reflected light to the first light receiving portion 13a. Next, the second outgoing light 5b enters the corner prisms 15 3 , 15 2 and 15 1 in this order, and the second light receiving portion 13
Return the reflected light to b. First and second light receiving portions 13a, 13
Reflected light is input three times to each of b, and three electric signal pulses are output from the comparator 23, six electric signal pulses in total, and the electric signal pulses are detected as shown in FIG. Input to the circuit 23. The horizontal angle detection circuit 23 to which the encoder 24 is connected reads the output of the encoder 24 at the moment when each electric signal pulse is input and inputs the output to the processing device 25. The processing device 25 is the device body 1 in advance.
, The arrangement constant of the emitted light and the arrangement constants of the corner prisms 15 1 , 15 2 and 15 3 with respect to the measurement end 14 of the stuff 2 are input, and these values of the six horizontal angles input Then, the three-dimensional coordinates of the measuring end 14 of the staff 2 are calculated. The measured value is sent to the staff 2 from the antenna 8 of the communication device 26 connected to the processing device 25,
It is displayed on the display 29 via the antenna 27 of the staff 2 and the communication device 28.

【0039】前記通信装置26,28は搬送破に電波を
使用したが、光を使用したものでも差し支えない。前記
実施例では、処理装置25は装置本体1に設けたが、図
8に示すようにスタッフ2側に設けてもよく、この場合
には、装置本体1に設けた水平角検出回路23で検出し
た6個の水平角を装置本体1からスタッフ2側に転送し
て処理装置25に入力させ、処理装置25で測定端14
の三次元座標を計算させ表示器29に表示させる。
Although the communication devices 26 and 28 use radio waves to break the carrier, they may use light. In the above embodiment, the processing device 25 is provided in the device body 1, but it may be provided in the staff 2 side as shown in FIG. 8. In this case, the horizontal angle detection circuit 23 provided in the device body 1 detects The six horizontal angles are transferred from the device main body 1 to the staff 2 side and input to the processing device 25.
The three-dimensional coordinate of is calculated and displayed on the display unit 29.

【0040】この実施例では、処理装置25は前記スタ
ッフ2のケース18に内蔵されるが、処理装置25を本
体との通信装置28及び表示装置29と一体に構成し、
携帯できるようにしてもよい。
In this embodiment, the processing device 25 is built in the case 18 of the staff 2, but the processing device 25 is integrated with the communication device 28 for communicating with the main body and the display device 29.
It may be portable.

【0041】又、この実施例において、図10で示す様
に、第1の射出光50a及び第2の射出光50bは偏光
板42を透過して直線偏光の光となり、受光手段7aは
偏光板フィルター43を透過した入射光を受光するもの
であってもよい。偏光素子43の偏光軸を、偏光板42
により直線偏光された射出光の偏光面の方向と等しく配
置しておけば、壁などで反射されたランダムな偏光面を
有している光が入射しても、そのような光の光量は前記
偏光素子43で約半分に減衰され、S/N比の良い信号
を得ることができる。該偏光手段42は、光源9aとコ
リメーターレンズ41の間、コリメーターレンズ41と
シリンドリカルレンズ11aの間、又はシリンドリカル
レンズ11aとコーナープリズム151の間のいずれの
位置に置いてもよいが、偏光効率が最も高いのはコリメ
ーターレンズ41とシリンドリカルレンズ11aの間に
置いた場合である。なお、該偏光手段42には、偏光板
の他、光学薄膜による偏光ビームスプリッターやグラン
ティラープリズム、グラントムソンプリズムなどの各種
の偏光プリズムを用いることができ、いずれを用いた場
合にも該偏光手段42が射出光の偏光軸の向きを決定す
ることとなる。
Further, in this embodiment, as shown in FIG. 10, the first emitted light 50a and the second emitted light 50b pass through the polarizing plate 42 to become linearly polarized light, and the light receiving means 7a is the polarizing plate. It may receive incident light that has passed through the filter 43. The polarization axis of the polarization element 43 is set to the polarization plate 42.
By arranging in the same direction as the direction of the plane of polarization of the emitted light linearly polarized by, even if light having a random plane of polarization reflected by a wall or the like enters, the amount of such light is A signal having a good S / N ratio can be obtained by being attenuated by about half by the polarization element 43. The polarization means 42 may be placed at any position between the light source 9a and the collimator lens 41, between the collimator lens 41 and the cylindrical lens 11a, or between the cylindrical lens 11a and the corner prism 15 1. The highest efficiency is obtained when it is placed between the collimator lens 41 and the cylindrical lens 11a. In addition to the polarizing plate, various polarizing prisms such as a polarizing beam splitter using an optical thin film, a Glan-Tiller prism, and a Glan-Thompson prism can be used as the polarizing means 42. In any case, the polarizing means is used. 42 determines the direction of the polarization axis of the emitted light.

【0042】更に、前記反射手段にコーナープリズムを
用い、前記射出光の偏光面に対して主軸が約45度傾い
た1/4波長板52を入射面及び射出面に配置しておけ
ば、図10に示す様に、光源9aから射出された光はコ
リメーターレンズ41を介し、偏光手段42で直線偏光
の光にされてシリンドリカルレンズ11aにより平面光
である射出直線偏光光51にされる。該射出直線偏光光
51は、その偏光軸に対して主軸が約45度傾いた1/
4波長板52を透過して円偏光光53となり、該円偏光
光53はコーナープリズム151で反射されて再度1/
4波長板52を透過して、前記射出直線偏光光51とは
偏光軸が90度傾いた入射直線偏光光54となる。偏光
板フィルター43の偏光軸は前記射出直線偏光光51の
偏光面と90度傾いている。前記入射直線偏光光54は
偏光板フィルター43を透過して受光手段7aに入射す
る。偏光板フィルター43は射出直線偏光光51とは偏
光軸が90度傾いた光のみを透過するので、壁で反射さ
れた反射光の様にランダムな偏光面を有する光は偏光素
子43を透過する光量が減少する。又、ガラス面やプリ
ズムからの反射光は偏光素子43を透過せず、受光素子
7aの受光する信号のS/N比をいっそう向上させるこ
とができる。
Further, if a corner prism is used as the reflecting means and a quarter wave plate 52 whose main axis is inclined by about 45 degrees with respect to the plane of polarization of the emitted light is arranged on the incident surface and the exit surface, As shown in FIG. 10, the light emitted from the light source 9a passes through the collimator lens 41, is converted into linearly polarized light by the polarization means 42, and is converted into plane-emitted linearly polarized light 51 by the cylindrical lens 11a. The emitted linearly polarized light 51 has a main axis tilted by about 45 degrees with respect to the polarization axis thereof.
Circularly polarized light 53 is transmitted through the four-wave plate 52, and the circularly polarized light 53 is reflected by the corner prism 15 1 and again becomes 1 /
After passing through the four-wave plate 52, the emitted linearly polarized light 51 becomes incident linearly polarized light 54 having a polarization axis inclined by 90 degrees. The polarization axis of the polarizing plate filter 43 is tilted by 90 degrees with respect to the polarization plane of the emitted linearly polarized light 51. The incident linearly polarized light 54 passes through the polarizing plate filter 43 and enters the light receiving means 7a. Since the polarizing plate filter 43 transmits only the light whose polarization axis is inclined by 90 degrees with respect to the emitted linearly polarized light 51, the light having a random polarization plane like the reflected light reflected by the wall passes through the polarizing element 43. The amount of light decreases. Further, the reflected light from the glass surface or the prism does not pass through the polarizing element 43, and the S / N ratio of the signal received by the light receiving element 7a can be further improved.

【0043】図11は本発明の他の実施例であり、第1
の射出光50a及び第2の射出光50bはコリメーター
レンズを透過後、偏光板42と該偏光板42の偏光軸と
は主軸が45度又は−45度傾いた送光1/4波長板6
1を透過して円偏光の光となりシリンドリカルレンズ1
1a又は11bにより、平面光である射出円偏光光62
となる。該射出円偏光光62は反射1/4波長板52を
透過して直線偏光光63となりコーナープリズム151
で反射されて反射1/4波長板52を前記射出円偏光光
62が入射した面と反対の面から再度透過して反射円偏
光光64になる。この様に射出円偏光光62が同一の1
/4波長板を表と裏から2度透過する結果、反射円偏光
光64の回転は射出円偏光光62の回転とは逆向きとな
る。
FIG. 11 shows another embodiment of the present invention.
The outgoing light 50a and the second outgoing light 50b are transmitted through the collimator lens, and then, the polarizing plate 42 and the polarization axis of the polarizing plate 42 have a principal axis inclined by 45 degrees or -45 degrees.
Cylindrical lens 1
1a or 11b allows exit circularly polarized light 62 that is plane light.
Becomes The emitted circularly polarized light 62 passes through the reflection quarter-wave plate 52 to become linearly polarized light 63, and the corner prism 15 1
The reflected circularly polarized light 64 is again transmitted through the reflected quarter-wave plate 52 from the surface opposite to the surface on which the emitted circularly polarized light 62 is incident, and becomes reflected circularly polarized light 64. In this way, the emitted circularly polarized light 62 is
As a result of being transmitted through the / 4 wavelength plate twice from the front and back, the rotation of the reflected circularly polarized light 64 is opposite to the rotation of the outgoing circularly polarized light 62.

【0044】反射円偏光光64は受光1/4波長板65
を透過して入射直線偏光光66となる。偏光板フィルタ
ー43の偏光軸は、該入射直線偏光光66の偏光面と同
じ向きに配置されており、該入射直線偏光光66は前記
偏光板フィルター43を透過して受光手段7a又は7b
に入射する。
The reflected circularly polarized light 64 receives the 1/4 wavelength plate 65.
To be incident linearly polarized light 66. The polarization axis of the polarizing plate filter 43 is arranged in the same direction as the plane of polarization of the incident linearly polarized light 66, and the incident linearly polarized light 66 is transmitted through the polarizing plate filter 43 and the light receiving means 7a or 7b.
Incident on.

【0045】この場合にも射出光が直線偏光光であった
場合と同様に、壁などで反射されたランダムな偏光面を
有している光が入射しても、そのような光の光量は前記
偏光素子43で約半分に減衰される。又、ガラス面や鏡
などから反射された光の偏光面の回転は入射円偏光光6
2の回転が保存される結果、反射円偏光光64とは逆向
きの回転であるため受光1/4波長板65を透過した光
は前記入射直線偏光光66の偏光面とは90度傾いた偏
光面を有する直線偏光光となるため、偏光板フィルター
43を透過することができない。従ってS/N比の良い
信号を得ることができる。
Also in this case, as in the case where the emitted light is linearly polarized light, even if light having a random plane of polarization reflected by a wall or the like enters, the amount of such light is It is attenuated to about half by the polarizing element 43. Also, the rotation of the plane of polarization of the light reflected from the glass surface, the mirror, etc. is determined by the incident circularly polarized light 6
As a result of the preservation of the rotation of 2, the light transmitted through the received quarter-wave plate 65 is inclined by 90 degrees with respect to the polarization plane of the incident linearly polarized light 66 because the rotation is opposite to that of the reflected circularly polarized light 64. Since the light is linearly polarized light having a polarization plane, it cannot pass through the polarizing plate filter 43. Therefore, a signal with a good S / N ratio can be obtained.

【0046】[0046]

【発明の効果】請求項1記載の発明の構成によれば、測
点の座標測定の操作は従来の方法のように望遠鏡で目標
点を視準する必要がなく、また測定端を目標点に押し当
てるだけでスタッフはどちらに傾いてもよいので、取り
扱いが簡単であると共に、目標点が物陰にある場合、天
井、壁など従来の方法では非常に測定するのが面倒な場
合でも簡単に測定を行なうことができ、特に多数の地点
の測定には測定作業が効率よく行なえる効果がある。請
求項2記載の発明の構成によれば、一人の作業者が測定
が行なえ且つ測定結果を作業者がリアルタイムで利用で
きるという効果がある。
According to the configuration of the invention described in claim 1, it is not necessary to collimate the target point with the telescope in the operation of measuring the coordinate of the measuring point unlike the conventional method, and the measuring end is set to the target point. Since the staff can lean to either side just by pressing it, it is easy to handle, and even when the target point is behind the object, it is easy to measure even if the conventional method such as the ceiling or wall is very troublesome to measure. It is possible to perform the measurement work, and particularly the measurement work at a large number of points has an effect that the measurement work can be efficiently performed. According to the configuration of the second aspect of the invention, there is an effect that one worker can perform measurement and the worker can use the measurement result in real time.

【0047】又、請求項11、請求項12、又は請求項
13記載の発明の構成によれば、S/N比の良い信号を
得ることができ、精度の高い測定値を得ることができ
る。
According to the eleventh, twelfth, or thirteenth aspect of the present invention, a signal with a good S / N ratio can be obtained, and a highly accurate measured value can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 配置状態を示す本発明の一実施例の斜視図FIG. 1 is a perspective view of an embodiment of the present invention showing an arrangement state.

【図2】 上記実施例の装置本体の要部の構成を説明す
る斜視図
FIG. 2 is a perspective view illustrating a configuration of a main part of the apparatus body of the above-described embodiment.

【図3】 (A),(B)は上記実施例の送光手段の平面図及
び側面図
3A and 3B are a plan view and a side view of the light transmitting means of the above embodiment.

【図4】 上記実施例の受光部とシリンドリカルレンズ
との関係を示す説明図
FIG. 4 is an explanatory view showing the relationship between the light receiving portion and the cylindrical lens of the above-mentioned embodiment.

【図5】 上記実施例のスタッフの斜視図FIG. 5 is a perspective view of the staff of the above embodiment.

【図6】 上記実施例の受光手段のブロック図FIG. 6 is a block diagram of the light receiving means of the above embodiment.

【図7】 上記実施例のブロック図FIG. 7 is a block diagram of the above embodiment.

【図8】 他の実施例のブロック図FIG. 8 is a block diagram of another embodiment.

【図9】 従来の三次元座標測量方法の説明図FIG. 9 is an explanatory diagram of a conventional three-dimensional coordinate surveying method.

【図10】 他の実施例のブロック図FIG. 10 is a block diagram of another embodiment.

【図11】 他の実施例のブロック図FIG. 11 is a block diagram of another embodiment.

【符号の説明】[Explanation of symbols]

1 装置本体 2 スタッフ 3 回転軸 4 回転部 5a,5b 第1及び第2の出射光 6a,6b 第1及び第2の送光手段 7a,7b 第1及び第2の受光手段 9a,9b
光源 11a,11b シリンドリカルレンズ 13a,13
b 受光部 14 一端(測定端) 151,152,153 コーナープリズム 17 表示器 18 通信装
置 21 ハイパスフィルタ 23 水平角
検出回路 24 エンコーダ 25 処理装
置 26,28 通信装置 29
表示器 52 1/4波長板 43 偏光板
フィルター 62 射出円偏光光 65 受光1
/4波長板
DESCRIPTION OF SYMBOLS 1 Device main body 2 Staff 3 Rotating shaft 4 Rotating part 5a, 5b 1st and 2nd emitted light 6a, 6b 1st and 2nd light transmission means 7a, 7b 1st and 2nd light receiving means 9a, 9b
Light source 11a, 11b Cylindrical lens 13a, 13
b Light-receiving part 14 One end (measurement end) 15 1 , 15 2 , 15 3 Corner prism 17 Display 18 Communication device 21 High-pass filter 23 Horizontal angle detection circuit 24 Encoder 25 Processing device 26, 28 Communication device 29
Indicator 52 1/4 wave plate 43 Polarizing plate filter 62 Emitted circularly polarized light 65 Light receiving 1
/ 4 wave plate

フロントページの続き (72)発明者 谷浦 憲治 神奈川県厚木市長谷字柳町260−63 株式 会社ソキア厚木工場内 (72)発明者 尹 江 神奈川県厚木市長谷字柳町260−63 株式 会社ソキア厚木工場内 (72)発明者 大橋 祐一 神奈川県厚木市長谷字柳町260−63 株式 会社ソキア厚木工場内 (72)発明者 土金 裕幸 神奈川県厚木市長谷字柳町260−63 株式 会社ソキア厚木工場内Front page continued (72) Inventor Kenji Taniura 260-63 Yanagimachi, Hase, Atsugi, Kanagawa Prefecture, Sokia Atsugi Plant, Inc. (72) Inventor Yuichi Ohashi 260-63 Yanagicho, Hase, Atsugi, Kanagawa Prefecture Sokia Atsugi Plant Co., Ltd. (72) Inventor Hiroyuki Dokin 260-63, Hase, Atsugi, Atsugi City, Kanagawa Prefecture

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 装置本体とスタッフと処理装置とから成
り、該装置本体は、鉛直軸回りに回転する回転部に鉛直
軸回りに互いに適当な角度離されて配置され、第1及び
第2の出射光を夫々鉛直軸に対して互いに反対方向に適
当な角度傾けた平面内で且つ適当な発散角を持たせて出
射させる第1及び第2の送光手段と、該第1及び第2の
送光手段から出射されかつ前記スタッフで反射された第
1及び第2の出射光を夫々受光し電気信号に変換する第
1及び第2の受光手段と、該第1及び第2の受光手段が
前記第1及び第2の出射光を夫々受光した瞬間の水平角
を検出する水平角検出手段とを具備し、前記スタッフ
は、測定地点に押しあてる測定端とそれから所定の間隔
をおいて配置された3個以上の反射手段とを具備し、前
記処理装置は、前記装置本体とスタッフのどちらか一方
に配設され、前記水平角検出手段で検出した水平角から
測定地点に押しあてたスタッフの測定端の三次元座標を
算出するものであることを特徴とする三次元座標測定装
置。
1. A main body of an apparatus, a staff, and a processing unit, the main body of the apparatus being disposed on a rotating portion that rotates about a vertical axis and spaced apart from each other by an appropriate angle around the vertical axis. First and second light transmitting means for emitting the emitted light in planes inclined respectively in opposite directions with respect to the vertical axis and with an appropriate divergence angle, and the first and second light transmitting means. The first and second light receiving means for respectively receiving the first and second emitted light emitted from the light transmitting means and reflected by the stuff and converting it into an electric signal, and the first and second light receiving means A horizontal angle detecting means for detecting a horizontal angle at the moment when each of the first and second emitted lights is received, and the staff is arranged at a predetermined distance from the measuring end to be pressed against the measuring point. And three or more reflecting means, wherein the processing device is It is arranged on either one of the main body and the staff, and calculates the three-dimensional coordinates of the measuring end of the staff pressed against the measuring point from the horizontal angle detected by the horizontal angle detecting means. Original coordinate measuring device.
【請求項2】 前記装置本体は、前記スタッフとの間の
通信を行なう通信手段を有し、前記スタッフは前記装置
本体との通信を行なう通信手段と、前記三次元座標等を
表示する表示装置とを有することを特徴とする請求項1
記載の三次元座標測定装置。
2. The apparatus main body has communication means for communicating with the staff, and the staff communicates with the apparatus main body, and a display device for displaying the three-dimensional coordinates and the like. 2. The method according to claim 1, further comprising:
The three-dimensional coordinate measuring device described.
【請求項3】 3個以上の前記反射手段を直線上に配置
し、その内の少なくとも1個のコーナープリズムを該直
線上から偏位させて配置したことを特徴とする請求項1
又は請求項2記載の三次元座標測定装置。
3. The three or more reflecting means are arranged on a straight line, and at least one corner prism among them is arranged so as to be deviated from the straight line.
Alternatively, the three-dimensional coordinate measuring device according to claim 2.
【請求項4】 3個以上の前記反射手段のうち、少なく
とも1個の反射手段を不等間隔に配置したことを特徴と
する請求項1,請求項2又は請求項3記載の三次元座標
測定装置。
4. The three-dimensional coordinate measurement according to claim 1, wherein at least one of the three or more reflecting means is arranged at unequal intervals. apparatus.
【請求項5】 前記反射手段はコーナープリズムである
ことを特徴とする請求項1乃至請求項4記載の三次元座
標測定装置。
5. The three-dimensional coordinate measuring device according to claim 1, wherein the reflecting means is a corner prism.
【請求項6】 前記受光手段の受光部を出射光が形成す
る平面内で且つ送光手段の近傍に配置したことを特徴と
する請求項1乃至請求項5記載の三次元座標測定装置。
6. The three-dimensional coordinate measuring device according to claim 1, wherein the light receiving portion of the light receiving means is arranged in a plane formed by the emitted light and near the light sending means.
【請求項7】 前記通信手段に電波を使用したことを特
徴とする請求項2乃至請求項6記載の三次元座標測定装
置。
7. The three-dimensional coordinate measuring device according to claim 2, wherein a radio wave is used for the communication means.
【請求項8】 前記通信手段に光波を使用したことを特
徴とする請求項2乃至請求項6記載の三次元座標測定装
置。
8. The three-dimensional coordinate measuring device according to claim 2, wherein a light wave is used for the communication means.
【請求項9】 前記処理手段と、装置本体との通信手段
と、前記表示装置とを一体にして携帯自在としたことを
特徴とする請求項2乃至請求項8記載の三次元座標測定
装置。
9. The three-dimensional coordinate measuring device according to claim 2, wherein the processing means, the communication means for communicating with the apparatus main body, and the display device are integrally portable.
【請求項10】 前記受光手段の電気回路は不要な反射
光の信号を除去するためのハイパスフィルタを有するこ
とを特徴とする請求項1乃至9記載の三次元座標測定装
置。
10. The three-dimensional coordinate measuring device according to claim 1, wherein the electric circuit of the light receiving means has a high-pass filter for removing an unnecessary reflected light signal.
【請求項11】 前記送光手段の射出する射出光は直線
偏光の光であり、前記受光手段に前記直線偏光の光の偏
光面と同じ方向の偏光軸を有する偏光板フィルターを備
えたことを特徴とする請求項1乃至請求項10記載の三
次元座標測定装置。
11. The emitted light emitted from the light transmitting means is linearly polarized light, and the light receiving means is provided with a polarizing plate filter having a polarization axis in the same direction as the plane of polarization of the linearly polarized light. The three-dimensional coordinate measuring device according to any one of claims 1 to 10.
【請求項12】 前記送光手段の射出する射出光は直線
偏光の光であり、前記反射手段は前記射出光の偏光面に
対して主軸が約45度傾いた1/4波長板を入射面及び
射出面に備え、前記受光手段は前記射出光の偏光面に対
して偏光軸が90度傾いた偏光板フィルターを備えたこ
とを特徴とする請求項1乃至請求項10記載の三次元座
標測定装置。
12. The outgoing light emitted from the light sending means is linearly polarized light, and the reflecting means uses a quarter wave plate whose principal axis is inclined about 45 degrees with respect to the polarization plane of the outgoing light. 11. The three-dimensional coordinate measurement according to claim 1, wherein the light receiving means includes a polarizing plate filter having a polarization axis inclined by 90 degrees with respect to a polarization plane of the emitted light. apparatus.
【請求項13】 前記送光手段の射出する光は円偏光の
射出円偏光光であり、前記反射手段は入射面及び射出面
に同じ向きの主軸を有する1/4波長板を備え、前記受
光手段は受光1/4波長板と偏光フィルターとを備え、
前記受光1/4波長板と前記偏光フィルターとは、前記
射出円偏光光とは逆向きの回転の円偏光光を透過させる
ように互いに配置されたことを特徴とする請求項1乃至
請求項10記載の三次元座標測定装置。
13. The light emitted from the light sending means is circularly polarized outgoing circularly polarized light, and the reflecting means is provided with a ¼ wavelength plate having a principal axis in the same direction on the entrance surface and the exit surface, and the received light is received. The means comprises a light receiving quarter wave plate and a polarizing filter,
11. The light receiving quarter-wave plate and the polarizing filter are arranged to transmit circularly polarized light having a rotation opposite to that of the emitted circularly polarized light, respectively. The three-dimensional coordinate measuring device described.
JP30803593A 1992-12-08 1993-12-08 3D coordinate measuring device Expired - Fee Related JP3300998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30803593A JP3300998B2 (en) 1992-12-08 1993-12-08 3D coordinate measuring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32824492 1992-12-08
JP4-328244 1992-12-08
JP30803593A JP3300998B2 (en) 1992-12-08 1993-12-08 3D coordinate measuring device

Publications (2)

Publication Number Publication Date
JPH06229715A true JPH06229715A (en) 1994-08-19
JP3300998B2 JP3300998B2 (en) 2002-07-08

Family

ID=26565380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30803593A Expired - Fee Related JP3300998B2 (en) 1992-12-08 1993-12-08 3D coordinate measuring device

Country Status (1)

Country Link
JP (1) JP3300998B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090843A (en) * 2011-11-01 2013-05-08 北京航天发射技术研究所 Method and device for rapidly capturing rocket prism initial orientation
JP2014240837A (en) * 2011-03-14 2014-12-25 ファロ テクノロジーズ インコーポレーテッド Automatic measurement method for dimensional data with laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
CN103090843B (en) * 2011-11-01 2016-12-14 北京航天发射技术研究所 A kind of method and apparatus of quick seizure rocket prism initial orientation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9453913B2 (en) 2008-11-17 2016-09-27 Faro Technologies, Inc. Target apparatus for three-dimensional measurement system
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US10480929B2 (en) 2010-04-21 2019-11-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US10209059B2 (en) 2010-04-21 2019-02-19 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
JP2014240837A (en) * 2011-03-14 2014-12-25 ファロ テクノロジーズ インコーポレーテッド Automatic measurement method for dimensional data with laser tracker
US9448059B2 (en) 2011-04-15 2016-09-20 Faro Technologies, Inc. Three-dimensional scanner with external tactical probe and illuminated guidance
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9482746B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US9494412B2 (en) 2011-04-15 2016-11-15 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using automated repositioning
US10578423B2 (en) 2011-04-15 2020-03-03 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US10302413B2 (en) 2011-04-15 2019-05-28 Faro Technologies, Inc. Six degree-of-freedom laser tracker that cooperates with a remote sensor
US10267619B2 (en) 2011-04-15 2019-04-23 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
US9453717B2 (en) 2011-04-15 2016-09-27 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners using projection patterns
US10119805B2 (en) 2011-04-15 2018-11-06 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
CN103090843A (en) * 2011-11-01 2013-05-08 北京航天发射技术研究所 Method and device for rapidly capturing rocket prism initial orientation
CN103090843B (en) * 2011-11-01 2016-12-14 北京航天发射技术研究所 A kind of method and apparatus of quick seizure rocket prism initial orientation
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US9482514B2 (en) 2013-03-15 2016-11-01 Faro Technologies, Inc. Diagnosing multipath interference and eliminating multipath interference in 3D scanners by directed probing
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit

Also Published As

Publication number Publication date
JP3300998B2 (en) 2002-07-08

Similar Documents

Publication Publication Date Title
US10082521B2 (en) System for measuring six degrees of freedom
US9903934B2 (en) Apparatus and method of measuring six degrees of freedom
US5110202A (en) Spatial positioning and measurement system
CA2089662C (en) Spatial positioning system
US6545751B2 (en) Low cost 2D position measurement system and method
US10126415B2 (en) Probe that cooperates with a laser tracker to measure six degrees of freedom
JP2749265B2 (en) Terrestrial surveying and satellite positioning integrated device and method
US6369755B1 (en) Integrated SATPS total survey station
US7359064B1 (en) Quantum positioning systems and methods
US4758729A (en) Apparatus and method for measuring the included angle of a reflective cone
US4732472A (en) Methods of, and systems for, determining the position of an object
JP3300998B2 (en) 3D coordinate measuring device
JPH01210815A (en) Method and apparatus for 3-d bakclight survey
CN110514147A (en) A kind of two-frequency laser interferometer that can measure roll angle and straightness simultaneously
JPH037901A (en) Constant flexing type optical reflector
US4836678A (en) Double-path interferometer
JP3492406B2 (en) 3D coordinate measuring device
CN110375708A (en) A kind of three-dimensional perspective measuring system
JP3705863B2 (en) Height measuring device and height measuring method
JP2689266B2 (en) Three-dimensional position measuring device
JPH07181041A (en) Acute angle back reflector
JP3444984B2 (en) Measurement point coordinate measuring device and coordinate measuring method
RU2178186C1 (en) Method determining distance between points of reflecting surface
JPH10253357A (en) Method and apparatus for measuring machine height of range finding gonioscope
RU2186337C2 (en) Gear measuring relative angular position of reflectors

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20090426

LAPS Cancellation because of no payment of annual fees