JPH0622213B2 - Sample temperature control method and apparatus - Google Patents
Sample temperature control method and apparatusInfo
- Publication number
- JPH0622213B2 JPH0622213B2 JP58222046A JP22204683A JPH0622213B2 JP H0622213 B2 JPH0622213 B2 JP H0622213B2 JP 58222046 A JP58222046 A JP 58222046A JP 22204683 A JP22204683 A JP 22204683A JP H0622213 B2 JPH0622213 B2 JP H0622213B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- substrate
- gas
- back surface
- processed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 28
- 238000012545 processing Methods 0.000 claims description 35
- 238000012546 transfer Methods 0.000 claims description 29
- 238000001179 sorption measurement Methods 0.000 claims description 14
- 239000012212 insulator Substances 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 96
- 239000007789 gas Substances 0.000 description 72
- 239000000463 material Substances 0.000 description 15
- 238000001312 dry etching Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 238000005530 etching Methods 0.000 description 12
- 239000003507 refrigerant Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910017758 Cu-Si Inorganic materials 0.000 description 1
- 229910017931 Cu—Si Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Description
【発明の詳細な説明】 〔発明の利用分野〕 本発明は、試料の温度制御方法及び装置に係り、特に基
板の温度を制御するものに好適な試料の温度制御方法及
び装置に関するものである。Description: FIELD OF THE INVENTION The present invention relates to a sample temperature control method and apparatus, and more particularly to a sample temperature control method and apparatus suitable for controlling the temperature of a substrate.
試料を真空処理、例えば、プラズマを利用して処理(以
下、プラズマ処理と略)する装置、例えば、ドライエッ
チング装置の重要な用途の一つに半導体集積回路等の微
小固体素子の製造における微細パターンの形成がある。
この微細パターンの形成は、通常、試料である半導体基
板(以下、基板と略)の上に塗布したレジストと呼ばれ
る高分子材料に紫外線を露光,現像して描いたパターン
をマスクとしてドライエッチングにより基板に転写する
ことで行われている。One of the important applications of an apparatus that performs vacuum processing on a sample, for example, processing using plasma (hereinafter abbreviated as plasma processing), for example, a dry etching apparatus, is a fine pattern in the manufacture of minute solid state elements such as semiconductor integrated circuits There is the formation of.
This fine pattern is usually formed by dry etching using a pattern drawn by exposing and developing ultraviolet rays on a polymer material called a resist applied on a semiconductor substrate (hereinafter, abbreviated as a substrate) which is a sample, as a mask. It is done by transferring to.
このような基板のドライエッチング時には、プラズマと
の化学反応熱やプラズマ中のイオンまたは電子などの衝
撃入射エネルギによりマスク及び基板が加熱される。従
って、十分な放熱が得られない場合、即ち、基板の温度
が良好に制御されない場合は、マスクが変形,変質し正
しいパターンが形成されなくなったり、ドライエッチン
グ後の基板からのマスクの除去が困難となってしまうと
いった不都合を生じる。そこで、これら不都合を排除す
るため、次のような技術が従来より種々慣用・提案され
ている。以下、これら従来の技術について説明する。During such dry etching of the substrate, the mask and the substrate are heated by heat of chemical reaction with the plasma and impact incident energy of ions or electrons in the plasma. Therefore, when sufficient heat radiation cannot be obtained, that is, when the temperature of the substrate is not well controlled, the mask is deformed or deteriorated so that a correct pattern cannot be formed, or it is difficult to remove the mask from the substrate after dry etching. It causes the inconvenience. Therefore, in order to eliminate these inconveniences, the following techniques have been conventionally used and proposed. Hereinafter, these conventional techniques will be described.
従来技術の第1例としては、例えば、特公昭56−53
853号公報に示されているように、高周波電源の出力
が印加される試料台を水冷し、該試料台上に被加工物質
を誘電体膜を介して載置し、試料台の直流電圧を印加す
ることでプラズマを介して誘電体膜に電位差を与え、こ
れにより生じる静電吸着力によって被加工物質を試料台
に吸着させ、被加工物質と試料台との間の熱抵抗を減少
させて被加工物質を効果的に冷却するものがある。As a first example of the prior art, for example, Japanese Patent Publication No. 56-53.
As shown in Japanese Patent Publication No. 853, the sample table to which the output of the high frequency power source is applied is water-cooled, the material to be processed is placed on the sample table through the dielectric film, and the DC voltage of the sample table is changed. By applying a potential difference to the dielectric film through the plasma, the electrostatic attraction force generated by this causes the workpiece to be adsorbed to the sample stage, and reduces the thermal resistance between the workpiece and the sample stage. There are those that effectively cool the material to be processed.
本第1例の従来技術では、上記のように被加工物質と試
料台とを静電吸着により実質的に密着させても、微視的
にみれば、完全な平面と成っていないので、まだ被加工
物質と試料台との間の接触部分は少なく、微小な間隙を
沢山有している。また、この間隙には、プロセスガスが
入り込み、このガスは、熱抵抗となる。一般のドライエ
ッチング装置では、通常0.1Torr程度のプロセスガス
圧によって被加工物質をエッチング処理しており、被加
工物質と誘電体膜との間の間隙はプロセスガスの平均自
由行路長より小さくなるため、静電吸着力による隙間の
減少は、熱抵抗の点からはほとんど変わらず、接触面積
が増加した分だけ効果が上がることになる。したがっ
て、被加工物質と試料台との間の熱抵抗を減少させ被加
工物質をより効果的に冷却するためには、大きな静電吸
着力を必要とする。このため、このような技術では、次
のように問題があった。In the conventional technique of the first example, even if the material to be processed and the sample stage are substantially brought into close contact with each other by electrostatic attraction as described above, they are not completely flat from a microscopic point of view. There is little contact between the material to be processed and the sample stage, and there are many minute gaps. Further, the process gas enters the gap, and the gas becomes a thermal resistance. In a general dry etching apparatus, the material to be processed is usually etched by a process gas pressure of about 0.1 Torr, and the gap between the material to be processed and the dielectric film is smaller than the average free path length of the process gas. Therefore, the reduction of the gap due to the electrostatic attraction force is almost the same from the viewpoint of the thermal resistance, and the effect is increased by the increase of the contact area. Therefore, in order to reduce the thermal resistance between the material to be processed and the sample table and cool the material to be processed more effectively, a large electrostatic attraction force is required. Therefore, such a technique has the following problems.
(1) 被加工物質が試料台から離脱しにくくなるため、
エッチング処理が終了した被加工物質の搬送に時間を要
したり、被加工物質をいためたりする。(1) It is difficult for the material to be processed to separate from the sample table.
It takes time to convey the material to be processed after the etching process is completed, or the material to be processed is damaged.
(2) 大きな静電吸着力を生じるためには、誘電体膜と
被加工物質との間に大きな電位差を与える必要がある
が、しかし、この電位差が大きくなれば、被加工物質、
すなわち、基板内の素子に対するダメージが大きくなる
ため、歩留まりが悪くなり、集積回路の集積度が高まる
につれて要求が高まっている薄いゲート膜の微細加工で
は、差上に歩留まりが悪くなる。(2) In order to generate a large electrostatic attraction force, it is necessary to give a large potential difference between the dielectric film and the substance to be processed, but if this potential difference becomes large, the substance to be processed,
That is, since the damage to the elements in the substrate becomes large, the yield deteriorates, and the fine processing of the thin gate film, which is required more and more as the integration degree of the integrated circuit increases, the yield becomes worse.
従来技術の第2例としては、例えば、特開昭57−14
5321号公報に示されているように、ウェーハの裏面
より気体ガスを吹き付けて、ウェーハを気体ガスにより
直接冷却するものがある。A second example of the prior art is, for example, Japanese Patent Laid-Open No. 57-14.
As disclosed in Japanese Patent No. 5321, there is a method in which a gas gas is blown from the back surface of the wafer to directly cool the wafer with the gas gas.
本第2例の従来技術では、ヘリウムガス(以下、GHeと
略)のように熱伝導性の優れた気体ガスを用いること
で、ウェーハの冷却効率を向上させることができる。し
かしながら、このような技術では、次のような問題があ
った。In the conventional technique of the second example, the cooling efficiency of the wafer can be improved by using a gas gas having excellent thermal conductivity such as helium gas (hereinafter abbreviated as GHe). However, such a technique has the following problems.
(1) 気体ガスがウェーハの冷却面側にとどまらずエッ
チング室内に多量に流れ込むため、GHeのように不活性
ガスでもプロセスに与える影響は大きく、したがって、
すべてのプロセスに使用することができない。(1) Since a large amount of gas gas flows into the etching chamber instead of staying on the cooling surface side of the wafer, an inert gas such as GHe has a large effect on the process.
Not available for all processes.
従来技術の第3例としては、例えば、E.J.Egerton
他,Solid State Technology,Vol.25,No.8,P84
〜87(1982−8)に示されているように、水冷さ
れた試料台である電極と該電極に載置され機械的クラン
プ手段で外周辺を電極に押圧されて固定された基板との
間に、圧力が6Torr程度のGHeを流通させて、電極と基
板との間の熱抵抗を減少させ、これにより基板を効果的
に冷却するものがある。As a third example of the prior art, for example, E.I. J. Egerton
Others, Solid State Technology, Vol.25, No.8, P84
87 (1982-8), between an electrode, which is a water-cooled sample stage, and a substrate which is mounted on the electrode and whose outer periphery is pressed by the mechanical clamping means and fixed to the electrode. Further, there is a method in which GHe having a pressure of about 6 Torr is circulated to reduce the thermal resistance between the electrode and the substrate, thereby effectively cooling the substrate.
本第3例の従来技術では、基板の外周辺をクランプによ
って固定しても、GHeの真空処理室内への流出は避けら
れず、したがって上記した第2の従来技術での問題点と
同様の問題を有し、更に次のような問題をも有してい
る。In the prior art of the third example, even if the outer periphery of the substrate is fixed by a clamp, the outflow of GHe into the vacuum processing chamber is unavoidable. Therefore, the same problem as in the above-mentioned second prior art is encountered. And also has the following problems.
(1) 機械的クランプ手段により基板の外周辺を押圧し
て、基板を電極に固定するため、基板は、流通するGHe
のガス圧により周辺支持状態で中高で凸状に変形する。
このため、基板の裏面と電極との間の隙間量が大きくな
り、これに伴って基板と電極との熱伝導特性が悪化す
る。このため、基板の冷却を充分効果的に行うことがで
きない。(1) Since the mechanical clamping means presses the outer periphery of the substrate to fix the substrate to the electrodes, the substrate is circulated by GHe.
Due to the gas pressure of the above, it deforms to a convex shape in a middle height in the peripheral supporting state.
For this reason, the amount of the gap between the back surface of the substrate and the electrode becomes large, and the heat conduction characteristic between the substrate and the electrode is deteriorated accordingly. Therefore, the substrate cannot be cooled sufficiently effectively.
(2)電極に基板の外周辺を押圧して固定する機械的クラ
ンプ手段が設けられているため、基板内の素子製作面積
が減少すると共に、プラズマの均一性が阻害され、ま
た、機械的クランプ手段の動作時に、機械的クランプ手
段に付着した反応生成物が機械的クランプ手段から脱落
して、塵埃の発生する危険性があり、更に、基板搬送が
極めて複雑となり、その結果、装置が大型化すると共に
信頼性が低下する。(2) Since the electrode is provided with a mechanical clamping means that presses and fixes the outer periphery of the substrate, the device manufacturing area in the substrate is reduced and the plasma uniformity is impaired. During operation of the means, there is a risk that reaction products adhering to the mechanical clamping means will fall off the mechanical clamping means and dust will be generated, and further, the substrate transfer becomes extremely complicated, resulting in an increase in size of the apparatus. Reliability decreases as it does.
このように、上記これらの従来技術は、試料の効果的な
冷却、及び基板裏面に流すガスのプロセスに与える影響
等の点において、充分配慮されていなかった。As described above, these conventional techniques have not been sufficiently considered in terms of effective cooling of the sample, the influence of the gas flowing on the back surface of the substrate on the process, and the like.
本発明の目的は、真空処理される試料の温度を効果的に
制御でき、プロセスに与える伝熱ガスの影響を少なくで
きる試料の温度制御方法及び装置を提供することにあ
る。An object of the present invention is to provide a sample temperature control method and apparatus that can effectively control the temperature of a sample to be vacuum-processed and reduce the influence of heat transfer gas on the process.
本発明は、真空処理される試料の被処理面の反対面であ
る裏面内であって、少くとも該試料の外周辺の面部分
と、該外周辺よりも試料中心方向に離間した位置の面部
分とを試料台に吸着保持させ、前記試料の裏面と前記試
料台との間であって前記吸着保持された面部分以外の間
隙に伝熱ガスをガス供給手段で供給することにより、伝
熱ガスのガス圧による試料の変形を防止して密着保持さ
れた試料の裏面と試料台との間隙量の増大を抑制し、真
空下での試料の温度を効果的に制御すると共に、伝熱ガ
スの真空処理室内への流出を抑制して、プロセスに与え
る伝熱ガスの影響を少なくするものである。The present invention relates to the inside of the back surface which is the surface opposite to the surface to be processed of the sample to be vacuum-processed, at least the surface portion of the outer periphery of the sample and the surface at a position separated from the outer periphery in the sample center direction. Part of the sample is adsorbed and held on the sample table, and the heat transfer gas is supplied to the gap between the back surface of the sample and the sample table and other than the adsorbed and held surface part by the gas supply means. The deformation of the sample due to the gas pressure of the gas is prevented, the increase in the gap between the back surface of the sample held in close contact and the sample stage is suppressed, the temperature of the sample under vacuum is effectively controlled, and the heat transfer gas The effect of heat transfer gas on the process is reduced by suppressing the outflow into the vacuum processing chamber.
試料を真空処理、例えば、プラズマ処理する装置として
は、ドライエッチング装置,プラズマCVD装置,スパ
ッタ装置等があるが、ここでは、ドライエッチング装置
を例にとり本発明の実施例を説明する。As a device for vacuum-treating a sample, for example, a plasma treatment, there are a dry etching device, a plasma CVD device, a sputtering device and the like. Here, an embodiment of the present invention will be described taking the dry etching device as an example.
以下、本発明の一実施例を第1図ないし第3図により説
明する。An embodiment of the present invention will be described below with reference to FIGS.
第1図にドライエッチング装置の概略構成を示す。真空
処理室10の、この場合、底壁には、絶縁体11を介して試
料台である下部電極20が電気絶縁されて気密に設けられ
ている。真空処理室10には、放電空間30を有し下部電極
20と上下方向に対向して上部電極40が内設されている。FIG. 1 shows a schematic configuration of a dry etching apparatus. On the bottom wall of the vacuum processing chamber 10 in this case, a lower electrode 20 as a sample stage is electrically insulated and hermetically provided via an insulator 11. The vacuum processing chamber 10 has a discharge space 30 and a lower electrode.
An upper electrode 40 is provided inside so as to face 20 in the up-down direction.
試料である基板50の被処理面の反対面である裏面に対
応する下部電極20の表面には、絶縁物60が埋設されてい
る。また、下部電極20には、伝熱ガスの供給路を形成す
る溝21が形成されている。絶縁物60と溝21については、
第2図および第3図を用いて詳細に後述する。下部電極
20には、溝21と連通してガス供給路23a とガス排出路23
b とが形成されている。また、下部電極20内には、冷媒
流路22が形成されている。下部電極20には、冷媒流路22
と連通して冷媒供給路24a と冷媒排出路24b とが形成さ
れている。An insulator 60 is embedded in the surface of the lower electrode 20 corresponding to the back surface which is the surface opposite to the surface to be processed of the substrate 50 which is a sample. Further, the lower electrode 20 is formed with a groove 21 that forms a heat transfer gas supply path. For the insulator 60 and the groove 21,
Details will be described later with reference to FIGS. 2 and 3. Lower electrode
The gas supply path 23a and the gas discharge path 23a communicate with the groove 21.
b and are formed. A coolant channel 22 is formed in the lower electrode 20. The lower electrode 20 has a coolant channel 22
A refrigerant supply path 24a and a refrigerant discharge path 24b are formed in communication with each other.
ガス供給路23a には、ガス源(図示省略)に連結された
導管70a が連結され、ガス排出路23b には、導管70b の
一端が連結されている。導管70a には、マスフローコン
トローラ(以下、MFCと略)71が設けられ、導管70b
には調整バルブ72が設けられている。導管70b の他端
は、真空処理室10と真空ポンプ80とを連結する排気用の
導管12に合流連結されている。冷媒供給路24a には、冷
媒源(図示省略)に連結された導管90a が連結され、冷
媒排出路24b には、冷媒排出用の導管90b が連結されて
いる。A conduit 70a connected to a gas source (not shown) is connected to the gas supply path 23a, and one end of a conduit 70b is connected to the gas discharge path 23b. A mass flow controller (hereinafter abbreviated as MFC) 71 is provided in the conduit 70a, and the conduit 70b is provided.
An adjusting valve 72 is provided in the. The other end of the conduit 70b is joined and connected to an exhaust conduit 12 that connects the vacuum processing chamber 10 and the vacuum pump 80. A conduit 90a connected to a refrigerant source (not shown) is connected to the refrigerant supply path 24a, and a refrigerant discharge conduit 90b is connected to the refrigerant discharge path 24b.
下部電極20には、マッチングボックス100 を介して高周
波電源101 が接続されると共に、高周波遮断回路102 を
介して直流電源103 が接続されている。なお、真空処理
室10,高周波電源101 および直流電源103 はそれぞれ接
地されている。A high frequency power supply 101 is connected to the lower electrode 20 via a matching box 100, and a direct current power supply 103 is connected to the lower electrode 20 via a high frequency cutoff circuit 102. The vacuum processing chamber 10, the high frequency power supply 101 and the DC power supply 103 are grounded.
また、上部電極40には、放電空間30に開口する処理ガス
放出孔(図示省略)と該処理ガス放出孔に連通する処理
ガス流路(図示省略)とが形成されている。処理ガス流
路には、処理ガス供給装置(図示省略)に連結された導
管(図示省略)が連結されている。Further, the upper electrode 40 is formed with a processing gas discharge hole (not shown) that opens into the discharge space 30 and a processing gas flow path (not shown) that communicates with the processing gas discharge hole. A conduit (not shown) connected to a processing gas supply device (not shown) is connected to the processing gas flow path.
次に、第1図の下部電極20の詳細構造例を第2図,第3
図により説明する。Next, a detailed structure example of the lower electrode 20 shown in FIG. 1 is shown in FIGS.
It will be described with reference to the drawings.
第2図、第3図で、第1図に示したガス供給路23a は、
この場合、導管25a で形成され、導管25a は、この場
合、下部電極20の基板載置位置中心を軸心として上下動
可能に設けられている。導管25a 外側には、第1図に示
したガス排出路23b を形成して導管25b が配設されてい
る。導管25b の外側には、第1図に示した冷媒供給路24
a を形成して導管25c が配設されている。導管25c の外
側には、第1図に示した冷媒排出路24b を形成して導管
25d が配設されている。導管25b の上端は電極上板26に
つながり、導管25d の上端は電極上板26の下方の電極上
板受27つながっている。導管25b の上端部には、電極上
板26と電極上板受27と導管25b とで空室28が形成されて
いる。空室28には分割板29が冷媒流路22を形成して内設
され、導管25c の上端は分割板29につながっている。In FIG. 2 and FIG. 3, the gas supply passage 23a shown in FIG.
In this case, the conduit 25a is formed, and in this case, the conduit 25a is provided so as to be movable up and down with the center of the substrate mounting position of the lower electrode 20 as an axis. Outside the conduit 25a, the conduit 25b is arranged to form the gas discharge passage 23b shown in FIG. Outside the conduit 25b, the refrigerant supply passage 24 shown in FIG. 1 is provided.
A conduit 25c is arranged to form a. On the outside of the conduit 25c, the refrigerant discharge passage 24b shown in FIG.
25d is provided. The upper end of the conduit 25b is connected to the electrode upper plate 26, and the upper end of the conduit 25d is connected to the electrode upper plate receiver 27 below the electrode upper plate 26. At the upper end of the conduit 25b, an empty space 28 is formed by the upper electrode plate 26, the upper electrode plate receiver 27, and the conduit 25b. A dividing plate 29 is internally provided in the empty chamber 28 to form the refrigerant flow path 22, and the upper end of the conduit 25c is connected to the dividing plate 29.
基板(図示省略)が載置される電極上板26表面には、こ
の場合、放射状の伝熱ガス分散用の溝21a と円周状の伝
熱ガス分散用の溝21b が複数条形成されている。伝熱ガ
ス分散用の溝21a ,21b は、導管25a ,25b と連結して
いる。また、基板載置される電極上板26の表面には、絶
縁物60が設けられている。この場合は、基板載置される
面内の少なくとも試料の外周辺の面部分と、この外周辺
よりも試料中心方向に離間した位置の面部分コーティン
グされている。In this case, a plurality of radial heat transfer gas dispersion grooves 21a and circumferential heat transfer gas dispersion grooves 21b are formed on the surface of the electrode upper plate 26 on which the substrate (not shown) is placed. There is. The heat transfer gas dispersion grooves 21a and 21b are connected to the conduits 25a and 25b. An insulator 60 is provided on the surface of the electrode upper plate 26 on which the substrate is placed. In this case, at least the outer peripheral surface of the sample in the surface on which the substrate is placed and the surface partial coating at a position more distant from the outer periphery in the sample center direction are coated.
なお、第2図,第3図で、110 は基板が載置されない部
分の電極上板26の表面を保護する電極カバーで、111 は
下部電極20の電極上板26表面以外を保護する絶縁カバ
ー、112 はシールド板である。また、導管25a の上端に
は、電極上板26への基板の載置時並びに電極上板26から
の基板の離脱時に基板を裏面側から指示するピン113
が、この場合、120度間隔で3本配設されている。In FIGS. 2 and 3, 110 is an electrode cover that protects the surface of the upper electrode plate 26 where the substrate is not placed, and 111 is an insulating cover that protects the lower electrode 20 except the surface of the upper electrode plate 26. , 112 is a shield plate. Further, at the upper end of the conduit 25a, a pin 113 for pointing the substrate from the back side when the substrate is placed on the electrode upper plate 26 and when the substrate is detached from the electrode upper plate 26.
However, in this case, three lines are arranged at intervals of 120 degrees.
また、溝21a ,21b の深さは、基板吸着時の基板の裏面
と溝21a ,21b の底部との間の隙間(以下、溝部隙間と
略)が伝熱ガスの平均自由行路長以上になれば、伝熱ガ
スの伝熱効果が低下するようになるため、該溝部隙間
が、好ましくは、伝熱ガスの平均自由行路長以下となる
ように溝21a ,21b の深さを選定するのが良い。In addition, the depth of the grooves 21a and 21b should be such that the gap between the back surface of the substrate and the bottom of the grooves 21a and 21b when the substrate is adsorbed (hereinafter referred to as the groove gap) is equal to or longer than the mean free path length of the heat transfer gas. For example, since the heat transfer effect of the heat transfer gas is reduced, it is preferable to select the depths of the grooves 21a and 21b so that the groove gap is preferably equal to or less than the average free path length of the heat transfer gas. good.
また、基板の裏面で絶縁膜に静電吸着により実質的に密
着される部分(以下、吸着部と略)の面積は、伝熱ガス
のガス圧と真空処理室10の圧力との差圧による基板の下
部電極20からの浮上りを防止するために、伝熱ガスのガ
ス圧と真空処理室10の圧力との差圧により決まる必要静
電吸着力により選定する。例えば、伝熱ガスの圧力が1
Torrで真空処理室10の圧力が0.1Torrの場合、基板の
下部電極20からの浮上りを防止するための必要静電吸着
力は約1.3g/cm2であり、従って、これより吸着部
の面積は、基板の裏面面積の約1/5に選定される。な
お、本例は一例であり、吸着部の面積を基板裏面のほぼ
全面まで大きくすれば、それに応じて静電吸着力を小さ
くできることは言うまでもない。The area of the portion of the back surface of the substrate that is substantially adhered to the insulating film by electrostatic adsorption (hereinafter, abbreviated as an adsorption portion) depends on the pressure difference between the gas pressure of the heat transfer gas and the pressure of the vacuum processing chamber 10. In order to prevent the substrate from floating from the lower electrode 20, it is selected by the necessary electrostatic adsorption force determined by the pressure difference between the gas pressure of the heat transfer gas and the pressure of the vacuum processing chamber 10. For example, the pressure of the heat transfer gas is 1
When the pressure in the vacuum processing chamber 10 is 0.1 Torr in Torr, the electrostatic adsorption force required to prevent the substrate from rising from the lower electrode 20 is about 1.3 g / cm 2 , and therefore, the electrostatic adsorption force is less than this. The area of the part is selected to be about ⅕ of the back surface area of the substrate. It is needless to say that this example is just an example, and if the area of the attraction portion is increased to almost the entire back surface of the substrate, the electrostatic attraction force can be reduced accordingly.
上記のように構成された第1図ないし第3図のドライエ
ッチング装置で、基板50は、公知の搬送装置(図示省
略)により真空処理室10に搬入された後に、その裏面外
周辺部を絶縁物60と対応させて下部電極20に配置され
る。下部電極20への基板50の載置完了後、処理ガス供給
装置から導管を経てガス流通路に供給された処理ガス
は、ガス流通路を流通した後に上部電極40のガス放出孔
より放電空間30に放出される。真空処理室10内の圧力調
整後、下部電極20には高周波電源101 より高周波電力が
印加され、下部電極20と上部電極40との間にグロー放電
が生じる。このグロー放電により放電空間30にある処理
ガスはプラズマ化され、このプラズマにより基板50のエ
ッチング処理が開始される。また、これと共に下部電極
20には、直流電源103 より直流電圧が印加される。基板
50のプラズマによるエッチング処理の開始により、この
プラズマ処理プロセスによって生じるセルフバイアス電
圧と直流電源103 によって下部電極20に印加される直流
電圧とにより、基板50は下部電極20に静電吸着されて、
基板50の裏面内の少なくとも試料の外周辺の面部分
と、この外周辺よりも試料中心方向に離間した位置の面
部分とを含んだ略全面が実質的に密着し、固定される。
その後、溝21a ,21b には、ガス源よりMFC71及びガ
ス供給路23a を順次介して伝熱ガス、例えば、GHeが供
給される。これにより、実質的に密着している基板裏面
と下部電極20との微小な間隙の全域にわたってに、溝21
a,21b からGHeが供給される。このとき、GHeは、M
FC71と調整バルブ72との操作によりガス量を制御され
て供給され、場合によっては、基板裏面と下部電極20、
詳しくは絶縁物60との間隙にGHeを封じ込めた使用も可
能である。さらに、この場合、基板50の裏面の略全面
の静電吸着により、すなわち、基板50の裏面内の少な
くとも試料の外周辺の面部分と、この外周辺よりも試料
中心方向に離間した位置の面部分との静電吸着により、
基板をその内側と外側とで保持し、ガス圧によって基板
50が中高の凸状に変形し基板50の裏面と下部電極2
0との間隙が広がるのを防止して、伝熱ガスを基板50
の裏面の全域にわたって供給できる。これにより、冷媒
流路22を流通する冷媒、例えば、水や低温液化ガス等
で冷却されている下部電極20と基板50との熱抵抗
は、基板裏面の全域にわたって均一に減少させられ、基
板50は効果的、すなわち、均一に且つ効率良く冷却さ
れる。言い替えれば、基板裏面内の少なくとも外側に位
置する面と該面より内側に位置する面とが吸着保持され
ることにより効果的に基板の冷却が行なえる。その後、
エッチングの終了に近づくと、溝21a ,21b へのGHeの
供給は停止され、エッチングの終了に伴って、放電空間
30への処理ガスの供給と、下部電極20への直流電圧およ
び高周波電力の印加が停止される。その後、引続き基板
50に生じている静電吸着力は解除、この場合、電気的に
電極上板26と同電位に保たれたピン113 が基板50に当
節することによって、静電気の除去が行われ、ピン113
の作動により基板50は下部電極20上により除去される。
その後、基板50は、公知の搬送装置により真空処理室10
外へ搬出される。また、静電気の除去については、直流
電圧の印加を停止した後に、高周波電力の印加を停止す
ることによっても行うことができる。In the dry etching apparatus of FIGS. 1 to 3 configured as described above, the substrate 50 is transferred into the vacuum processing chamber 10 by a known transfer device (not shown), and then the outer periphery of the back surface is insulated. It is arranged on the lower electrode 20 corresponding to the object 60. After the placement of the substrate 50 on the lower electrode 20 is completed, the processing gas supplied from the processing gas supply device to the gas flow passage through the conduit flows through the gas flow passage and then the discharge space 30 from the gas discharge hole of the upper electrode 40. Is released to. After adjusting the pressure in the vacuum processing chamber 10, high frequency power is applied to the lower electrode 20 from the high frequency power supply 101, and glow discharge occurs between the lower electrode 20 and the upper electrode 40. By this glow discharge, the processing gas in the discharge space 30 is turned into plasma, and the etching processing of the substrate 50 is started by this plasma. Also, along with this, the lower electrode
A DC voltage is applied to 20 from a DC power supply 103. substrate
When the etching treatment with plasma of 50 is started, the substrate 50 is electrostatically adsorbed to the lower electrode 20 by the self-bias voltage generated by this plasma treatment process and the DC voltage applied to the lower electrode 20 by the DC power supply 103,
The substantially entire surface including at least the surface portion of the outer periphery of the sample in the back surface of the substrate 50 and the surface portion at a position more distant from the outer periphery in the sample center direction are substantially brought into close contact with each other and fixed.
After that, the heat transfer gas, for example, GHe, is supplied to the grooves 21a and 21b from the gas source through the MFC 71 and the gas supply path 23a in order. As a result, the groove 21 is formed over the entire small gap between the back surface of the substrate and the lower electrode 20 which are substantially in contact with each other.
GHe is supplied from a and 21b. At this time, GHe is M
The gas amount is controlled and supplied by the operation of the FC 71 and the adjusting valve 72. In some cases, the back surface of the substrate and the lower electrode 20,
Specifically, it is possible to use GHe enclosed in the gap with the insulator 60. Further, in this case, by electrostatic attraction of the substantially entire back surface of the substrate 50, that is, at least the surface portion of the back surface of the substrate 50 at the outer periphery of the sample and the surface at a position separated from the outer periphery in the sample center direction. By electrostatic attraction with the part,
The substrate is held between the inside and the outside, and the substrate 50 is deformed into a convex shape having a middle height by the gas pressure, and the back surface of the substrate 50 and the lower electrode 2
The heat transfer gas is prevented from spreading to the substrate
Can be supplied over the entire back surface. As a result, the thermal resistance between the lower electrode 20 and the substrate 50, which is cooled by the coolant flowing through the coolant channel 22, for example, water or low temperature liquefied gas, is uniformly reduced over the entire back surface of the substrate, and the substrate 50. Are cooled effectively, that is, uniformly and efficiently. In other words, the substrate can be effectively cooled by adsorbing and holding at least the outer surface and the inner surface of the back surface of the substrate. afterwards,
When approaching the end of etching, the supply of GHe to the grooves 21a and 21b is stopped, and with the end of etching, the discharge space
The supply of the processing gas to 30 and the application of the DC voltage and the high frequency power to the lower electrode 20 are stopped. After that, continue to the substrate
The electrostatic attraction force generated in 50 is released. In this case, the pin 113, which is electrically kept at the same potential as the upper electrode plate 26, comes into contact with the substrate 50, whereby the static electricity is removed and the pin 113 is removed.
The substrate 50 is removed on the lower electrode 20 by the operation of.
After that, the substrate 50 is transferred to the vacuum processing chamber 10 by a known transfer device.
It is carried out. The static electricity can also be removed by stopping the application of the high-frequency power after stopping the application of the DC voltage.
以上、本実施例によれば、次のような効果が得られる。As described above, according to this embodiment, the following effects can be obtained.
(1) 従来のように基板を外周辺だけ下部電極に押圧し
て固定するだけでなく、基板裏面内の少なくとも外側に
位置する面と該面より内側に位置する面とを静電吸着に
よって密着固定して、実質的に基板裏面の略全面を密着
固定できるため、伝熱ガスであるGHeのガス圧による基
板の変形を防止でき、下部電極に固定された基板の裏面
と下部電極との間隙量の増大を抑制できる。従って、基
板と下部電極との間の熱伝導特性の悪化を防止でき、基
板を効果的に冷却できる。(1) In addition to pressing and fixing the substrate to the lower electrode only on the outer periphery as in the past, at least the outer surface and the inner surface of the back surface of the substrate are adhered by electrostatic attraction. By fixing, substantially the entire back surface of the substrate can be fixed in close contact, so that the deformation of the substrate due to the gas pressure of the heat transfer gas GHe can be prevented, and the gap between the back surface of the substrate fixed to the lower electrode and the lower electrode can be prevented. An increase in quantity can be suppressed. Therefore, it is possible to prevent deterioration of the heat conduction characteristic between the substrate and the lower electrode, and to effectively cool the substrate.
(2) 少なくとも基板の裏面の外周辺を吸着しているの
で、伝熱ガスであるGHeは吸着部で真空処理室内への流
出を抑制させるため、GHeのプロセスに与える影響は少
なくなり、全てのプロセスに使用することができる。(2) Since at least the outer periphery of the back surface of the substrate is adsorbed, GHe, which is a heat transfer gas, suppresses the outflow into the vacuum processing chamber at the adsorbing part, so the effect of GHe on the process is reduced, and Can be used in the process.
(3) 静電吸着によって基板と下部電極との接触面積を
増加させて熱抵抗を減少させる従来の技術と比較する
と、本実施例では、静電吸着力の大きさはGHeの圧力と
真空処理室内の圧力との圧力差による基板の浮上りを防
止するのに必要な大きさで良く、GHeの圧力とプラズマ
の圧力との差圧を、基板の裏面と下部電極との間の熱抵
抗の許す範囲で小さくすることにより静電吸着力を小さ
くしても基板冷却の効果が十分得られる。(3) In comparison with the conventional technique in which the contact area between the substrate and the lower electrode is increased by electrostatic adsorption to reduce the thermal resistance, in this embodiment, the magnitude of electrostatic adsorption force is GHe pressure and vacuum treatment. It may be of a size necessary to prevent the substrate from floating due to the pressure difference from the pressure inside the chamber. The pressure difference between the GHe pressure and the plasma pressure is determined by the thermal resistance between the back surface of the substrate and the lower electrode. By reducing the amount within the allowable range, the effect of cooling the substrate can be sufficiently obtained even if the electrostatic attraction force is reduced.
(4) 静電吸着力が小さいため、基板の下部電極からの
離脱が容易となり、エッチング処理が終了した基板の搬
送時間を短縮できると共に、基板の損傷を防止できる。(4) Since the electrostatic adsorption force is small, the substrate can be easily detached from the lower electrode, the transport time of the substrate after the etching process can be shortened, and the substrate can be prevented from being damaged.
(5) 静電吸着力が小さくてよいため、基板に与えられ
る電位差は小さく基板内の素子に対するダメージを小さ
くできる。したがって、薄いゲート膜の微細加工でも歩
留まりを悪化させる心配がない。(5) Since the electrostatic attraction force may be small, the potential difference applied to the substrate is small and damage to the elements in the substrate can be reduced. Therefore, there is no concern that the yield will be deteriorated even by fine processing of a thin gate film.
(6) 基板を機械的クランプ手段によらず静電吸着力に
よって下部電極に固定しているため、基板内の素子製作
面積の減少を防止できると共に、プラズマの均一性を良
好に保持でき、また、下部電極への基板の載置時並びに
下部電極からの基板の除去時に塵埃が発生する危険性が
なく、更に、基板搬送を容易化でき、その結果、装置の
大型化を抑制できると共に信頼性を向上できる。(6) Since the substrate is fixed to the lower electrode by electrostatic attraction without using mechanical clamping means, it is possible to prevent a decrease in the device manufacturing area within the substrate and maintain good plasma uniformity. There is no risk of dust being generated when the substrate is placed on the lower electrode and when the substrate is removed from the lower electrode, and the substrate can be easily transported. As a result, the size of the device can be suppressed and the reliability can be improved. Can be improved.
第4図は、本発明を実施したドライエッチング装置の他
の例を示すもので、真空処理室10の頂壁と上部電極40に
は、真空処理室10外部と放電空間30とを連通して光路12
0 が形成されている。光路120 の真空処理室10外部側に
は、透光窓121 が気密に設けられている。透光窓121 と
対応する真空処理室10外部には、温度計測手段、例え
ば、赤外線温度計122 が設けられている。赤外線温度計
122 の出力はアンプ123 を介してプロセス制御用コンピ
ュータ124 に入力され、プロセス制御用コンピュータ12
4 により演算された指令信号がMFC71に入力されるよ
うになっている。なお、その他、第1図と同一装置等
は、同一符号で示し説明を省略する。FIG. 4 shows another example of the dry etching apparatus embodying the present invention. The top wall of the vacuum processing chamber 10 and the upper electrode 40 are connected to the outside of the vacuum processing chamber 10 and the discharge space 30. Light path 12
0 is formed. A transparent window 121 is provided in an airtight manner outside the vacuum processing chamber 10 of the optical path 120. Outside the vacuum processing chamber 10 corresponding to the translucent window 121, temperature measuring means, for example, an infrared thermometer 122 is provided. Infrared thermometer
The output of 122 is input to the process control computer 124 via the amplifier 123, and
The command signal calculated by 4 is input to the MFC71. In addition, in addition, the same devices and the like as those in FIG.
本実施例によれば、更に次のような効果が得られる。According to this embodiment, the following effects can be further obtained.
(1) 基板の温度を計測しながらGHeの供給量を調整、
すなわち、GHeを供給するMFCをプロセス制御コンピ
ュータと結合し、あらかじめ求めた基板の温度とGHeの
供給量との間の関係からGHeの供給量を制御することに
より、基板の温度を一定の温度に保持できる。このよう
な制御は、Al−Cu−Si材のドライエッチングの際
に特に有効であり、ホトレジストがダメージを受けない
範囲の高い温度に制御して被エッチング材の残渣を減少
させることができる。(1) Adjusting the supply amount of GHe while measuring the substrate temperature,
That is, by connecting the MFC that supplies GHe with the process control computer and controlling the GHe supply amount from the relationship between the substrate temperature and the GHe supply amount obtained in advance, the substrate temperature can be kept constant. Can hold Such control is particularly effective in dry etching of the Al-Cu-Si material, and the residue of the material to be etched can be reduced by controlling the temperature to a high temperature within a range where the photoresist is not damaged.
(2)プラズマの圧力が高い場合には、エッチング速度が
基板の温度上昇に伴って増加するプロセスもあり、この
ような場合には、基板の温度があらかじめ設定した一定
温度を超えた場合に、GHeを流して冷却効果を上げホト
レジストのダメージを防止しながらエッチング時間の短
縮を図ることができる。(2) When the plasma pressure is high, there is also a process in which the etching rate increases with the temperature rise of the substrate.In such a case, when the temperature of the substrate exceeds a preset constant temperature, It is possible to shorten the etching time while flowing GHe to enhance the cooling effect and prevent damage to the photoresist.
以上説明した実施例では、基板の吸着に静電吸着力を用
いているが、プラズマガスの圧力が高いプロセスにおい
ては真空吸着力を用いることも可能である。また、絶縁
物下面に正極と負極とを交互に並べて配置し静電吸着力
を基板に付与するようにしても良い。また、下地の材料
が露出し始めてから更にオーバーエッチングを行うよう
な場合は、下地の材料が露出し始めた時点でGHeの供給
を停止し下部電極に直流電圧を逆印加するようにする。
このようにすれば、エッチング終了時点での基板に残留
する静電力を更に減少させることができるため、基板搬
出時に基板を損傷させることがなく、基板搬出に要する
時間を短縮することができる。但し、この場合は、エッ
チング中の基板の温度をオーバーエッチング時の温度上
昇分だけ下げておくよう制御してやる必要がある。ま
た、伝熱ガスとしてGHeの他に水素ガス,ネオンガス等
の熱伝導性の良いガスを用いても良い。In the embodiment described above, the electrostatic attraction force is used for attracting the substrate, but it is also possible to use the vacuum attraction force in the process in which the pressure of the plasma gas is high. Further, the positive electrode and the negative electrode may be alternately arranged on the lower surface of the insulator to apply the electrostatic attraction force to the substrate. Further, when further over-etching is performed after the underlying material starts to be exposed, the supply of GHe is stopped and the DC voltage is reversely applied to the lower electrode when the underlying material begins to be exposed.
In this way, the electrostatic force remaining on the substrate at the end of etching can be further reduced, so that the substrate is not damaged during unloading, and the time required for unloading the substrate can be shortened. However, in this case, it is necessary to control the temperature of the substrate during etching to be lowered by the amount of temperature rise during overetching. Further, as the heat transfer gas, a gas having good thermal conductivity such as hydrogen gas or neon gas may be used in addition to GHe.
なお、本発明は、その他の冷却される基板台に配置保持
されて真空処理される試料の温度を制御するのに同様の
効果を有する。The present invention has a similar effect in controlling the temperature of a sample which is placed and held on another substrate to be cooled and vacuum processed.
本発明は、以上説明したように、真空処理される試料の
被処理面の反対面である裏面内であって少なくとも試料
の外周辺の面部分と、この外周辺よりも試料中心方向に
離間した位置の面部分とを試料台に吸着保持させ、該吸
着保持された試料の裏面と試料台との微小な間隙に伝熱
ガスを供給することにより、伝熱ガスのガス圧による試
料の変形を防止して吸着保持された試料の裏面と試料台
との間隙量の増大を抑制でき、真空処理される試料の温
度を効果的に制御できると共に、伝熱ガスの真空処理室
内への流出を抑制でき、プロセスに与える伝熱ガスの影
響を少なくできるという効果がある。INDUSTRIAL APPLICABILITY As described above, according to the present invention, at least the outer peripheral surface portion of the sample in the back surface, which is the surface opposite to the surface to be processed of the sample to be vacuum processed, is separated from the outer peripheral portion in the sample center direction. The surface portion of the position is adsorbed and held on the sample table, and the heat transfer gas is supplied to the minute gap between the back surface of the sample and the sample table which is adsorbed and held to prevent deformation of the sample due to the gas pressure of the heat transfer gas. Prevents the increase in the amount of gap between the back surface of the sample that has been adsorbed and held and the sample stage, effectively controls the temperature of the sample to be vacuum processed, and suppresses the flow of heat transfer gas into the vacuum processing chamber. Therefore, the effect of heat transfer gas on the process can be reduced.
第1図は本発明を実施したドライエッチング装置の一例
を示す構成図、第2図は第1図の下部電極の詳細平面
図、第3図は第2図のA−A視断面図、第4図は本発明
を実施したドライエッチング装置の他の例を示す構成図
である。 10……真空処理室、20……下部電極、21,21a,21b……
溝、22……冷媒流路、50……基板1 is a configuration diagram showing an example of a dry etching apparatus embodying the present invention, FIG. 2 is a detailed plan view of a lower electrode of FIG. 1, FIG. 3 is a sectional view taken along line AA of FIG. FIG. 4 is a block diagram showing another example of the dry etching apparatus embodying the present invention. 10 ... Vacuum processing chamber, 20 ... Lower electrode, 21, 21a, 21b ...
Groove, 22 ... Refrigerant flow path, 50 ... Substrate
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平塚 幸哉 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 柴田 史雄 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 山本 則明 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 坪根 恒彦 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (56)参考文献 特開 昭58−32410(JP,A) 実開 昭55−115047(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yukiya Hiratsuka 502 Jinritsucho, Tsuchiura-shi, Ibaraki Machinery Research Institute, Hiritsu Manufacturing Co., Ltd. (72) Inventor Fumio Shibata 794, Higashitoyoi, Kudamatsu, Yamaguchi Prefecture Hitachi, Ltd. Inside the Kasado Plant (72) Inventor Noriaki Yamamoto 794 Azuma Higashitoyo, Kudamatsu City, Yamaguchi Prefecture Stock Company Hitachi Ltd. Inside the Kasado Plant (72) Tsunehiko Tsubone, 794 Higashitoyoi, Kumamatsu City, Yamaguchi Prefecture Hitachi Ltd. (56) References JP 58-32410 (JP, A) Actual development 55-115047 (JP, U)
Claims (7)
ある裏面内であって、少なくとも該試料の外周辺の面部
分と、該外周辺よりも試料中心方向に離間した位置の面
部分とを試料台に吸着保持させ、 前記試料の裏面と前記試料台との間であって前記吸着保
持された面部分以外の間隙に、該試料台に設けられたガ
ス供給路を介して伝熱ガスを供給することを特徴とする
試料の温度制御方法。1. A back surface which is the surface opposite to the surface to be processed of a sample to be vacuum-processed, and at least a surface portion of the outer periphery of the sample and a surface at a position separated from the outer periphery in the sample center direction. Part of the sample is adsorbed and held on the sample table, and is transferred to a gap between the back surface of the sample and the sample table and other than the surface part where the sample is adsorbed and held, via a gas supply path provided on the sample table. A method for controlling the temperature of a sample, which comprises supplying hot gas.
特許請求の範囲第1項記載の試料の温度制御方法。2. The temperature control method for a sample according to claim 1, wherein the adsorption of the sample is performed by electrostatic adsorption.
ガスのガス圧と前記真空処理する室内の圧力との差圧に
よる前記試料の前記試料台からの浮上がりを防止するに
要する面積を有する特許請求の範囲第1項記載の試料の
温度制御方法。3. The surface portion of the sample on which the sample is adsorbed is required to prevent the sample from being lifted from the sample table due to the differential pressure between the gas pressure of the heat transfer gas and the pressure in the chamber for vacuum processing. The method for controlling the temperature of a sample according to claim 1, which has an area.
ある裏面内であって、少なくとも該試料の外周辺の面部
分と、該外周辺より試料中心方向に離間した位置の面部
分とを試料台に吸着保持させる吸着手段と、 前記試料台に設けられ、前記試料の裏面と前記試料台と
の間であって前記吸着保持された面部分以外の間隙に伝
熱ガスを供給するガス供給路とを具備したことを特徴と
する試料の温度制御装置。4. A back surface which is the surface opposite to the surface to be processed of a sample to be vacuum-processed, and at least a surface portion of the outer periphery of the sample and a surface portion at a position separated from the outer periphery in the sample center direction. And an adsorption means for adsorbing and holding the sample table on the sample table, and the heat transfer gas is supplied to a gap provided between the sample table and the back surface of the sample and the sample table other than the surface part held by the adsorption. A sample temperature control device comprising a gas supply path.
許請求の範囲第4項記載の試料の温度制御装置。5. The sample temperature control device according to claim 4, wherein the adsorption means is an electrostatic adsorption means.
応して前記試料台に設けられる絶縁物と、前記試料台に
接続される直流電源とで成る特許請求の範囲第5項記載
の試料の温度制御装置。6. The electrostatic attraction means according to claim 5, wherein the electrostatic attraction means comprises an insulator provided on the sample table corresponding to the back surface of the sample and a DC power source connected to the sample table. Sample temperature control device.
膜をコーティングして成る特許請求の範囲第6項記載の
試料の温度制御装置。7. The sample temperature control device according to claim 6, wherein the insulator is formed by coating an insulating film on a metal surface of the sample table.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58222046A JPH0622213B2 (en) | 1983-11-28 | 1983-11-28 | Sample temperature control method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58222046A JPH0622213B2 (en) | 1983-11-28 | 1983-11-28 | Sample temperature control method and apparatus |
Related Child Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1249150A Division JPH0670984B2 (en) | 1989-09-27 | 1989-09-27 | Sample temperature control method and apparatus |
JP1249152A Division JPH0670986B2 (en) | 1989-09-27 | 1989-09-27 | Vacuum processing equipment sample holding method |
JP1249151A Division JPH0670985B2 (en) | 1989-09-27 | 1989-09-27 | Sample temperature control method and apparatus |
JP1249149A Division JP2580791B2 (en) | 1989-09-27 | 1989-09-27 | Vacuum processing equipment |
JP5078395A Division JP2636782B2 (en) | 1995-03-10 | 1995-03-10 | Control method of heat transfer gas for sample temperature control |
JP5078195A Division JP2679667B2 (en) | 1995-03-10 | 1995-03-10 | Vacuum processing method |
JP5077995A Division JP2626618B2 (en) | 1995-03-10 | 1995-03-10 | Sample holding method for vacuum processing equipment |
JP5078095A Division JP2636781B2 (en) | 1995-03-10 | 1995-03-10 | Vacuum processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60115226A JPS60115226A (en) | 1985-06-21 |
JPH0622213B2 true JPH0622213B2 (en) | 1994-03-23 |
Family
ID=16776242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58222046A Expired - Lifetime JPH0622213B2 (en) | 1983-11-28 | 1983-11-28 | Sample temperature control method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0622213B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10896843B2 (en) | 2017-03-24 | 2021-01-19 | Sumitomo Heavy Industries Ion Technology Co., Ltd. | Wafer holding device and wafer chucking and dechucking method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0691036B2 (en) * | 1986-12-03 | 1994-11-14 | 三菱電機株式会社 | Etching treatment apparatus and etching treatment method |
JP2713903B2 (en) * | 1987-05-06 | 1998-02-16 | 株式会社日立製作所 | Dry etching method |
US4949783A (en) * | 1988-05-18 | 1990-08-21 | Veeco Instruments, Inc. | Substrate transport and cooling apparatus and method for same |
JPH01298721A (en) * | 1988-05-27 | 1989-12-01 | Tokuda Seisakusho Ltd | Vacuum processor |
JPH029120A (en) * | 1988-06-28 | 1990-01-12 | Tokuda Seisakusho Ltd | Vacuum processor |
JPH02210826A (en) * | 1989-02-10 | 1990-08-22 | Hitachi Ltd | Plasma etching method and equipment |
JPH02120832U (en) * | 1989-03-15 | 1990-09-28 | ||
JPH0393226A (en) * | 1989-09-05 | 1991-04-18 | Iwatani Internatl Corp | Wafer cooler in wafer dry etching system |
JP2714178B2 (en) * | 1989-09-20 | 1998-02-16 | 株式会社日立製作所 | Vacuum processing equipment |
JP2580791B2 (en) * | 1989-09-27 | 1997-02-12 | 株式会社日立製作所 | Vacuum processing equipment |
JP2537739Y2 (en) * | 1989-11-22 | 1997-06-04 | 国際電気株式会社 | Electrostatic suction device |
JP3288200B2 (en) * | 1995-06-09 | 2002-06-04 | 東京エレクトロン株式会社 | Vacuum processing equipment |
JP4611217B2 (en) * | 2006-01-30 | 2011-01-12 | 株式会社日立ハイテクノロジーズ | Wafer mounting electrode |
WO2014097520A1 (en) | 2012-12-20 | 2014-06-26 | キヤノンアネルバ株式会社 | Oxidation treatment device, oxidation method, and method for producing electronic device |
CN113053715B (en) * | 2019-12-27 | 2023-03-31 | 中微半导体设备(上海)股份有限公司 | Lower electrode assembly, plasma processing device and working method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55115047U (en) * | 1979-02-06 | 1980-08-13 | ||
JPS5832410A (en) * | 1981-08-06 | 1983-02-25 | ザ・パ−キン−エルマ−・コ−ポレイシヨン | Method and device for treating structure under gas reduced pressure environment |
US4512391A (en) * | 1982-01-29 | 1985-04-23 | Varian Associates, Inc. | Apparatus for thermal treatment of semiconductor wafers by gas conduction incorporating peripheral gas inlet |
-
1983
- 1983-11-28 JP JP58222046A patent/JPH0622213B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10896843B2 (en) | 2017-03-24 | 2021-01-19 | Sumitomo Heavy Industries Ion Technology Co., Ltd. | Wafer holding device and wafer chucking and dechucking method |
Also Published As
Publication number | Publication date |
---|---|
JPS60115226A (en) | 1985-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5382311A (en) | Stage having electrostatic chuck and plasma processing apparatus using same | |
US4565601A (en) | Method and apparatus for controlling sample temperature | |
JPH0622213B2 (en) | Sample temperature control method and apparatus | |
US7160392B2 (en) | Method for dechucking a substrate | |
KR20120112147A (en) | Plasma processing apparatus | |
KR100188455B1 (en) | Drying etching method | |
JP3225850B2 (en) | Electrostatic attraction electrode and method of manufacturing the same | |
US6054371A (en) | Method of manufacturing a semiconductor device by detachably mounting substrates to a holder board | |
JP2580791B2 (en) | Vacuum processing equipment | |
JPH0670984B2 (en) | Sample temperature control method and apparatus | |
JP2626618B2 (en) | Sample holding method for vacuum processing equipment | |
JP2726410B2 (en) | Electrostatic attraction electrode | |
JP2953688B2 (en) | Sample temperature control method | |
JP2000294543A (en) | Etching method and apparatus thereof, and manufacture of semiconductor device | |
JP2636781B2 (en) | Vacuum processing method | |
JPH0670985B2 (en) | Sample temperature control method and apparatus | |
JP2636782B2 (en) | Control method of heat transfer gas for sample temperature control | |
JP2679667B2 (en) | Vacuum processing method | |
JPH08153713A (en) | Sample holding method for plasma treatment apparatus | |
JPH0670986B2 (en) | Vacuum processing equipment sample holding method | |
JP3770740B2 (en) | Substrate peeling device | |
US7189653B2 (en) | Etching method and etching apparatus | |
JP3264746B2 (en) | Substrate holding device | |
JP2006504239A (en) | Electrostatic chuck wafer port and top plate for edge shield and gas discharge | |
JP3264441B2 (en) | Substrate holding device for vacuum processing equipment |