JPH06177447A - Superconducting functional device - Google Patents

Superconducting functional device

Info

Publication number
JPH06177447A
JPH06177447A JP4326681A JP32668192A JPH06177447A JP H06177447 A JPH06177447 A JP H06177447A JP 4326681 A JP4326681 A JP 4326681A JP 32668192 A JP32668192 A JP 32668192A JP H06177447 A JPH06177447 A JP H06177447A
Authority
JP
Japan
Prior art keywords
superconducting
quantum wire
current
quantum
control wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4326681A
Other languages
Japanese (ja)
Inventor
Masao Nakao
昌夫 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4326681A priority Critical patent/JPH06177447A/en
Publication of JPH06177447A publication Critical patent/JPH06177447A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a superconducting functional device which utilizes a quantum phenomenon as its device operation principle by a method wherein a conductance is periodically controlled in accordance with the value of a superconducting current. CONSTITUTION:A phase difference delta is produced between electron waves which enter a quantum wire 14 through a contact 13a and are propagated through the channel parts 14a and 14b of the quantum wire 14 with a single mode by a magnetic field B which is generated by a current flowing through a control wiring 11 made of superconducting material. When the electron waves come out of the quantum wire 14, the waves interfere each other and are outputted from a contact 13b. The phase difference delta between the electron waves which are propagated through the channel parts 14a and 14b depends upon the magnitude of the magnetic field B formed by the current applied to the control wiring 11. With this constitution, a superconducting functional device whose conductance is varied in accordance with the value of the superconducting current can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超伝導物質を使
用した機能性エレクトロニクス素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional electronic device using an oxide superconducting material.

【0002】[0002]

【従来の技術】半導体を用いた大規模集積回路は、主に
素子寸法の微細化によってその集積度等の機能を向上さ
せてきた。その素子寸法の微細化の限界は、0.1μm
と考えられており、集積度では、1ギガビットまでと考
えられている。
2. Description of the Related Art Large-scale integrated circuits using semiconductors have been improved in functions such as the degree of integration mainly by miniaturization of element dimensions. The limit of miniaturization of the element size is 0.1 μm
It is considered that the integration degree is up to 1 gigabit.

【0003】しかし、現行の微細化技術による素子の単
純なスケーリングでは、素子を流れる電流量が極端に小
さくなるため正確に動作しなくなったり、また、絶縁体
部分の薄膜化が進み、電子がこの領域を通り抜けて、い
わゆるトンネル現象等の量子現象を引き起こし、素子の
制御が困難になるなどの技術的限界に達すると言われて
いる。従って、現行の半導体素子の微細化技術では、そ
れ以上の高集積化、高性能化を計ることが困難となって
きた。
However, in the simple scaling of the element by the current miniaturization technology, the amount of current flowing through the element becomes extremely small, so that the element does not operate accurately, and the thinning of the insulator portion progresses, so that electrons It is said that it will reach a technical limit that it will pass through the region and cause a quantum phenomenon such as a so-called tunneling phenomenon to make it difficult to control the device. Therefore, it has become difficult to achieve higher integration and higher performance with the current miniaturization technology for semiconductor elements.

【0004】[0004]

【発明が解決しようとする課題】このような現行の素子
の技術的限界を打破するためには、素子の動作原理や素
子構造そのものを変えることが必要となってきた。つま
り、半導体の微細な構造中で発現する様々な量子現象を
素子の動作原理に積極的に活用し、そのために素子構造
を根本的に再構築することである。
In order to break through the technical limits of such existing devices, it has become necessary to change the operating principle of the device and the device structure itself. In other words, various quantum phenomena that appear in the fine structure of the semiconductor are positively utilized in the operating principle of the device, and for that reason, the device structure is fundamentally reconstructed.

【0005】本発明は、現行の半導体機能素子の動作原
理や素子構造とは異なる量子現象をその素子動作原理に
利用した新規な超伝導機能素子を提供するものである。
The present invention provides a novel superconducting functional device that utilizes a quantum phenomenon, which is different from the operating principle and device structure of existing semiconductor functional devices, in the operating principle of the device.

【0006】[0006]

【課題を解決するための手段】互いに平行配置する第1
量子細線及び第2量子細線と、超伝導材料からなる制御
配線とが、該第1量子細線及び該第2量子細線の配線方
向を含む面と、該制御配線を流れる電流により形成され
る磁場の方向と、が垂直に交わるように配置した超伝導
機能素子であって、前記第1量子細線及び第2量子細線
は、ガリウム−ヒ素薄膜からなる第1層と、アルミニウ
ム−ガリウム−ヒ素薄膜からなる第2層と、ガリウム−
ヒ素薄膜からなる第3層と、を順次積層形成した積層配
線の中にあって、第1層と第2層及び第2層と第3層の
境界面における第1層側及び第3層側にそれぞれ形成さ
れていること、前記積層配線の両端には、n型半導体か
らなるコンタクトが形成していることを特徴とする。
[Means for Solving the Problems] First arranged in parallel to each other
A quantum wire and a second quantum wire, and a control wire made of a superconducting material, a surface including the wiring direction of the first quantum wire and the second quantum wire, and a magnetic field formed by a current flowing through the control wire. In the superconducting functional element, the first quantum wire and the second quantum wire are formed of a first layer of a gallium-arsenic thin film and an aluminum-gallium-arsenic thin film. Second layer and gallium
In a laminated wiring in which a third layer made of an arsenic thin film is sequentially laminated, the first layer side and the third layer side at the interface between the first layer and the second layer and the second layer and the third layer. And a contact made of an n-type semiconductor is formed at both ends of the laminated wiring.

【0007】[0007]

【作用】電子はそれぞれの量子細線のチャンネル部をシ
ングルモードで伝搬する。また、下部の制御配線に超伝
導電流が流れると、その回りに磁束が発生し、これが、
アハラノフ・ボーム効果により、制御配線上部の量子細
線中の電子に位相差を生じさせ電子波が干渉する。この
電子波の干渉は、磁束の大きさにより変化する。従っ
て、チャンネル部からの出力は、制御配線を流れる超伝
導電流により変化し、この結果、超伝導電流の大きさに
応じてコンダクタンスを周期的に制御することができる
素子が得られる。
Function: Electrons propagate in a single mode through the channel portion of each quantum wire. Also, when a superconducting current flows in the lower control wiring, a magnetic flux is generated around it, which causes
The Aharanov-Bohm effect causes a phase difference in the electrons in the quantum wires above the control wiring, causing the electron waves to interfere. The interference of this electron wave changes depending on the magnitude of the magnetic flux. Therefore, the output from the channel portion is changed by the superconducting current flowing through the control wiring, and as a result, an element in which the conductance can be periodically controlled according to the magnitude of the superconducting current can be obtained.

【0008】[0008]

【実施例】図1に本発明の超伝導機能素子の構造を示す
模式図を、また、図1のI−I’及びII−II’における
断面図を図2の(1)及び(2)に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic view showing the structure of a superconducting functional element of the present invention, and cross-sectional views taken along line II 'and II-II' of FIG. 1 are (1) and (2). Shown in.

【0009】本発明の超伝導機能素子は、図1に示す如
く、超伝導材料からなる制御配線11と、この制御配線
11上に、これに平行して第1層:ガリウム−ヒ素(以
下、GaAsと称する。)薄膜12a、第2層:アルミ
ニウム−ガリウム−ヒ素(以下、AlGaAsと称す
る。)薄膜12b、第3層:GaAs薄膜12cを半導
体微細加工技術により順次積層形成した積層配線12
と、からなる。また、積層配線12の両端にはn型半導
体からなるコンタクト13a及び13bが形成されてお
り、ここから入出力が行われる。図1及び図2における
I及びBは、それぞれ制御配線11を流れる電流及びこ
の電流Iにより形成される磁場を示す。
As shown in FIG. 1, the superconducting functional element of the present invention includes a control wiring 11 made of a superconducting material, and a first layer: gallium-arsenic (hereinafter, referred to as "first layer") on the control wiring 11 and in parallel therewith. A layered wiring 12 in which a thin film 12a, a second layer: aluminum-gallium-arsenic (hereinafter, referred to as AlGaAs) thin film 12b, and a third layer: a GaAs thin film 12c are sequentially laminated by a semiconductor fine processing technique.
And consists of. Further, contacts 13a and 13b made of an n-type semiconductor are formed at both ends of the laminated wiring 12, and input / output is performed from here. I and B in FIGS. 1 and 2 respectively indicate a current flowing through the control wiring 11 and a magnetic field formed by this current I.

【0010】制御配線11は酸化物超伝導材料からな
り、液体窒素の温度下で108〜101 0A/m2程度の電
流密度の電流Iを流すことが可能である。従って、制御
配線11の断面積Sは、所望の磁場Bが得るための電流
が流れるのに十分な大きさであればよく、本実施例で
は、S=10-102(10-6cm2)とした。
[0010] Control lines 11 it is possible to flow an oxide made superconducting material, at a temperature of liquid nitrogen 10 8 ~10 1 0 A / m 2 about the density of the current I. Therefore, the cross-sectional area S of the control wiring 11 may be large enough to allow the current for obtaining the desired magnetic field B to flow. In the present embodiment, S = 10 −10 m 2 (10 −6 cm) 2 )

【0011】本実施例において、積層配線12は、Ga
As薄膜12aに不純物原子をモジュレーション・ドー
プしたAlGaAs薄膜12bを堆積し、さらにGaA
s薄膜12cを積層して形成した。この時、GaAs薄
膜12a及び12cのAlGaAs薄膜12bとの境界
のGaAs薄膜12a側及びGaAs薄膜12c側に
は、いわゆる電子ガスがたまり、ここに電子準位を有す
るチャンネル部14a及び14cが形成する。このチャ
ンネル部14a及び14cが、2本の量子細線14即ち
第1量子細線及び第2量子細線として機能する。
In this embodiment, the laminated wiring 12 is made of Ga.
An AlGaAs thin film 12b in which impurity atoms are modulation-doped is deposited on the As thin film 12a, and then GaA
The s thin film 12c was laminated and formed. At this time, so-called electron gas accumulates on the GaAs thin film 12a side and the GaAs thin film 12c side of the boundaries between the GaAs thin films 12a and 12c and the AlGaAs thin film 12b, and channel portions 14a and 14c having electron levels are formed there. The channel portions 14a and 14c function as the two quantum wires 14, that is, the first quantum wire and the second quantum wire.

【0012】積層配線12の幅w及びGaAs薄膜12
a、12c、AlGaAs薄膜12bの厚さta、tb
cは、コンタクト13aから量子細線14(チャンネ
ル部14a及び14c)に入り込んだ電子が、チャンネ
ル部14a、14cに封じ込められ、積層配線の配線方
向(コンタクト13aからコンタクト13bへの方向)
に伝搬するために十分な幅及び厚さを有していればよ
い。
The width w of the laminated wiring 12 and the GaAs thin film 12
a, 12c, the thickness t a of the AlGaAs film 12b, t b,
At t c , electrons entering the quantum wires 14 (channel portions 14a and 14c) from the contact 13a are confined in the channel portions 14a and 14c, and the wiring direction of the laminated wiring (direction from the contact 13a to the contact 13b).
It only needs to have a width and thickness sufficient to propagate to.

【0013】さらに、制御配線11を流れる電流Iによ
って、形成される磁場Bが、2本の量子細線14の位置
においてほぼ均一となるように、2本の量子細線14
(チャンネル部14a及び14c)間の距離dが、2本
の量子細線14から制御配線までの距離rに対して十分
に小さくなるように設定する。そのためにGaAs薄膜
12aの厚さtaを十分にとるか、あるいは、制御配線
11と積層配線12との間に絶縁層等を設けてもよい。
本実施例では、2本の量子細線14(チャンネル部14
a及び14c)間の距離dが、d=10nm、2本の量
子細線14から制御配線までの距離rが、r=1μmと
した。本実施例において、量子細線14の長さfは、f
=20μmとした。
Further, the two quantum wires 14 are arranged so that the magnetic field B formed by the current I flowing through the control wiring 11 is substantially uniform at the positions of the two quantum wires 14.
The distance d between the (channel portions 14a and 14c) is set to be sufficiently smaller than the distance r from the two quantum wires 14 to the control wiring. For that purpose, the GaAs thin film 12a may have a sufficient thickness ta, or an insulating layer or the like may be provided between the control wiring 11 and the laminated wiring 12.
In this embodiment, the two quantum wires 14 (channel section 14
The distance d between a and 14c) was d = 10 nm, and the distance r from the two quantum wires 14 to the control wiring was r = 1 μm. In the present embodiment, the length f of the quantum wire 14 is f
= 20 μm.

【0014】また、コンタクト13a及び13bの材料
として、n型にドープしたガリウム−ヒ素(GaAs)
を使用した。
As a material for the contacts 13a and 13b, n-type doped gallium-arsenic (GaAs) is used.
It was used.

【0015】本発明の超伝導機能素子は、制御配線11
を流れる電流量により素子のコンダクタンスを制御する
ものである。即ち、コンタクト13aから入り込み、量
子細線14のチャンネル部14a、14cをシングルモ
ードで伝搬している電子波に超伝導材料からなる制御配
線11に電流が流れることで形成される磁場Bにより位
相差δを生じさせ、量子細線14を飛び出す時に互いに
干渉し、コンタクト13bから出力を得るものである。
この時のチャンネル部14a、14cにおいて、伝搬す
る電子に生じる位相差δは、制御配線11に流れること
で形成する磁場Bの大きさに依存する。
The superconducting functional element of the present invention comprises a control wiring 11
The conductance of the element is controlled by the amount of current flowing through the element. That is, the phase difference δ due to the magnetic field B formed by the current flowing through the control wiring 11 made of a superconducting material into the electron wave that enters from the contact 13a and propagates in the channel portions 14a and 14c of the quantum wire 14 in the single mode. Are generated and interfere with each other when the quantum wires 14 jump out, and an output is obtained from the contact 13b.
The phase difference δ generated in the propagating electrons in the channel portions 14 a and 14 c at this time depends on the magnitude of the magnetic field B formed by flowing in the control wiring 11.

【0016】本発明の動作原理は、電子の波動性に基づ
くアハラノフ・ボーム効果(以下A−B効果と称す
る。)によるものである。A−B効果とは、電子波が同
時に2つのスリットを通過する時、スリットのすぐ後に
電子波の進行方向に垂直な細長い領域に局在する磁場B
が存在すると、電子波はこの磁場Bに触れることなくそ
の両側を2つに分かれて進んだにもかかわらず、磁場B
に影響されて2つの電子波に位相差が生じる現象のこと
であり、例えば、「共立出版/物理学最前線 第9巻
アハラノフ・ボーム効果の章、または、岩波書店/ファ
インマン物理学 III電磁気学 第15章 ベクトルポテ
ンシャル」等に詳しい。
The operating principle of the present invention is based on the Aharanov-Bohm effect (hereinafter referred to as AB effect) based on the wave nature of electrons. The AB effect means that when an electron wave passes through two slits at the same time, a magnetic field B localized in an elongated region perpendicular to the traveling direction of the electron wave immediately after the slit.
, The electron wave propagates in two on both sides without touching this magnetic field B,
Is a phenomenon in which a phase difference occurs between two electron waves under the influence of, for example, "Kyoritsu Shuppan / Physics Frontline Volume 9".
See the chapter on the Aharanov-Bohm effect, or Iwanami Shoten / Feynman physics III Electromagnetism Chapter 15 Vector potential ”.

【0017】本実施例では、このA−B効果を超伝導体
材料からなる制御配線11により形成される強い磁場B
によって得るものである。つまり、量子細線のチャンネ
ル部14a、14cが、2つのスリットの役を果たし、
制御配線11に大きな電流が流れることで形成する磁場
Bを利用して、チャンネル部14a、14cを伝搬する
電子波に位相差δを生じさせ、これらの電子波を干渉さ
せて出力変化を得るものである。
In the present embodiment, this AB effect is caused by a strong magnetic field B formed by the control wiring 11 made of a superconductor material.
Is obtained by. That is, the channel portions 14a and 14c of the quantum wire function as two slits,
A magnetic field B formed by a large current flowing through the control wiring 11 is used to generate a phase difference δ in the electron waves propagating through the channel portions 14a and 14c, and these electron waves are interfered with each other to obtain an output change. Is.

【0018】この時、このチャンネル部14a、14c
を伝搬する電子波の位相差δと磁場Bとの関係は、δ=
(2πq/h)Bfdで示される。ただし、qは電気素
量で、q=1.602×10-19C(クーロン)であ
り、hはプランク定数で、h=6.626×10-34
・sである。また、fは量子細線14の長さであり、d
は2本の量子細線間の距離(チャンネル部14aと14
cとの間の距離)である。
At this time, the channel portions 14a and 14c
The relationship between the phase difference δ of the electron wave propagating in the magnetic field and the magnetic field B is δ =
(2πq / h) Bfd. Here, q is an elementary charge, q = 1.602 × 10 −19 C (Coulomb), h is Planck's constant, and h = 6.626 × 10 −34 J
・ S. Further, f is the length of the quantum wire 14, and d
Is the distance between the two quantum wires (channel portions 14a and 14a
c)).

【0019】また、磁場Bはビオ・サバールの法則によ
り、制御配線11を流れる電流Iから、B=I/(2π
ε02r)で示される。ただし、rは量子細線14と制
御配線11との距離を示す。また、cは真空中の光の速
さで、c=2.998×10 8m/sであり、ε0は真空
中の誘電率で、ε0=8.854×10-12F/mであ
る。
The magnetic field B is determined by the Biot-Savart law.
From the current I flowing through the control wiring 11, B = I / (2π
ε0c2r). However, r is controlled by the quantum wire 14.
The distance from the wiring 11 is shown. Also, c is the speed of light in a vacuum.
Then, c = 2.998 × 10 8m / s, and ε0Is a vacuum
Is the dielectric constant of0= 8.854 × 10-12F / m
It

【0020】図3に本実施例の超伝導機能素子における
制御配線11を流れる電流(超伝導電流)と位相差及び
規格化コンダクタンスとの関係のグラフを示す。図3に
おいて、電流密度J(A/cm2)は、制御配線11に
流れる電流Iの電流密度であり、断面積をS=10
-6(cm2)とした。
FIG. 3 is a graph showing the relationship between the current (superconducting current) flowing through the control wiring 11 in the superconducting functional element of this embodiment and the phase difference and the normalized conductance. In FIG. 3, the current density J (A / cm 2 ) is the current density of the current I flowing through the control wiring 11, and the cross-sectional area is S = 10.
-6 was (cm 2).

【0021】図3に示す如く、A−B効果により、電流
密度Jが変化とともに位相差が変化し、位相差δ=πの
とき、第1量子細線及び第2量子細線を伝搬するの電子
波が最大に干渉して出力が最低となる。つまり、制御配
線の電流量を制御することでコンダクタンスを変化させ
ることができる。
As shown in FIG. 3, due to the AB effect, the phase difference changes as the current density J changes, and when the phase difference δ = π, the electron wave propagating through the first quantum wire and the second quantum wire. Interfere with the maximum and the output becomes the minimum. That is, the conductance can be changed by controlling the current amount of the control wiring.

【0022】このように、A−B効果を得るための磁場
Bを与えるためには、制御配線11に電流密度J=10
4〜A/cm2と大きい電流を必要とし、従来の導電性材
料を用いた制御配線では、所望の磁場を得ることができ
ない。そこで、本発明では、これを達成するために制御
配線11の材料に超伝導体材料を使用することで可能に
した。
As described above, in order to apply the magnetic field B for obtaining the AB effect, the current density J = 10 is applied to the control wiring 11.
A large current of 4 to A / cm 2 is required, and the conventional control wiring using a conductive material cannot obtain a desired magnetic field. Therefore, in the present invention, in order to achieve this, it is possible to use a superconductor material as the material of the control wiring 11.

【0023】このようにして、コンダクタンスが制御配
線を流れる超伝導電流の大きさに応じて変化する超伝導
機能素子を得ることができる。この超伝導機能素子は、
制御配線11に酸化物超伝導体からなる超伝導材料を使
用しているため、超高速、低消費電力、低発熱等の効果
も得られる。また、本発明の超伝導機能素子は、1つの
機能を得るための素子寸法が極めて小さく、半導体微細
加工技術により構築される構造なため、プレーナ集積
化、アレイ化、超伝導素子とのハイブリット化が容易で
ある。さらに、本発明の超伝導機能素子は、構造を最適
設計することで電子密度を一定化(静電場によるA−B
効果では、電界効果により電子密度も変化させることも
可能)、また、マイスナーシールドにより低ノイズ化等
を計ることができる。
In this way, it is possible to obtain a superconducting functional element whose conductance changes according to the magnitude of the superconducting current flowing through the control wiring. This superconducting functional element is
Since the control wiring 11 is made of a superconducting material made of an oxide superconductor, it is possible to obtain effects such as ultra-high speed, low power consumption, and low heat generation. Further, since the superconducting functional element of the present invention has an extremely small element size for obtaining one function and has a structure constructed by semiconductor microfabrication technology, it has planar integration, arraying, and hybridization with a superconducting element. Is easy. Further, in the superconducting functional element of the present invention, the electron density is made constant by optimally designing the structure (AB by the electrostatic field).
As an effect, the electron density can be changed by the electric field effect), and the noise reduction can be achieved by the Meissner shield.

【0024】[0024]

【発明の効果】本発明によれば、極めて小さい素子寸法
の素子で、コンダクタンスの制御を行うことができる。
また、本発明の超伝導機能素子は、半導体微細加工技術
により基板上に形成することができ、プレーナ集積化、
アレイ化、他の超伝導素子等とのハイブリット化が可能
になる。
According to the present invention, the conductance can be controlled with an element having an extremely small element size.
In addition, the superconducting functional element of the present invention can be formed on a substrate by a semiconductor microfabrication technique, and planar integration,
It becomes possible to form an array and hybridize with other superconducting elements.

【0025】さらに、本発明の超伝導機能素子は、構造
を最適設計することで電子密度を一定化、また、マイス
ナーシールドにより低ノイズ化等を計ることができる。
Further, in the superconducting functional element of the present invention, the electron density can be made constant by optimally designing the structure, and the noise reduction can be achieved by the Meissner shield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の超伝導機能素子の構造を示
す模式図である。
FIG. 1 is a schematic view showing a structure of a superconducting functional element according to an embodiment of the present invention.

【図2】本発明の一実施例の超伝導機能素子の構造を示
す構造断面図である。
FIG. 2 is a structural cross-sectional view showing a structure of a superconducting functional element according to an embodiment of the present invention.

【図3】本発明の一実施例の超伝導機能素子における超
伝導電流と位相差及び規格化コンダクタンスの関係を示
す図である。
FIG. 3 is a diagram showing a relationship between a superconducting current, a phase difference, and a normalized conductance in a superconducting functional element according to an example of the present invention.

【符号の説明】[Explanation of symbols]

11 制御配線 12 積層配線 12a ガリウム−ヒ素 12b アルミニウム−ガリウム−ヒ素 12c ガリウム−ヒ素 13 コンタクト 14 量子細線 11 control wiring 12 laminated wiring 12a gallium-arsenic 12b aluminum-gallium-arsenic 12c gallium-arsenic 13 contact 14 quantum wire

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】互いに平行配置する第1量子細線及び第2
量子細線と、超伝導材料からなる制御配線とが、該第1
量子細線及び該第2量子細線の配線方向を含む面と、該
制御配線を流れる電流により形成される磁場の方向と、
が垂直に交わるように配置した超伝導機能素子であっ
て、 前記第1量子細線及び第2量子細線は、ガリウム−ヒ素
薄膜からなる第1層と、アルミニウム−ガリウム−ヒ素
薄膜からなる第2層と、ガリウム−ヒ素薄膜からなる第
3層と、を順次積層形成した積層配線の中にあって、第
1層と第2層及び第2層と第3層の境界面における第1
層側及び第3層側にそれぞれ形成されていること、 前記積層配線の両端には、n型半導体からなるコンタク
トが形成していることを特徴とする超伝導機能素子。
1. A first quantum wire and a second quantum wire arranged in parallel with each other.
The quantum wire and the control wiring made of a superconducting material are
A plane including the wiring direction of the quantum wire and the second quantum wire, and a direction of a magnetic field formed by a current flowing through the control wire,
Is a superconducting functional element arranged so as to intersect perpendicularly, wherein the first quantum wire and the second quantum wire are a first layer made of a gallium-arsenic thin film and a second layer made of an aluminum-gallium-arsenic thin film. And a third layer made of a gallium-arsenic thin film, which is formed in the order of the first and second layers and the first and second layers at the interface between the first and second layers.
A superconducting functional element, characterized in that it is formed on each of the layer side and the third layer side, and contacts made of an n-type semiconductor are formed at both ends of the laminated wiring.
JP4326681A 1992-12-07 1992-12-07 Superconducting functional device Pending JPH06177447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4326681A JPH06177447A (en) 1992-12-07 1992-12-07 Superconducting functional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4326681A JPH06177447A (en) 1992-12-07 1992-12-07 Superconducting functional device

Publications (1)

Publication Number Publication Date
JPH06177447A true JPH06177447A (en) 1994-06-24

Family

ID=18190470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4326681A Pending JPH06177447A (en) 1992-12-07 1992-12-07 Superconducting functional device

Country Status (1)

Country Link
JP (1) JPH06177447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008362A1 (en) * 1988-02-29 1989-09-08 Kabushiki Kaisha Komatsu Seisakusho Series control unit and method of control
WO2007040072A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Electromagnetic field detection element and device employing it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989008362A1 (en) * 1988-02-29 1989-09-08 Kabushiki Kaisha Komatsu Seisakusho Series control unit and method of control
WO2007040072A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Electromagnetic field detection element and device employing it
US8331057B2 (en) 2005-10-03 2012-12-11 Sharp Kabushiki Kaisha Electromagnetic field detecting element utilizing ballistic current paths

Similar Documents

Publication Publication Date Title
US7576353B2 (en) Ballistic deflection transistor and logic circuits based on same
JP3922466B2 (en) Semiconductor logic element
JPH07115207A (en) Quantum effect device
US4550330A (en) Semiconductor interferometer
JPH10107337A (en) Single electronic controlled magnetic resistance element
US5972744A (en) Quantum effect device, method of manufacturing the same
JPH06177447A (en) Superconducting functional device
Kaushal et al. A study of geometry effects on the performance of ballistic deflection transistor
US20230136676A1 (en) Superconductive qubit device and manufacturing method thereof
JPH07211913A (en) Semiconductor device and its manufacture
Ono et al. Single-electron transistor and current-switching device fabricated by vertical pattern-dependent oxidation
CN100409454C (en) Silicon-based one-electron transistor with quantum limit by oxygen injection and its manufacture method
JPH05206173A (en) Texture dope structure semiconductor device texture
JP2986819B2 (en) Superconducting device
US5519232A (en) Quantum interference device
JP3511212B2 (en) Electron wave interference device
JPH08306905A (en) Electronic device and its manufacture
JP3086350B2 (en) Electron wave device
JP3159339B2 (en) Electron wave interference device
EP0487922B1 (en) High speed switching electron device
JP2911159B2 (en) Semiconductor device
Hayakawa Recent Advances in Josephson Material and Device
JPH04364781A (en) Semiconductor device
JPS63280473A (en) Switching element
JP2000150863A (en) High-speed element