JPH0576393A - Determination of yeast activity - Google Patents
Determination of yeast activityInfo
- Publication number
- JPH0576393A JPH0576393A JP24794791A JP24794791A JPH0576393A JP H0576393 A JPH0576393 A JP H0576393A JP 24794791 A JP24794791 A JP 24794791A JP 24794791 A JP24794791 A JP 24794791A JP H0576393 A JPH0576393 A JP H0576393A
- Authority
- JP
- Japan
- Prior art keywords
- yeast
- intracellular
- value
- activity
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】〔発明の背景〕BACKGROUND OF THE INVENTION
【産業上の利用分野】本発明は、酵母の細胞内pHを測
定することによって、酵母の活性、たとえば増殖力また
は発酵力、あるいは生死ないし生菌率、を容易かつ簡便
に測定して、当該酵母の活性を判定する方法に関する。
酵母の活性を短時間に知ることは、発酵産業での工程管
理あるいは製品の品質管理などにおいて望ましいことで
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides an easy and simple method for measuring the intracellular pH of yeast to easily and simply measure the activity of yeast, for example, the proliferative power or fermentative power, or the viable or dead ratio. It relates to a method for determining the activity of yeast.
It is desirable to know the yeast activity in a short time in process control or product quality control in the fermentation industry.
【0002】[0002]
【従来の技術】従来、微生物の増殖力の測定には、微生
物を実際に培養してその増殖能力を知る方法(プレート
カルチャー法、スライドカルチャー法等)がある。この
方法は、寒天培地に実際にコロニーを形成させて、その
数より現実の増殖能力を知るものであるから、最も信頼
のおける方法である。しかし、培養が必要であるという
ことは結果が得られるまでに約1〜6日が必要であり、
迅速に測定結果を得られないという欠点がある。2. Description of the Related Art Conventionally, there has been a method for measuring the growth ability of microorganisms such as a plate culture method or a slide culture method in which a microorganism is actually cultured and its growth ability is known. This method is the most reliable method because it actually forms colonies on the agar medium and knows the actual growth ability from the number of colonies. However, the fact that culturing is required means that it takes about 1 to 6 days to obtain the results,
There is a drawback that the measurement result cannot be obtained quickly.
【0003】一方、この他にメチレンブルーやフルオレ
セイン誘導体等による染色法が知られている。この方法
は、酵母の生菌と死菌とでは生菌のみが細胞内にとりこ
んだメチレンブルーを無色化すること、あるいはフルオ
レセインのエステル誘導体(無蛍光であることがふつう
である)を酵母に取り込ませると、生細胞であれば酵母
中のエステラーゼによってこれが分解されてフルオレセ
インが再生されて蛍光を発生すること、を利用したもの
であって、染色後に顕微鏡下で染色細胞を計数するだけ
の簡便な方法である。しかしながら、得られる測定結果
は、その細胞の増殖力とは必ずしも一致しない。On the other hand, other than this, a dyeing method using methylene blue, a fluorescein derivative or the like is known. In this method, between live and dead yeast, only live bacteria decolorize methylene blue incorporated into cells, or an ester derivative of fluorescein (which is usually non-fluorescent) is incorporated into yeast. And a living cell, which is decomposed by esterase in yeast to regenerate fluorescein to generate fluorescence, which is a simple method of counting stained cells under a microscope after staining. Is. However, the obtained measurement results do not always match the proliferative potential of the cells.
【0004】〔発明の概要〕[Outline of the Invention]
【発明が解決しようとする課題】このように従来技術に
は、長時間を要したり、また短時間で結果が得られる
が、増殖力とは必ずしも一致しないことがあったりする
という解決すべき技術課題があった。本発明は、できる
だけ短時間にしかもその細胞の活性、たとえば増殖力、
発酵力等、を把握しようとする新しい方法を提供しよう
とするものである。As described above, the prior art requires a long period of time and a result can be obtained in a short period of time, but the proliferative power may not always match. There were technical challenges. The present invention is directed to the activity of the cells in the shortest possible time, such as the proliferative potential,
It is intended to provide a new method for grasping the fermentative power and the like.
【0005】[0005]
【課題を解決するための手段】本発明は、酵母細胞を低
pH環境の溶液に一定時間放置後の細胞内pHを測定す
ることにより、その細胞の活性、具体的には増殖力、発
酵力、あるいは生菌率、を把握することができるとの発
見に基くものである。[Means for Solving the Problems] The present invention is to measure the intracellular pH of a yeast cell after allowing it to stand in a solution of a low pH environment for a certain period of time to determine the activity of the cell, specifically, the proliferative power and fermentative power. , Or the viable cell rate, based on the finding that it is possible to grasp.
【0006】<要旨>すなわち、本発明による酵母活性
の測定法は、下記の工程からなること、を特徴とするも
のである。 (1) 酵母をpH6以下の低pH環境下に置き、所定時
間経過後に酵母細胞内pHを測定する。 (2) 得られた細胞内pH値の高い酵母をそれの低い酵
母よりも活性が高いものと判定する。<Summary> That is, the method for measuring yeast activity according to the present invention is characterized by comprising the following steps. (1) Yeast is placed in a low pH environment of pH 6 or less, and after a lapse of a predetermined time, the intracellular pH of the yeast is measured. (2) The obtained yeast having a high intracellular pH value is judged to have higher activity than yeast having a low intracellular pH value.
【0007】この工程(2) の他の態様に関して、本発明
による酵母活性の測定法は、下記の工程からなること、
を特徴とするものである。 (1) 酵母をpH6以下の低pH環境下に置き、所定時
間経過後に酵母細胞内pHを測定する。 (2) 得られた細胞内pH値と当該酵母個有の細胞内p
H値との差の小さい酵母をその差の大きい酵母よりも活
性が大きいものと判定する。[0007] Regarding another embodiment of this step (2), the method for measuring yeast activity according to the present invention comprises the following steps:
It is characterized by. (1) Yeast is placed in a low pH environment of pH 6 or less, and after a lapse of a predetermined time, the intracellular pH of the yeast is measured. (2) Obtained intracellular pH value and intracellular p value unique to the yeast
Yeast with a small difference from the H value is judged to have greater activity than yeast with a large difference.
【0008】本発明によるもう一つの酵母活性の測定法
は、下記の工程からなること、を特徴とするものであ
る。 (1) 酵母細胞内にpH感受性の蛍光物質を取り込ませ
る工程。 (2) 蛍光物質を取り込ませた酵母をpH6以下の低p
H環境下に置き、所定時間経過後に酵母細胞に励起光を
照射して蛍光を発生させ、2種の蛍光強度を測定する。 (3) 予め作成した検量線により、測定蛍光強度の比に
対応した細胞内pH値を求める。 (4) 得られた細胞内pH値の高い酵母をそれの低い酵
母よりも活性が高いものと判定する。Another method for measuring yeast activity according to the present invention is characterized by comprising the following steps. (1) A step of incorporating a pH-sensitive fluorescent substance into yeast cells. (2) Yeast containing a fluorescent substance has a low pH of 6 or less.
It is placed in an H environment, and after a lapse of a predetermined time, the yeast cells are irradiated with excitation light to generate fluorescence, and two types of fluorescence intensities are measured. (3) The intracellular pH value corresponding to the ratio of the measured fluorescence intensities is obtained from the calibration curve prepared in advance. (4) The obtained yeast having a high intracellular pH value is judged to have higher activity than yeast having a low intracellular pH value.
【0009】この工程(4) の他の態様に関して、本発明
による酵母活性の測定法は、下記の工程からなることを
特徴とするものである。 (1) 酵母細胞内にpH感受性の蛍光物質を取り込ませ
る工程。 (2) 蛍光物質を取り込ませた酵母をpH6以下の低p
H環境下に置き、所定時間経過後に酵母細胞に励起光を
照射して蛍光を発生させ、2種の蛍光強度を測定する。 (3) 予め作成した検量線により、測定蛍光強度の比に
対応した細胞内pH値を求める。 (4) 得られた細胞内pH値と当該酵母個有の細胞内p
H値との差の小さい酵母をその差の大きい酵母よりも活
性が大きいものと判定する。[0009] Regarding the other embodiment of this step (4), the method for measuring yeast activity according to the present invention is characterized by comprising the following steps. (1) A step of incorporating a pH-sensitive fluorescent substance into yeast cells. (2) Yeast containing a fluorescent substance has a low pH of 6 or less.
It is placed in an H environment, and after a lapse of a predetermined time, the yeast cells are irradiated with excitation light to generate fluorescence, and two types of fluorescence intensities are measured. (3) The intracellular pH value corresponding to the ratio of the measured fluorescence intensities is obtained from the calibration curve prepared in advance. (4) Obtained intracellular pH value and intracellular p value unique to the yeast
Yeast with a small difference from the H value is judged to have greater activity than yeast with a large difference.
【0010】<効果>本発明は染色法の範疇に入るもの
であるところ、本発明によれば、酵母を低pH環境下に
所定時間置くことによって、先ず、対象酵母の個々の細
胞の活性の差が増幅され、しかも「所定時間」は通常数
時間までであるので、染色法に生得的な短時間での測定
という効果を享受することができる。<Effect> The present invention falls within the scope of the dyeing method. According to the present invention, first, by placing the yeast in a low pH environment for a predetermined time, the activity of individual cells of the target yeast is first confirmed. Since the difference is amplified and the "predetermined time" is usually up to several hours, it is possible to enjoy the effect of measurement in a short time that is inherent to the staining method.
【0011】酵母を低pH環境下に置いてから測定した
細胞内pHが酵母細胞の活性と相関があるということは
本発明者らがはじめて見出した現象であると思料される
ところであるが、この現象は酵母細胞のHポンプ作用に
基因するものと推定される(ただし、そのような推定に
よって、本発明は何の制約をも受けるものではない)。
すなわち、活性の高い酵母細胞はHポンプ作用が強く
て、環境が低pHとなっても細胞内pHを原pHに維持
する能力が大きい。それに対して、活性の低い細胞は原
細胞内pH値を維持することが弱いので、所定時間経過
後の細胞内pHは原pH値より低いあるレベルにまで低
下する。The fact that the intracellular pH measured after placing yeast in a low pH environment correlates with the activity of yeast cells is considered to be a phenomenon first discovered by the present inventors. It is speculated that the phenomenon is due to the H pumping action of yeast cells (although such a presumption imposes no limitation on the present invention).
That is, highly active yeast cells have a strong H pumping action and have a large ability to maintain the intracellular pH at the original pH even when the environment has a low pH. On the other hand, since cells having low activity do not maintain the original intracellular pH value, the intracellular pH after a predetermined time elapses is lowered to a certain level lower than the original pH value.
【0012】従って、活性の旺盛な酵母細胞とこれが劣
る酵母細胞とでは低pH環境下で所定時間経過後は細胞
内pHに有意な差が生じ、それをそのままあるいは酵母
細胞内に取り込ませたpH感受性の蛍光物質の発光によ
って検出すれば、高感度かつ短時間に所与の酵母の活性
を把握することができる。Therefore, there is a significant difference in intracellular pH between a highly active yeast cell and a yeast cell that is inferior in a low pH environment after a predetermined period of time. The activity of a given yeast can be detected with high sensitivity and in a short time by detecting it by the emission of a sensitive fluorescent substance.
【0013】酵母の活性を簡便な方法によって把握する
ことができるので、本発明は酵母利用のたとえば食品産
業において発酵に関する製品の品質管理、工程管理等に
裨益するところが大きい。Since the activity of yeast can be grasped by a simple method, the present invention greatly benefits the quality control and process control of products relating to fermentation in the yeast industry, for example, in the food industry.
【0014】〔発明の具体的説明〕 <酵母>本発明によって活性を測定する酵母は、分類上
酵母の範疇に入るものがいずれも対象となる。それらの
うちで代表的なものは、ビール酵母、パン酵母、ワイン
酵母、清酒酵母、アルコール酵母等であって、微生物学
的にはサッカロマイセス(Saccharomyces)に属するもの
である。これらの酵母にはたとえば醸造業者が使用目的
に応じて育種したものも包含されるが、そのような「変
異種」も本発明の対象とするものとする。[Detailed Description of the Invention] <Yeast> The yeasts whose activity is to be measured according to the present invention are all yeasts that fall into the category of yeasts in terms of classification. Typical of them are brewer's yeast, baker's yeast, wine yeast, sake yeast, alcohol yeast and the like, which belong to Saccharomyces microbiologically. These yeasts include, for example, those bred by a brewer depending on the purpose of use, and such "variants" are also the subject of the present invention.
【0015】<低pH環境>本発明による酵母細胞内p
Hの測定は、酵母細胞を低pH環境下に所定時間置いて
から行なう。本発明でいう低pH環境とは、pH6以
下、好ましくは5以下、の条件を意味する。pH値の下
限は特にないが、好ましくはpH2〜3程度、である。<Low pH environment> Intracellular p of yeast according to the present invention
The measurement of H is performed after the yeast cells are placed in a low pH environment for a predetermined time. The low pH environment in the present invention means a condition of pH 6 or less, preferably 5 or less. There is no particular lower limit to the pH value, but it is preferably about pH 2 to 3.
【0016】このような低pH環境は、酵母の水性懸濁
液に無機酸または有機酸を添加することによって容易に
実現することができる。また、所定pH値を維持するた
めには、緩衝剤、具体的には酸性緩衝剤、を使用するこ
とがふつうである。Such a low pH environment can be easily realized by adding an inorganic acid or an organic acid to an aqueous suspension of yeast. Further, in order to maintain a predetermined pH value, it is usual to use a buffering agent, specifically an acidic buffering agent.
【0017】酵母細胞をこのような低pH環境下に置く
時間は、機能的にいえば酵母細胞内pHが実質的に変化
しなくなるまでの時間、が好ましい。一方、定量的にい
えば、これは1分以上、好ましくは30分以上、であ
り、200分を越えることはほとんどない。好ましい時
間は5〜100分、特に好ましい時間は30〜100
分、である。この低pH環境の温度は、酵母細胞のpH
維持能力(前記の推定機作によれば、Hポンプ能力)が
働く温度であるべきことはいうまでもない。これは、一
般に、酵母の代謝休止温度より低くなく、一方酵母が死
滅するほど高温でない温度であるが、好ましい温度はマ
イナス数度〜常温である。The time for which the yeast cells are placed in such a low pH environment is preferably, functionally, the time until the intracellular pH of the yeast cells does not substantially change. On the other hand, quantitatively, this is 1 minute or longer, preferably 30 minutes or longer, and hardly exceeds 200 minutes. A preferable time is 5 to 100 minutes, and a particularly preferable time is 30 to 100 minutes.
Minutes. The temperature of this low pH environment is the pH of the yeast cells.
It goes without saying that it should be the temperature at which the maintenance capacity (H pump capacity according to the above-mentioned estimated mechanism) operates. This is generally not lower than the metabolic resting temperature of yeast, while not so high as to kill the yeast, but the preferred temperature is minus several degrees to room temperature.
【0018】<細胞内のpHの測定(その一)>このよ
うな低pH環境下に所定時間置かれた酵母細胞の細胞内
pHは、合目的的な任意の方法ないし手段によって測定
することができる。一般に細胞内pHの測定は公知であ
って、具体的には、たとえば、生命の科学39(5):
386−397(1988)に示されており、本発明に
おいても適当なものを選んで使用することができる。<Measurement of intracellular pH (No. 1)> The intracellular pH of yeast cells placed in such a low pH environment for a predetermined time can be measured by any purposeful method or means. it can. The measurement of intracellular pH is generally known, and specifically, for example, the science of life 39 (5):
386-397 (1988), an appropriate one can be selected and used in the present invention.
【0019】そのような細胞内pHの測定法の一つは、
弱酸・塩基の分配を用いる方法(J.Clin.Invest.38:720
-729(1959))であって、具体的にはたとえばDMO
(5,5‐ジメチル‐2,4‐オキサゾリジンジオン)
を細胞懸濁液に添加し、平衡化後、細胞内外のDMO濃
度を測定して、その分配度から細胞内pHを算出するこ
とからなるものである。One of the methods for measuring intracellular pH is as follows:
Method using partitioning of weak acid / base (J.Clin.Invest. 38 : 720
-729 (1959)), and specifically, for example, DMO
(5,5-dimethyl-2,4-oxazolidinedione)
Is added to the cell suspension, after equilibration, the intracellular and extracellular DMO concentrations are measured, and the intracellular pH is calculated from the degree of partitioning.
【0020】酵母細胞内pHの測定法の他の一つは、無
機リン酸のケミカルシフトが細胞内pHによって変化す
ることを利用したものであって(J. Biol. Chem. 248:7
276(1973))、細胞をそのままNMR分析にかけ、その無
機リン酸のケミカルシフトを測定することによって、細
胞内pHを測定することからなるものである。Another method for measuring the intracellular pH of yeast utilizes the fact that the chemical shift of inorganic phosphate changes depending on the intracellular pH (J. Biol. Chem. 248 : 7).
276 (1973)), the cells are directly subjected to NMR analysis, and the intracellular pH is measured by measuring the chemical shift of the inorganic phosphate.
【0021】<細胞内のpHの測定(その二)>酵母細
胞内のpH測定法の他の、そして本発明の好ましい、方
法は、酵母細胞にpH感受性の蛍光物質を取り込ませ、
細胞内pHに対応して発生する蛍光を測定することから
なるものである。<Measurement of intracellular pH (part 2)> Another method of measuring the intracellular pH of yeast cells, and a preferred method of the present invention, is to incorporate a pH-sensitive fluorescent substance into yeast cells,
It consists of measuring the fluorescence generated corresponding to the intracellular pH.
【0022】pH感受性の蛍光物質、すなわち、それが
置かれたpH条件に対応して蛍光発色に差を生じる蛍光
物質、は周知であって、酵母細胞に取込ませることがで
きるものはいずれも本発明において使用することができ
る。Fluorescent substances that are pH-sensitive, that is, fluorescent substances that produce a difference in fluorescent color in response to the pH conditions in which they are placed, are well known, and any substance that can be incorporated into yeast cells is known. It can be used in the present invention.
【0023】pH感受性蛍光物質を酵母細胞内に取り込
ませるには、合目的的な任意の方法ないし手段によるこ
とができる。一般に、酵母細胞をその水性懸濁液中でた
とえば常温でpH感受性蛍光物質と所定時間(たとえば
数秒〜60分間)接触させればよい。もっとも、pH感
受性蛍光物質は具体的には下記のようなものであるが、
これらはそのままでは上記のように酵母細胞と接触させ
ても合理的な時間内に必要量が取り込まれないことが多
い。そのような蛍光物質にはイオン性の基、たとえばフ
ェノール性水酸基あるいはカルボキシル基を持つものが
多いので、それをエステル(たとえば、低級カルボン酸
たとえば酢酸あるいは低級アルコールたとえばメタノー
ル、とのエステル)の形にすれば、容易に酵母細胞に取
り込まれるようになる。Incorporation of the pH-sensitive fluorescent substance into yeast cells can be carried out by any purposeful method or means. Generally, yeast cells may be contacted with the pH-sensitive fluorescent substance in the aqueous suspension thereof at room temperature for a predetermined time (for example, several seconds to 60 minutes). However, the pH-sensitive fluorescent substance is specifically as follows,
In many cases, the necessary amount of these is not taken up within a reasonable time even if they are contacted with yeast cells as described above. Since many such fluorescent substances have an ionic group such as a phenolic hydroxyl group or a carboxyl group, they are converted into an ester (for example, ester with lower carboxylic acid such as acetic acid or lower alcohol such as methanol). Then, it will be easily taken up by the yeast cells.
【0024】本発明で使用するのに適当なpH感受性蛍
光物質の具体例をいくつか示せば、フルオレセインおよ
びその誘導体、クエン1(quene 1)およびその誘導体、
1,4‐ジヒドロキシ‐フタロニトリルおよびその誘導
体、ウンベリフェロンおよびその誘導体、ヒドロキシピ
レンおよびその誘導体、5‐ジメチルアミノナフタレン
‐1‐スルホネート(ダンシル)発色基、カルボキシ‐
セミナフトロダフルオル(carboxy-seminaphthorhodafl
uor)(カルボキシSNARF)、カルボキシ‐セミナフ
トフルオレセイン(カルボキシSNAFL)、その他が
ある(そのさらなる詳細は、たとえば、生命の科学39
(5):386−389(1988)の図1参照)。こ
れらを酵母細胞に取り込ませるときの現実の姿がそのエ
ステル誘導体であることがふつうであることは前記した
ところである。本発明で代表的なpH感受性蛍光物質
は、たとえば、5(6)‐カルボキシフルオレセインジ
アセテートや2´,7´‐ビス(カルボキシエチル)‐
5(6)‐カルボキシフルオレセイン・テトラアセトオ
キシメチルエステルである。Some specific examples of pH sensitive phosphors suitable for use in the present invention are fluorescein and its derivatives, quene 1 and its derivatives,
1,4-dihydroxy-phthalonitrile and its derivatives, umbelliferone and its derivatives, hydroxypyrene and its derivatives, 5-dimethylaminonaphthalene-1-sulfonate (dansyl) color-forming group, carboxy-
Semi-naphthofluor (Fluoro-seminaphthorhodafl)
uor) (carboxy SNARF), carboxy-seminaphthofluorescein (carboxy SNAFL), etc. (further details can be found in, for example, Science of Life 39
(5): 386-389 (1988), see FIG. 1). As described above, it is usual that the actual form when these are taken up by yeast cells is the ester derivative thereof. Typical pH-sensitive fluorescent substances in the present invention include, for example, 5 (6) -carboxyfluorescein diacetate and 2 ′, 7′-bis (carboxyethyl)-
It is 5 (6) -carboxyfluorescein tetraacetoxymethyl ester.
【0025】エステル誘導体として酵母細胞内に取り込
まれたpH感受性蛍光物質は、細胞内のエステラーゼが
作用してエステル構造が破壊されてイオン形の蛍光物質
が再生される。イオン形の蛍光物質は酵母細胞に取り込
まれ難かったことと同様に細胞外へも排出され難いの
で、細胞内に蓄積される。このように酵母細胞内に取り
込まれたpH感受性蛍光物質は、それに励起光を照射す
ると、所与の細胞内pH値に応じた蛍光を発する。The pH-sensitive fluorescent substance taken into the yeast cell as an ester derivative is destroyed by the esterase in the cell to destroy the ester structure and regenerate the ionic fluorescent substance. Since the ionic fluorescent substance is difficult to be taken out of the cell as well as being difficult to be taken up by the yeast cell, it is accumulated in the cell. When the pH-sensitive fluorescent substance thus incorporated into the yeast cell is irradiated with excitation light, it emits fluorescence according to a given intracellular pH value.
【0026】所定の励起波長によって発生する蛍光を所
定波長において測定して得た蛍光強度と当該pH感受性
蛍光物質が置かれているpH条件との関係を予め求めて
検量線を作製しておき、当該励起光により酵母細胞が発
生する蛍光の強度を測定して、酵母細胞内pHを知るこ
とができる。A calibration curve is prepared by previously obtaining the relationship between the fluorescence intensity obtained by measuring the fluorescence generated at a predetermined excitation wavelength at a predetermined wavelength and the pH condition in which the pH-sensitive fluorescent substance is placed, The yeast intracellular pH can be known by measuring the intensity of fluorescence generated by the yeast cells by the excitation light.
【0027】しかし、所与の酵母細胞標品であっても、
個々の細胞によってpH感受性蛍光物質の取り込み量が
異なることがあり、励起光照射によって発生する蛍光の
強度は取り込まれたpH感受性物質の細胞内賦存量ない
し濃度によって左右されるので、測定された蛍光強度の
絶対値では正確なそのpH依存性を表示できないことが
ある。従って、1種の蛍光強度すなわち蛍光強度の絶対
値ではなくて、2種の蛍光強度の比を採用して、蛍光物
質の細胞内濃度の影響を消去することが好ましい。However, even with a given yeast cell preparation,
The amount of pH-sensitive fluorescent substance incorporated may vary depending on individual cells, and the intensity of fluorescence generated by excitation light irradiation depends on the intracellular amount or concentration of the incorporated pH-sensitive substance. The absolute value of the strength may not be able to indicate its exact pH dependence. Therefore, it is preferable to eliminate the influence of the intracellular concentration of the fluorescent substance by adopting the ratio of the two types of fluorescence intensity instead of one type of fluorescence intensity, that is, the absolute value of the fluorescence intensity.
【0028】そのような2種の蛍光強度の一具体例は、
波長の異なる2種の励起光を使用し、所定の波長での蛍
光強度をそれぞれ測定して得たものであって、具体的に
は、たとえば5(6)‐カルボキシフルオレセインジア
セテートの場合は励起波長が441nmおよび488nm、
蛍光測定波長が518nmという条件で得られる2種の蛍
光強度がある。蛍光物質の細胞内濃度の影響を消去する
ための2種の蛍光強度の他の具体例の一つは、1種の励
起光を使用し、所定の2種の波長で蛍光を測定して得た
ものであって、具体的には、たとえば、カルボキシ‐S
NARFの場合は励起波長が534nm、蛍光測定波長が
604nmおよび634nmという条件で得られる2種の蛍
光強度がある。A specific example of such two types of fluorescence intensity is as follows:
It is obtained by measuring the fluorescence intensity at a predetermined wavelength using two kinds of excitation light having different wavelengths. Specifically, for example, in the case of 5 (6) -carboxyfluorescein diacetate, Wavelengths of 441 nm and 488 nm,
There are two types of fluorescence intensity obtained under the condition that the fluorescence measurement wavelength is 518 nm. One of the other specific examples of the two types of fluorescence intensity for eliminating the influence of the intracellular concentration of the fluorescent substance is obtained by measuring the fluorescence at two predetermined wavelengths using one type of excitation light. Specifically, for example, carboxy-S
In the case of NARF, there are two types of fluorescence intensity obtained under the conditions of an excitation wavelength of 534 nm and fluorescence measurement wavelengths of 604 nm and 634 nm.
【0029】いずれの方式によるとしても、得られる2
種の蛍光強度の比を、当該pH感受性物質の関数として
検量線を作製すればよい。蛍光強度の測定は、細胞懸濁
液蛍光光度計で行なってもよいし( Biochemistry18:221
0-2218(1979) )、スライドグラスにその細胞を載置し
て、蛍光顕微鏡下で測光、測定してもよい(Nature 32
5:447-450(1987))。Whichever method is used, the obtained 2
A calibration curve may be prepared by using the ratio of the fluorescence intensities of the species as a function of the pH-sensitive substance. Fluorescence intensity may be measured with a cell suspension fluorometer (Biochemistry 18: 221).
0-2218 (1979)), the cells may be placed on a slide glass and measured and measured under a fluorescence microscope (Nature 32).
5 : 447-450 (1987)).
【0030】本発明で使用することができる細胞内pH
測定装置の一具体例としては、特開平3−24442号
公報(特願平1−158708号)記載のものを挙げる
ことができる。Intracellular pH that can be used in the present invention
As a specific example of the measuring device, the one described in JP-A-3-24442 (Japanese Patent Application No. 1-158708) can be mentioned.
【0031】本発明による方法は、酵母個々の細胞内p
Hを測定する場合にも、酵母標品すなわち一定集団の平
均的な細胞内pH値を測定するためにも、利用すること
ができる。前者の場合は、酵母細胞個々の蛍光発光状況
を調べることになるが、そのような場合は画像処理もし
くはフローサイトメトリーの技法によるのが便利であ
る。前記の特開平3−24442号公報は、画像処理の
一例についても必要な情報を開示するものてある。The method according to the present invention comprises the intracellular p
It can be used to measure H as well as to measure the average intracellular pH value of a yeast preparation, that is, a fixed population. In the former case, the fluorescence emission status of each yeast cell will be examined. In such a case, it is convenient to use an image processing or flow cytometry technique. The above-mentioned Japanese Patent Laid-Open No. 3-24442 discloses information necessary for an example of image processing.
【0032】<酵母活性の判定>このようにして測定さ
れた酵母細胞内pHが当該酵母細胞の活性と相関がある
ことは後記の実験事実の明らかにするところであって、
細胞内pH値が大きい酵母ほど活性が旺盛である。従っ
て、対象とする酵母に対して、予め細胞内pH値と酵母
活性についての情報を用意しておけば、細胞内pH値か
ら当該酵母の活性を把握することができる。<Determination of Yeast Activity> The fact that the intracellular pH of the yeast thus measured has a correlation with the activity of the yeast cell will be clarified by the experimental facts described below.
Yeast with a higher intracellular pH value has more active activity. Therefore, if information on the intracellular pH value and yeast activity is prepared in advance for the target yeast, the activity of the yeast can be grasped from the intracellular pH value.
【0033】本発明による方法が、上記のような酵母標
品についての平均的な細胞内pH値だけでなくて、酵母
個々の細胞内pHを測定するのにも有用であることは前
記したところであるが、所与の酵母試料について個々の
細胞の活性を測定すれば、当該試料、ひいてはその酵母
集団である酵母標品、の細胞活性の分布を知ることがで
きる。As mentioned above, the method according to the present invention is useful not only for measuring the average intracellular pH value of yeast preparations as described above, but also for measuring the intracellular pH value of each yeast. However, by measuring the activity of individual cells in a given yeast sample, it is possible to know the distribution of the cell activity of the sample, and thus the yeast preparation, which is the yeast population.
【0034】[0034]
<実施例1>ビール酵母を麦汁で定常期迄培養した(8
℃)。その細胞を水洗後、2℃下で無菌的に水中保存し
た。保存日数を変えることにより、生菌率の異なった細
胞集団を取得した。各酵母の生菌率を麦芽寒天培地を用
いたプレートカルチャー法で求めた。一方、細胞内pH
の測定は以下のように行なった。酵母を約2ml分取し、
MESバッファ(pH6.2、50mM 2−(N−モル
ホリノ)エタンスルホン酸、NaCl 110mM、KC
l 5mM、MgCl2 1mM)で洗浄後、終濃度1mM5
(6)‐カルボキシフルオレセインジアセテートを添加
して0℃に30分放置した。その後、pH3のクエン酸
/リン酸バッファ(50mM、NaCl110mM、KCl
5mM、MgCl2 1mM)で洗浄後、同バッファに懸
濁させた。0℃で90分後、蛍光光度計(島津製作所製
分光蛍光光度計「RF−5000」)で2励起波長
(441nmおよび488nm)に対する蛍光(518nm)
強度を測定した。その蛍光強度の比をとり、予め作製し
た検量線より細胞内pH(細胞集団としてのpH)を求
めた。<Example 1> Beer yeast was cultivated in wort until a stationary phase (8
C). The cells were washed with water and stored aseptically in water at 2 ° C. By changing the number of storage days, cell populations with different viable cell rates were obtained. The viable cell rate of each yeast was determined by the plate culture method using malt agar medium. On the other hand, intracellular pH
Was measured as follows. Collect about 2 ml of yeast,
MES buffer (pH 6.2, 50 mM 2- (N-morpholino) ethanesulfonic acid, NaCl 110 mM, KC
5 mM, MgCl 2 1 mM), and then final concentration 1 mM 5
(6) -Carboxyfluorescein diacetate was added and left at 0 ° C. for 30 minutes. Then, pH 3 citric acid / phosphate buffer (50 mM, NaCl 110 mM, KCl
After washing with 5 mM and MgCl 2 1 mM), the cells were suspended in the same buffer. After 90 minutes at 0 ° C., fluorescence (518 nm) for two excitation wavelengths (441 nm and 488 nm) was measured with a fluorescence photometer (Spectrofluorimeter “RF-5000” manufactured by Shimadzu Corporation).
The strength was measured. The ratio of the fluorescence intensities was calculated, and the intracellular pH (pH as a cell population) was determined from the calibration curve prepared in advance.
【0035】結果は、図1に示す通りであった。図1の
結果から明らかなように、細胞内pH値と生菌率(プレ
ートカルチャー法で得たもの)との間に相関がある。な
お、ここで用いた検量線は、下表のデータをプロットし
て作製したものである。The results were as shown in FIG. As is clear from the results in FIG. 1, there is a correlation between the intracellular pH value and the viable cell rate (obtained by the plate culture method). The calibration curve used here was created by plotting the data in the table below.
【0036】 pH 5.99 5.78 5.58 5.37 5.27 5.16 4.95 I488 ln 1.641 1.430 1.194 1.051 0.867 0.770 0.519 I441 また、上で用いたのと同一の酵母を同様にMESバッフ
ァに懸濁させ、終濃度1mM5(6)‐カルボキシフルオ
レセインジアセテートを添加、懸濁後室温で20分イン
キュベートした。その懸濁液を蛍光顕微鏡(B励起)で
観察し、染色されたものを生細胞、染色されていないも
のを死細胞として、生菌率を計測した。その結果は、図
2に示す通りであった。 PH 5.99 5.78 5.58 5.37 5.27 5.16 4.95 I 488 ln 1.641 1.430 1.194 1.051 0.867 0.770 0.519 I 441 In addition, the same yeast as used above was suspended in MES buffer in the same manner, and a final concentration of 1 mM 5 (6) -carboxyfluorescein diacetate was added. Incubated for minutes. The suspension was observed under a fluorescence microscope (excited with B), and the stained cells were regarded as living cells and the unstained cells were regarded as dead cells, and the viable cell ratio was measured. The result was as shown in FIG.
【0037】<実施例2>パン酵母を、2%ペプトン、
1%酵母エキス、2%グルコースを含む培地で定常期迄
培養し(25℃)、水洗後、2℃、8℃、20℃および
25℃で無菌的に保存して、生菌率の異なる酵母を取得
した。実施例1と同様の実験を行なった。結果は、図3
に示す通りであった。Example 2 Baker's yeast was mixed with 2% peptone,
Yeast having different viable cell ratios are cultured in a medium containing 1% yeast extract and 2% glucose to a stationary phase (25 ° C), washed with water, and aseptically stored at 2 ° C, 8 ° C, 20 ° C and 25 ° C. Got The same experiment as in Example 1 was performed. The result is shown in Figure 3.
It was as shown in.
【0038】<実施例3>ビール酵母を麦汁で定常期迄
培養し(8℃)、水洗後その細胞を無菌的に保存し(4
℃)、保存日数を変えることで発酵能の異なった種々の
酵母を取得した。それら酵母の細胞内pHと麦汁発酵力
(8℃)との関係を求めた。結果は、図4に示す通りで
あった。<Example 3> Beer yeast was cultivated in wort to a stationary phase (8 ° C), washed with water, and the cells were aseptically stored (4).
C.) and various storage days were changed to obtain various yeasts having different fermentation abilities. The relationship between the intracellular pH of these yeasts and the wort fermenting power (8 ° C) was determined. The result was as shown in FIG.
【0039】この実験は、酵母をエイジングするとその
酵母の発酵力は低下していくが、それを細胞内pHによ
って正確にとらえているか否かをみたものである。図4
の結果から、酵母の発酵力は細胞内pH値によって正確
にとらえられていることがわかる。In this experiment, the fermenting power of the yeast decreases as it ages, but it was examined whether or not it was accurately grasped by the intracellular pH. Figure 4
From the results, it can be seen that the fermentative power of yeast is accurately grasped by the intracellular pH value.
【0040】<実施例4>ビール酵母を麦汁で定常期迄
培養した(8℃)。その細胞を水洗後、2℃下で無菌的
に水中保存した。保存日数を変えることにより、酵母活
性(具体的には、増殖能、発酵能)の異なった細胞集団
を取得した。各酵母の細胞内pHの測定は、酵母細胞を
pH3のクエン酸/リン酸バッファに懸濁させるところ
を、下記のバッファに懸濁させることを除き、実施例1
と同様に行なった。<Example 4> Beer yeast was cultivated in wort until a stationary phase (8 ° C). The cells were washed with water and stored aseptically in water at 2 ° C. By changing the number of storage days, cell populations having different yeast activities (specifically, growth ability and fermentation ability) were obtained. The intracellular pH of each yeast was measured in Example 1 except that the yeast cells were suspended in a citric acid / phosphate buffer of pH 3 except that they were suspended in the following buffers.
It carried out similarly to.
【0041】バッファー pH6.66、50mM Mops 、110mMNaCl 、5mMKCl、 1mMMgCl2 pH6.20、50mM MES、110mMNaCl 、5mMKCl、 1mMMgCl2 pH5.60、50Mmクエン酸‐リン酸2ナトリウム、110mMNaC
l 、5mMKCl、 1mMMgCl2 pH5.30、50Mmクエン酸‐リン酸2ナトリウム、110mMNaC
l 、5mMKCl、 1mMMgCl2 pH4.60、50Mmクエン酸‐リン酸2ナトリウム、110mMNaC
l 、5mMKCl、 1mMMgCl2 pH4.00、50Mmクエン酸‐リン酸2ナトリウム、110mMNaC
l 、5mMKCl、 1mMMgCl2 pH3.40、50Mmクエン酸‐リン酸2ナトリウム、110mMNaC
l 、5mMKCl、 1mMMgCl2 pH3.00、50Mmクエン酸‐リン酸2ナトリウム、110mMNaC
l 、5mMKCl、 1mMMgCl2 結果は、図5に示す通りであった。Buffer pH6.66, 50mM Mops, 110mM NaCl, 5mMKCl, 1mM MgCl 2 pH6.20, 50mM MES, 110mM NaCl, 5mMKCl, 1mMMgCl 2 pH5.60, 50Mm citrate-disodium phosphate, 110mM NaC
l, 5mMKCl, 1mM MgCl 2 pH5.30, 50Mm citric acid-sodium phosphate, 110mM NaC
l, 5mM KCl, 1mM MgCl 2 pH4.60, 50Mm citric acid-sodium phosphate, 110mM NaC
l, 5mM KCl, 1mM MgCl 2 pH4.00, 50Mm citric acid-sodium phosphate, 110mM NaC
l, 5mM KCl, 1mM MgCl 2 pH3.40, 50Mm citric acid-sodium phosphate, 110mM NaC
l, 5mMKCl, 1mM MgCl 2 pH3.00, 50Mm citric acid-sodium phosphate, 110mM NaC
l, 5 mM KCl, 1 mM MgCl 2 The results were as shown in FIG.
【0042】<実施例5>ビール酵母を麦汁で定常期ま
で培養した(8℃)。水洗後、2℃下で無菌的に水中保
存した細胞を実験に供した。細胞をpH3のクエン酸/
リン酸バッファ(50mM、NaCl 110mM、KCl
5mM、MgCl2 1mM)で洗浄後、同バッファに懸
濁させ、終濃度5μMの5(6)‐カルボキシフルオレ
セインジアセテートを添加し、室温に30分放置後、2
℃/90分間微攪拌下で放置した。3%グルコース、
0.67%イーストナイトロジェンベース(Difco)、1
%カラギーナン(Sigma TypeII)培地とこの細胞を混合
し、ヘマチトメータを用いてスライドカルチャーを行な
った。速やかに、蛍光顕微鏡画像処理装置を用いて、個
々の細胞の細胞内pHと細胞の位置を測定した。その
後、20℃でインキュベートした。16時間後、細胞内
pHを測定した細胞の増殖後の細胞数を数えた。結果
は、図6に示す通りであった。Example 5 Brewer's yeast was cultivated in wort until the stationary phase (8 ° C.). After washing with water, cells aseptically stored in water at 2 ° C. were used for the experiment. Citrate cells at pH 3 /
Phosphate buffer (50 mM, NaCl 110 mM, KCl
After washing with 5 mM, MgCl 2 1 mM), the cells were suspended in the same buffer, 5 (6) -carboxyfluorescein diacetate at a final concentration of 5 μM was added, and the mixture was left at room temperature for 30 minutes, then 2
C./90 minutes left under slight stirring. 3% glucose,
0.67% East Nitrogen Base (Difco), 1
The cells were mixed with a% carrageenan (Sigma Type II) medium, and slide culture was performed using a hemacytometer. Immediately, intracellular pH and cell position of individual cells were measured using a fluorescence microscope image processor. Then, it incubated at 20 degreeC. After 16 hours, the number of cells after the proliferation of the cells whose intracellular pH was measured was counted. The result was as shown in FIG.
【0043】[0043]
【発明の効果】酵母細胞を低pH環境下に所定時間置い
たときの細胞内pHを測定することによって短時間にか
つ正確に当該酵母細胞の活性、すなわち増殖力、発酵
力、生菌率等を把握することができることは、「課題を
解決するための手段」の項において前記したところであ
る。EFFECTS OF THE INVENTION By measuring the intracellular pH of a yeast cell when it is placed in a low pH environment for a predetermined time, the activity of the yeast cell, that is, the proliferative power, the fermentative power, the viable cell rate, etc. can be accurately measured in a short time. The fact that the above can be grasped is as described above in the section of "Means for solving problems".
【図1】ビール酵母細胞内pH値と生菌率との関係を示
すグラフ。FIG. 1 is a graph showing the relationship between the intracellular pH value of brewery yeast and the viable cell ratio.
【図2】ビール酵母の蛍光法による生菌率とプレートカ
ルチャー法による生菌率との関係を示すグラフ。FIG. 2 is a graph showing the relationship between the viable cell rate of brewer's yeast by the fluorescence method and the viable cell rate by the plate culture method.
【図3】パン酵母細胞内pH値と生菌率との関係を示す
グラフ。FIG. 3 is a graph showing the relationship between the intracellular pH value of baker's yeast and the viable cell ratio.
【図4】ビール酵母の細胞内pH値と発酵力との関係を
示すグラフ。FIG. 4 is a graph showing the relationship between the intracellular pH value of brewery yeast and the fermentative power.
【図5】ビール酵母細胞を各種細胞外pH条件下におい
たときの、細胞内pH値の対応を示すグラフ。FIG. 5 is a graph showing the correspondence between intracellular pH values when brewer's yeast cells are placed under various extracellular pH conditions.
【図6】ビール酵母を低pH環境下に所定時間置いてか
ら培養したときの、各細胞内pH毎の所定培養時間後の
細胞数を示すグラフ。FIG. 6 is a graph showing the number of cells after a predetermined culture time for each intracellular pH, when brewer's yeast was cultured in a low pH environment for a predetermined time and then cultured.
─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成4年7月29日[Submission date] July 29, 1992
【手続補正1】[Procedure Amendment 1]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項2[Name of item to be corrected] Claim 2
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正2】[Procedure Amendment 2]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】請求項9[Name of item to be corrected] Claim 9
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【手続補正3】[Procedure 3]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0007[Correction target item name] 0007
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0007】この工程(2)の他の態様に関して、本発
明による酵母活性の測定法は、下記の工程からなるこ
と、を特徴とするものである。 (1) 酵母をpH6以下の低pH環境下に置き、所定
時間経過後に酵母細胞内pHを測定する。 (2) 得られた細胞内pH値と当該酵母固有の細胞内
pH値との差が小さい酵母ほど活性が高いものと判定す
る。 ここで「当該酵母固有の細胞内pH値」とは、当該酵母
が固有の活性、換言すれば劣化していない活性、すなわ
ち高い活性、を保持している場合に、工程(1)で用い
られた低pH環境下で示す細胞内pH値をいう。[0007] Regarding the other embodiment of this step (2), the method for measuring yeast activity according to the present invention is characterized by comprising the following steps. (1) Yeast is placed in a low pH environment of pH 6 or less, and after a predetermined time has elapsed, the intracellular pH of the yeast is measured. (2) A yeast having a smaller difference between the obtained intracellular pH value and the intracellular pH value specific to the yeast is determined to have higher activity. Here, the "intracellular pH value peculiar to the yeast" is used in the step (1) when the yeast has a peculiar activity, in other words, an activity not deteriorated, that is, a high activity. The intracellular pH value shown in a low pH environment.
【手続補正4】[Procedure amendment 4]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0009[Correction target item name] 0009
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0009】この工程(4)の他の態様に関して、本発
明による酵母活性の測定法は、下記の工程からなること
を特徴とするものである。 (1) 酵母細胞内にpH感受性の蛍光物質を取り込ま
せる工程。 (2) 蛍光物質を取り込ませた酵母をpH6以下の低
pH環境下に置き、所定時間経過後に酵母細胞に励起光
を照射して蛍光を発生させ、2種の蛍光強度を測定す
る。 (3) 予め作成した検量線により、測定蛍光強度の比
に対応した細胞内pH値を求める。 (4) 得られた細胞内pH値と当該酵母固有の細胞内
pH値との差が小さい酵母ほど活性が高いものと判定す
る。 ここで「当該酵母固有の細胞内pH値」とは、当該酵母
が固有の活性、換言すれば劣化していない活性、すなわ
ち高い活性、を保持している場合に、工程(1)で用い
られた低pH環境下で示す細胞内pH値をいう。[0009] Regarding the other embodiment of this step (4), the method for measuring yeast activity according to the present invention is characterized by comprising the following steps. (1) A step of incorporating a pH-sensitive fluorescent substance into yeast cells. (2) The yeast into which the fluorescent substance has been incorporated is placed in a low pH environment of pH 6 or less, and after a predetermined time has elapsed, the yeast cells are irradiated with excitation light to generate fluorescence, and the two types of fluorescence intensity are measured. (3) The intracellular pH value corresponding to the ratio of the measured fluorescence intensities is obtained from the calibration curve prepared in advance. (4) A yeast having a smaller difference between the obtained intracellular pH value and the intracellular pH value specific to the yeast is determined to have higher activity. Here, the "intracellular pH value peculiar to the yeast" is used in the step (1) when the yeast has a peculiar activity, in other words, an activity not deteriorated, that is, a high activity. The intracellular pH value shown in a low pH environment.
【手続補正5】[Procedure Amendment 5]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0011[Correction target item name] 0011
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0011】酵母を低pH環境下に置いてから測定した
細胞内pHが酵母細胞の活性と相関があるということは
本発明者らがはじめて見出した現象であると思料される
ところであるが、この現象は酵母細胞のHポンプ作用に
起因するものと推定される(ただし、そのような推定に
よって、本発明は何の制約をも受けるものではない)。
すなわち、活性の高い酵母細胞はHポンプ作用が強く
て、環境が低pHとなっても細胞内pHを原pHに維持
する能力が大きい。それに対して、活性の低い細胞は原
細胞内pH値を維持することが弱いので、所定時間経過
後の細胞内pHは原pH値より低いあるレベルにまで低
下する。The fact that the intracellular pH measured after placing yeast in a low pH environment correlates with the activity of yeast cells is considered to be a phenomenon first discovered by the present inventors. It is presumed that the phenomenon is due to the H pumping action of yeast cells (however, the present invention is not restricted by such estimation).
That is, highly active yeast cells have a strong H pumping action and have a large ability to maintain the intracellular pH at the original pH even when the environment has a low pH. On the other hand, since cells having low activity do not maintain the original intracellular pH value, the intracellular pH after a predetermined time elapses is lowered to a certain level lower than the original pH value.
【手続補正6】[Procedure Amendment 6]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0032[Name of item to be corrected] 0032
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0032】<酵母活性の判定>このようにして測定さ
れた酵母細胞内pHが当該酵母細胞の活性と相関がある
ことは後記の実験事実の明らかにするところであって、
細胞内pH値が大きい酵母ほど活性が旺盛である。従っ
て、対象とする酵母に対して、予め細胞内pH値と酵母
活性についての情報を用意しておけば、細胞内pH値か
ら当該酵母の活性を把握することができる。より具体的
には、測定した細胞内pH値を当該酵母固有の細胞内p
H値と比較し、その差が小さいものほど活性が高いと判
定することができる。ここで、酵母活性の判定の際に用
いる当該酵母固有の細胞内pH値とは、固有の活性を持
つ、換言すれば活性が劣化していない、すなわち活性が
高い状態の、当該酵母を活性測定に用いる低pH環境下
に所定時間置いた場合に得られる細胞内pH値である。
この値は酵母の種類および用いる低pH値ごとに異なる
が、通常は5.5〜6.5強度である。このような判定
法を用いれば、たとえば酵母を産業上の目的で発酵等に
利用する場合において、本発明による酵母活性測定を実
施し、当該酵母固有の細胞pH値と測定された値との差
がある一定値以上になったときはその酵母を使用しない
ことにより、常に活性の高い酵母のみを利用することが
できる。酵母を発酵等に利用する場合のこのような対象
酵母の活性の把握は、当該酵母固有の細胞内pH値との
差による代りに、測定された細胞内pH値そのものによ
って、すなわち測定された細胞内pH値が所定のレベル
より大きいか否かによって、行なうことができることは
いうまでもない。<Determination of Yeast Activity> The fact that the intracellular pH of the yeast thus measured has a correlation with the activity of the yeast cell will be clarified by the experimental facts described below.
Yeast with a higher intracellular pH value has more active activity. Therefore, if information on the intracellular pH value and yeast activity is prepared in advance for the target yeast, the activity of the yeast can be grasped from the intracellular pH value. More specifically, the measured intracellular pH value is the intracellular p-value peculiar to the yeast.
It is possible to determine that the activity is higher as the difference is smaller than that of the H value. Here, the intracellular pH value unique to the yeast used when determining the yeast activity means that the yeast having an inherent activity, in other words, the activity is not deteriorated, that is, the activity is high, is measured. It is an intracellular pH value obtained when the plate is placed in a low pH environment used for a predetermined time.
This value varies depending on the type of yeast and the low pH value used, but is usually 5.5 to 6.5. When such a determination method is used, for example, when yeast is used for fermentation or the like for industrial purposes, the yeast activity measurement according to the present invention is performed, and the difference between the cell pH value specific to the yeast and the measured value is obtained. When the value exceeds a certain value, the yeast is not used, so that only the yeast having high activity can always be used. When the yeast is used for fermentation or the like, the activity of the target yeast is grasped by the measured intracellular pH value itself instead of the difference with the intracellular pH value specific to the yeast, that is, the measured cell It goes without saying that it can be carried out depending on whether or not the internal pH value is higher than a predetermined level.
【手続補正7】[Procedure Amendment 7]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0038[Correction target item name] 0038
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0038】<実施例3>ビール酵母を麦汁で定常期ま
で培養し(8℃)、水洗後その細胞を無菌的に保存し
(4℃)、保存日数を変えることで発酵能の異なった種
々の酵母を取得した。それら酵母の細胞内pHと麦汁発
酵力(8℃)との関係を求めた。酵母懸濁液を吸引濾過
して酵母を圧搾し、11°Pに調製したホップ添加麦汁
に添加(0.35%(湿重量/v))して充分に通気し
たのち、8℃で静置発酵させた。経時的に発酵液の一部
を採取し、フィルター(東洋濾紙No.7)でろ過した
後、振動式密度計によりろ液のエキス分(糖度)を測定
した。発酵開始から3日間のエキスの消費量を求めて酵
母の発酵能とした。結果は図4に示す通りであった。Example 3 Beer yeast was cultivated in wort to a stationary phase (8 ° C.), washed with water, and the cells were stored aseptically (4 ° C.), and the fermentation ability was changed by changing the number of storage days. Various yeasts were obtained. The relationship between the intracellular pH of these yeasts and the wort fermenting power (8 ° C) was determined. The yeast suspension is suction-filtered to squeeze the yeast, added to hop-added wort prepared at 11 ° P (0.35% (wet weight / v)), thoroughly aerated, and then allowed to stand at 8 ° C. Let it ferment. A part of the fermented liquor was collected over time, filtered through a filter (Toyo Filter Paper No. 7), and then the extract content (sugar content) of the filtrate was measured by a vibrating densitometer. The amount of extract consumed for 3 days from the start of fermentation was determined as the fermentation ability of yeast. The result was as shown in FIG.
【手続補正8】[Procedure Amendment 8]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0041[Correction target item name] 0041
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0041】バッファー pH6.66、50mM Mops、110mMNaC
l、5mMKCl、1mMMgCl2 pH6.20、50mM MES、110mMNaC
l、5mMKCl、1mMMgCl2 pH5.60、50mMクエン酸−リン酸2ナトリウ
ム、110mMNaCl、5mMKCl、1mMMgC
l2 pH5.30、50mMクエン酸−リン酸2ナトリウ
ム、110mMNaCl、5mMKCl、1mMMgC
l2 pH4.60、50mMクエン酸−リン酸2ナトリウ
ム、110mMNaCl、5mMKCl、1mMMgC
l pH4.00、50mMクエン酸−リン酸2ナトリウ
ム、110mMNacl、5mMKCl、1mMMgC
l2 pH3.40、50mMクエン酸−リン酸2ナトリウ
ム、110mMNaCl、5mMKCl、1mMMgC
l2 pH3.00、50mMクエン酸−リン酸2ナトリウ
ム、110mMNaCl、5mMKCl、1mMMgC
l2 結果は、図5に示す通りであった。Buffer pH 6.66, 50 mM Mops, 110 mM NaC
1, 5 mM KCl, 1 mM MgClTwo pH 6.20, 50 mM MES, 110 mM NaC
1, 5 mM KCl, 1 mM MgClTwo pH 5.60, 50 mM citric acid-phosphate 2 sodium
System, 110 mM NaCl, 5 mM KCl, 1 mM MgC
lTwo pH 5.30, 50 mM citric acid-phosphate 2 sodium
System, 110 mM NaCl, 5 mM KCl, 1 mM MgC
lTwo pH 4.60, 50 mM citric acid-phosphate 2 sodium
System, 110 mM NaCl, 5 mM KCl, 1 mM MgC
l pH 4.00, 50 mM citric acid-phosphoric acid 2 sodium salt
System, 110 mM Nacl, 5 mM KCl, 1 mM MgC
lTwo pH 3.40, 50 mM citric acid-phosphate 2 sodium
System, 110 mM NaCl, 5 mM KCl, 1 mM MgC
lTwo pH 3.00, 50 mM citric acid-phosphate 2 sodium
System, 110 mM NaCl, 5 mM KCl, 1 mM MgC
lTwo The result was as shown in FIG.
【手続補正9】[Procedure Amendment 9]
【補正対象書類名】明細書[Document name to be amended] Statement
【補正対象項目名】0042[Correction target item name] 0042
【補正方法】変更[Correction method] Change
【補正内容】[Correction content]
【0042】<実施例5>ビール酵母を麦汁で定常期ま
で培養した(8℃)。水洗後、2℃下で無菌的に水中保
存した細胞を実験に供した。細胞をpH3のクエン酸/
リン酸バッファ(50mM、NaCl 110mM、K
Cl 5mM、MgCl2 1mM)で洗浄後、同バッ
ファに懸濁させ、終濃度5μMの5(6)−カルボキシ
フルオレセインジアセテートを添加し、室温に30分放
置後、2℃/90分間微攪拌下で放置した。3%グルコ
ース、0.67%イーストナイトロジェンベース(Di
fco)、1%カラギーナン(Sigma TypeI
I)培地とこの細胞を混合し、ヘマチトメータを用いて
スライドカルチャーを行なった。速やかに、蛍光顕微鏡
画像処理装置を用いて、個々の細胞の細胞内pHと細胞
の位置を測定した。その後、20℃でインキュベートし
た。16時間後、細胞内pHを測定した細胞の増殖後の
細胞数を数えた。結果は、図6に示す通りであった。 <実施例6><実施例1>の方法をさらに簡略化し、よ
り迅速に酵母の活性を測定する方法を検討した。ビール
酵母を麦汁で定常期まで培養した(8℃)。水洗後、2
℃下で無菌的に水中保存した細胞を実験に供した。細胞
をpH3、クエン酸/リン酸バッファー(50mM、N
aCl 110mM,KCl 5mM,MgCl2 1
mM)で洗浄後、同バッファーに懸濁、終濃度1mMの
5(6)−カルボキシフルオレセインジアセテートを添
加し、0℃に15分、30分または60分放置した。そ
の後、螢光光度計で2励起波長(441,488nm)
に対する蛍光(518nm)強度を測定した。その蛍光
強度の比をとり、予め作製したキャリブレーションカー
ブよりpHを求めた。また、同一の酵母に対して<実施
例1>と同様の方法で分析を行った。分析値の変動を見
るために同一の酵母(A〜C)での各々の分析法に対し
て5回実施した。結果を表1、2および3に示した。こ
の簡略法によっても、<実施例1>の方法による場合と
同等の結果が再現性よく得られることがわかる。 Example 5 Brewer's yeast was cultivated in wort until the stationary phase (8 ° C.). After washing with water, cells aseptically stored in water at 2 ° C. were used for the experiment. Citrate cells at pH 3 /
Phosphate buffer (50 mM, NaCl 110 mM, K
After washing with Cl 5 mM and MgCl 2 1 mM), the cells were suspended in the same buffer, 5 (6) -carboxyfluorescein diacetate with a final concentration of 5 μM was added, and the mixture was allowed to stand at room temperature for 30 minutes, followed by slight stirring at 2 ° C./90 minutes. I left it at. 3% glucose, 0.67% yeast nitrogen base (Di
fco), 1% carrageenan (Sigma Type I)
I) The medium and this cell were mixed, and slide culture was carried out using a hemacytometer. Immediately, intracellular pH and cell position of individual cells were measured using a fluorescence microscope image processor. Then, it incubated at 20 degreeC. After 16 hours, the number of cells after the proliferation of the cells whose intracellular pH was measured was counted. The result was as shown in FIG. <Example 6> The method of <Example 1> was further simplified, and a method of measuring yeast activity more rapidly was examined. Brewery yeast was cultivated in wort until stationary phase (8 ° C). After washing with water, 2
Cells that were aseptically stored in water at ℃ were used for the experiment. Cells were adjusted to pH 3, citrate / phosphate buffer (50 mM, N
aCl 110 mM, KCl 5 mM, MgCl 2 1
After washing with the same buffer, 5 (6) -carboxyfluorescein diacetate having a final concentration of 1 mM was added, and the mixture was left at 0 ° C. for 15, 30 or 60 minutes. Then, with a fluorometer, 2 excitation wavelengths (441,488 nm)
The fluorescence (518 nm) intensity was measured. The ratio of the fluorescence intensities was calculated, and the pH was obtained from the calibration curve prepared in advance. Further, the same yeast was analyzed by the same method as in <Example 1>. The analysis was performed 5 times for each analysis method using the same yeast (AC) in order to see the variation in the analysis value. The results are shown in Tables 1, 2 and 3. It can be seen that also by this simplified method, the same results as in the case of the method of <Example 1> can be obtained with good reproducibility.
Claims (12)
母活性の測定法。 (1) 酵母をpH6以下の低pH環境下に置き、所定時
間経過後に酵母細胞内pHを測定する。 (2) 得られた細胞内pH値の高い酵母をそれの低い酵
母よりも活性が高いものと判定する。1. A method for measuring yeast activity, which comprises the following steps. (1) Yeast is placed in a low pH environment of pH 6 or less, and after a lapse of a predetermined time, the intracellular pH of the yeast is measured. (2) The obtained yeast having a high intracellular pH value is judged to have higher activity than yeast having a low intracellular pH value.
母活性の測定法。 (1) 酵母をpH6以下の低pH環境下に置き、所定時
間経過後に酵母細胞内pHを測定する。 (2) 得られた細胞内pH値と当該酵母個有の細胞内p
H値との差の小さい酵母をその差の大きい酵母よりも活
性が大きいものと判定する。2. A method for measuring yeast activity, which comprises the following steps. (1) Yeast is placed in a low pH environment of pH 6 or less, and after a lapse of a predetermined time, the intracellular pH of the yeast is measured. (2) Obtained intracellular pH value and intracellular p value unique to the yeast
Yeast with a small difference from the H value is judged to have greater activity than yeast with a large difference.
請求項1または2に記載の酵母活性の測定法。3. The low pH environment is an environment having a pH of 5 or less,
The method for measuring yeast activity according to claim 1 or 2.
ある、請求項1〜3のいずれか1項に記載の酵母活性の
測定法。4. The method for measuring yeast activity according to any one of claims 1 to 3, wherein the yeast activity is yeast growth ability or fermentation ability.
1〜3のいずれか1項に記載の酵母活性の測定法。5. The method for measuring yeast activity according to claim 1, wherein the yeast activity is the viability of yeast.
細胞内pH測定値である、請求項1〜5のいずれか1項
に記載の酵母活性の測定法。6. The method for measuring yeast activity according to claim 1, wherein the measured yeast intracellular pH value is an individual yeast intracellular pH measurement value.
平均測定値である、請求項1〜5のいずれか1項に記載
の酵母活性の測定法。7. The method for measuring yeast activity according to claim 1, wherein the measured yeast intracellular pH value is an average measured value of the yeast population.
母活性の測定法。 (1) 酵母細胞内にpH感受性の蛍光物質を取り込ませ
る工程。 (2) 蛍光物質を取り込ませた酵母をpH6以下の低p
H環境下に置き、所定時間経過後に酵母細胞に励起光を
照射して蛍光を発生させ、2種の蛍光強度を測定する。 (3) 予め作成した検量線により、測定蛍光強度の比に
対応した細胞内pH値を求める。 (4) 得られた細胞内pH値の高い酵母をそれの低い酵
母よりも活性が高いものと判定する。8. A method for measuring yeast activity, which comprises the following steps. (1) A step of incorporating a pH-sensitive fluorescent substance into yeast cells. (2) Yeast containing a fluorescent substance has a low pH of 6 or less.
It is placed in an H environment, and after a lapse of a predetermined time, the yeast cells are irradiated with excitation light to generate fluorescence, and two types of fluorescence intensities are measured. (3) The intracellular pH value corresponding to the ratio of the measured fluorescence intensities is obtained from the calibration curve prepared in advance. (4) The obtained yeast having a high intracellular pH value is judged to have higher activity than yeast having a low intracellular pH value.
母活性の測定法。 (1) 酵母細胞内にpH感受性の蛍光物質を取り込ませ
る工程。 (2) 蛍光物質を取り込ませた酵母をpH6以下の低p
H環境下に置き、所定時間経過後に酵母細胞に励起光を
照射して蛍光を発生させ、2種の蛍光強度を測定する。 (3) 予め作成した検量線により、測定蛍光強度の比に
対応した細胞内pH値を求める。 (4) 得られた細胞内pH値と当該酵母個有の細胞内p
H値との差の小さい酵母をその差の大きい酵母よりも活
性が大きいものと判定する。9. A method for measuring yeast activity, which comprises the following steps. (1) A step of incorporating a pH-sensitive fluorescent substance into yeast cells. (2) Yeast containing a fluorescent substance has a low pH of 6 or less.
It is placed in an H environment, and after a lapse of a predetermined time, the yeast cells are irradiated with excitation light to generate fluorescence, and two types of fluorescence intensities are measured. (3) The intracellular pH value corresponding to the ratio of the measured fluorescence intensities is obtained from the calibration curve prepared in advance. (4) Obtained intracellular pH value and intracellular p value unique to the yeast
Yeast with a small difference from the H value is judged to have greater activity than yeast with a large difference.
励起光によって発生した蛍光のうち所定波長での蛍光強
度である、請求項8または9に記載の方法。10. The method according to claim 8, wherein the two types of fluorescence intensity are fluorescence intensities at a predetermined wavelength among the fluorescence generated by the two types of excitation light having different wavelengths.
て発生した蛍光のうち、2種の所定波長での蛍光強度で
ある、請求項8または9に記載の方法。11. The method according to claim 8, wherein the two types of fluorescence intensities are the fluorescence intensities at two predetermined wavelengths among the fluorescence generated by one type of excitation light.
基および(または)カルボキシル基を有するものであ
り、この官能基を低級カルボン酸および(または)低級
アルコールでエステル化した状態で酵母細胞に取り込ま
せ、酵母細胞内で当該pH感受性蛍光物質を発生させ
る、請求項8〜11項のいずれか1項記載の方法。12. The pH-sensitive fluorescent substance has a phenolic hydroxyl group and / or a carboxyl group, and this functional group is esterified with a lower carboxylic acid and / or a lower alcohol to be incorporated into a yeast cell, The method according to any one of claims 8 to 11, wherein the pH-sensitive fluorescent substance is generated in yeast cells.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24794791A JPH07108235B2 (en) | 1991-09-26 | 1991-09-26 | Method for measuring yeast activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24794791A JPH07108235B2 (en) | 1991-09-26 | 1991-09-26 | Method for measuring yeast activity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0576393A true JPH0576393A (en) | 1993-03-30 |
JPH07108235B2 JPH07108235B2 (en) | 1995-11-22 |
Family
ID=17170917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24794791A Expired - Lifetime JPH07108235B2 (en) | 1991-09-26 | 1991-09-26 | Method for measuring yeast activity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07108235B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238771A (en) * | 2005-03-02 | 2006-09-14 | Sapporo Breweries Ltd | Evaluation method of microbial cell activity by flow cytometric analysis |
JP2009153395A (en) * | 2007-12-25 | 2009-07-16 | Kirin Brewery Co Ltd | Method for evaluating physiological state of microorganism cell |
-
1991
- 1991-09-26 JP JP24794791A patent/JPH07108235B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006238771A (en) * | 2005-03-02 | 2006-09-14 | Sapporo Breweries Ltd | Evaluation method of microbial cell activity by flow cytometric analysis |
JP4694863B2 (en) * | 2005-03-02 | 2011-06-08 | サッポロビール株式会社 | Evaluation method of microbial cell activity by flow cytometry analysis |
JP2009153395A (en) * | 2007-12-25 | 2009-07-16 | Kirin Brewery Co Ltd | Method for evaluating physiological state of microorganism cell |
Also Published As
Publication number | Publication date |
---|---|
JPH07108235B2 (en) | 1995-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906295B2 (en) | Method and apparatus for viable and nonviable prokaryotic and eukaryotic cell quantitation | |
US5004684A (en) | Method for ATP extraction | |
Van Zandycke et al. | Determination of yeast viability using fluorophores | |
AU2005217026B2 (en) | Measuring contamination | |
Srienc et al. | Detection of bacterial β-galactosidase activity in individual Saccharomyces cerevisiae cells by flow cytometry | |
EP1529213B1 (en) | The method and apparatus for determining the number of living cells in a test fluid | |
King et al. | Epifluorescent method for detection of nonviable yeast | |
EP1134291A1 (en) | Method for counting living cells | |
EP0171158B1 (en) | Processes and materials for carrying out microchemical and microbiological tests | |
JP2002168870A (en) | METHOD FOR MEASURING pH IN MICROBE CELL AT LOW pH REGION BY FLOW CYTOMETER | |
JPH0576393A (en) | Determination of yeast activity | |
Mazzei et al. | A multi-enzyme bioelectrode for the rapid determination of total lactate concentration in tomatoes, tomato juice and tomato paste | |
JP2890128B2 (en) | Yeast viable cell count method | |
Váradi et al. | Application of biosensor with amperometric detection for determining ethanol | |
JP4694863B2 (en) | Evaluation method of microbial cell activity by flow cytometry analysis | |
Guilbault | [11] Fluorometric determination of dehydrogenase activity using resorufin | |
JP2869860B2 (en) | Early determination method and determination kit for beer-grown lactic acid bacteria | |
JP5100361B2 (en) | Method for evaluating physiological state of microbial cells | |
Portugal et al. | Yeast killer activity: a quantitative study | |
JP2005003605A (en) | Biosensor apparatus for evaluating quality of rice malt and method for evaluating quality of rice malt using the same | |
RU2061045C1 (en) | Method of quantitative determination of biological liquid sample microbial dissemination | |
JP4233389B2 (en) | Method for evaluating yeast activity | |
Van Zandycke et al. | Vitality assessment using the fluorescent stain FUN1 | |
RU98190U1 (en) | DEVICE FOR MONITORING THE BIOTECHNOLOGICAL PROCESS OF OBTAINING ACETIC ACID BY MEASURING THE CONTENT OF ETHYL ALCOHOL IN THE FERMENTATION MEDIUM CONTAINING ACETIC ACID | |
SU1495382A1 (en) | Method of determining the quantity of high-molecular alcohols in solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 12 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071122 Year of fee payment: 12 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20081122 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091122 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101122 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 16 Free format text: PAYMENT UNTIL: 20111122 |
|
EXPY | Cancellation because of completion of term |