JPH055922A - Optical integrated optical system integrated with flat plate type optical element and production thereof - Google Patents

Optical integrated optical system integrated with flat plate type optical element and production thereof

Info

Publication number
JPH055922A
JPH055922A JP3181981A JP18198191A JPH055922A JP H055922 A JPH055922 A JP H055922A JP 3181981 A JP3181981 A JP 3181981A JP 18198191 A JP18198191 A JP 18198191A JP H055922 A JPH055922 A JP H055922A
Authority
JP
Japan
Prior art keywords
flat plate
optical
optical system
plate type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3181981A
Other languages
Japanese (ja)
Inventor
Sachiko Kimura
祥子 木村
Hiroyasu Mifune
博庸 三船
Zenichi Akiyama
善一 秋山
Itaru Fujimura
格 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3181981A priority Critical patent/JPH055922A/en
Publication of JPH055922A publication Critical patent/JPH055922A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To form the small-sized optical system having excellent adhesion by forming the films of the optical elements of a flat plate type by a sol-gel method directly on a transparent substrate and integrating these elements. CONSTITUTION:A transparent glass substrate 1 having a reflection layer 13 in the lower part is masked by a resist 8. Lens parts and photodetecting parts are then masked by a hot meltable plastic film 10 and slit type polarizers 9 are deposited by evaporation to input parts and filter parts. After a PLZT soln. is applied thereon from above, the coating is dried and is further heated. PLZT sintered bodies 11 are formed by repeating the operations from the coating up to the sintering and electrodes 12 of a comb shape are deposited thereon. The plastic film 10 is then peeled and an SiO2 soln. is applied to the lens parts. After transfer is executed by using a stamper, the sintering is similarly executed to form the Fresnel type lenses 4, 6 are formed. A reflection layer is deposited thereon. Finally, photodetectors 7 are laminated by alignment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、光学情報を扱う平板型光学素子
を集積した光集積光学系およびその製法に関する。
TECHNICAL FIELD The present invention relates to an optical integrated optical system in which flat plate type optical elements for handling optical information are integrated and a manufacturing method thereof.

【0002】[0002]

【従来技術】従来から、光集積光学系はバルク光学素子
を空間に配置することによって干渉や相関などの処理を
行ってきたが、最近では同様の機能を導波路に集積し小
型化を目指したものが作られている。1つの透明基板上
に平板型光学素子を作成する例としては、J.Jahn
s and A.Huang;“Planer int
egration of free−space op
ticalcomponents”, Appl.Op
t.,28,No.9,1602(1989)が報告さ
れている。一般にバルクの光学系においては、各光学素
子の位置決めは精密性が要求されるため手間のかかる作
業であるが、現在はステージや治具を用いて行ってい
る。しかしながら、上記のような小型化した光学系に関
してはさらに各光学素子の位置合わせが困難であり、位
置決め作業の効率化が望まれているが未だ有効な方法は
提案されていない。
2. Description of the Related Art Conventionally, an optical integrated optical system has performed processing such as interference and correlation by arranging a bulk optical element in a space, but recently, a similar function has been integrated in a waveguide to reduce the size. Things are made. As an example of producing a flat plate type optical element on one transparent substrate, J. Jahn
s and A. Huang; “Planer int
integration of free-space op
mechanical components ", Appl. Op.
t. 28, No. 9,1602 (1989) has been reported. Generally, in a bulk optical system, positioning of each optical element requires precision because precision is required, but currently, a stage or a jig is used. However, in the above-mentioned miniaturized optical system, it is more difficult to align the respective optical elements, and there is a demand for more efficient positioning work, but an effective method has not been proposed yet.

【0003】[0003]

【目的】本発明は、平板型光学素子を1つの透明基板上
に集積した光学系およびその作成において、密着性に優
れ、小型でかつ位置決めが正確な平板型光学素子を効率
良く設けることを目的とする。
An object of the present invention is to provide an optical system in which flat plate optical elements are integrated on a single transparent substrate and to efficiently provide flat plate optical elements that are excellent in adhesion, small in size, and accurate in positioning. And

【0004】[0004]

【構成】本発明の第1は、1つの透明基板上に少なくと
も発光素子、平板型レンズ、平板型空間変調素子および
受光素子が配置され、その少なくとも1つがゾル−ゲル
(Sol−Gel)法により基板に直接製膜されている
ことを特徴とする光集積光学系(以下、光集積光学系1
という)およびその製法である。本発明の第2は、1つ
の透明基板上に少なくとも発光素子、平板型レンズおよ
び平板型空間変調素子を配置し、その透明基板をはさん
で対向する面に受光素子を配置したことを特徴とする光
集積光学系(以下、光集積光学系2という)およびその
製法である。本発明で扱う発光素子とは入力パターンを
意味するが、発光してパターンを形成する素子を用いて
も良いし、発光体とその発光体から入射した光を透過す
る際に光強度等の信号を変化させる物質との組合せを用
いても良い。また、本発明における平板型レンズは反射
型レンズでなければならない。例えば表面に反射層を有
したフレネルゾーン型レンズがあげられる。この場合フ
レネルゾーンプレート状に可変物質を用いそのパターン
が可変であればレンズの開口の大きさや焦点距離を制御
できて好ましい。本発明で用いる平板型空間変調素子と
は、入力光と出力光の方向が同じ面から行われる反射型
の空間変調素子である。これに電気光学効果を有する物
質を使うと、ひとつの光学系で光学系を変えることなく
様々な処理ができ、好ましい。本発明で用いる受光素子
とは一般的な素子が用いられる。例えばフォトダイオー
ドや電荷移動素子等が用いられるが、これらの素子は透
明基板に直接成膜できないので他の光学素子の基板に対
する対向面に配置することにより光学系の作製を容易か
つ正確に行なうことが出来る。フォトダイオードや電荷
移動素子はシリコンに不純物をドーピングした材料であ
るため基板の反射層としても用いられる(光集積光学系
2)。本発明で扱う光が進んでいく透明基板とは、屈折
率が一定の媒質で通常の光の伝搬の現象を利用できる厚
みや大きさを持ったものとする。例えば、ガラスや水晶
などがある。本発明において光学素子を基板に直接製膜
する方法であるゾル−ゲル法とは、一般には、金属アル
コキシド等の金属有機化合物を溶液系で加水分解、重縮
合させて金属−酸素−金属結合を成長させ、最終的に焼
結することにより完成させる無機酸化物の作製方法であ
る。ゾル−ゲル法の特徴は低基板温度で均一な膜が得ら
れることである。さらに溶液から製膜するため基板との
密着性に優れ、また位置合わせが容易である。具体的に
は基板上に金属有機化合物を含む溶液を塗布し、乾燥後
焼結を行う。用いられる金属有機化合物としては、無機
酸化物を構成する金属のメトキシド、エトキシド、プロ
ポキシド、ブトキシド等のアルコキシドやアセテート化
合物等があげられる。硝酸塩、しゅう酸塩、過塩素酸
塩、等の無機塩でも良い。これら化合物から無機酸化物
を作製するには加水分解および重縮合反応を進める必要
があるため塗布溶液中には水の添加が必要となる。添加
量は系により異なるが多すぎると反応が速く進むため得
られる膜質が不均一となり易く、また反応速度の制御が
難しい。水の添加量が少なすぎても反応のコントロール
が難しく、適量がある。さらに、加水分解の加速触媒や
金属原子に配位するキレート剤を添加して反応速度及
び、反応形態の制御ができる。加水分解としては、加水
分解反応に通常使用される酸および塩基が用いられる。
酸触媒は線状重合体を作りやすく、塩基性触媒は三次元
重合体を作りやすいといわれているが、溶液全体の濃度
やpHとの兼ね合いで一概にはいえない。また、キレー
ト剤としては、アセチルアセトン、エチルアセトアセテ
ート、ジエチルマロネート等があげられる。溶媒として
は、上記材料が沈殿しないもの、すなわち相溶性に優れ
たものが望ましい。溶液濃度は塗布方法にもよるが、ス
ピンコート法の場合溶液粘度が数cP〜十数cPとなる
ように調整すると良い。コーティングした膜は焼結する
ことにより有機物の脱離及び結晶化が促進される。焼結
温度は材料により異なるが、通常の金属酸化物粉末の焼
成にかかる温度より低温で作製できる。デバイス構成に
よっては高温で反応または組成変化、構造変化するもの
が多いため、本方法を用いることにより使用可能性がひ
ろがる。製膜のパターン化方法としては、一般的なフォ
トリソグラフィー技術を用いる。特に光学系を構成する
光学素子の全てを1つのフォトマスクで同時に位置合わ
せすると高精度で効率の良いパターニングができる。具
体的には、透明基板を、配置される光学素子部分を残し
てレジストによりマスキングしてゾル−ゲル法により目
的とする無機酸化物膜を作成する。但し、光学素子がS
ol−Gel法により作成されるものでなく市販のもの
を接着して用いる場合には、フォトリソグラフィーの過
程で接着時の位置合わせを容易にするためのアライメン
トマークを付けておけば良い。上記溶液を塗布して乾
燥、焼結により膜を得る。フォトリソグラフィー技術を
用いた他のパターニング方法としては、例えば、基板を
求めるパターンに加工して塗れ性を変えることにより選
択的な塗布を行う方法や、基板を求めるパターンに疎面
化加工し、選択エッチングを経てパターニングする方法
等を用いても良い。前記光集積光学系2においては、基
板面に受光素子を作製し(例えばシリコン基板にイオン
ドープして作製)、これを透明基板とはりあわせした
後、透明基板の対向面に他の光学素子を前記のパターニ
ングによって設ける。本発明の光集積光学系1の1例を
図1で示す。図中1は一方に反射層を設けた透明な基
板、3は入力パターン、4は反射型のレンズ、5は平板
型空間変調素子、6は反射型のレンズ、7は受光素子で
ある。動作は以下のようになる。光は図の矢印のように
基板内を反射しながら進む。半導体レーザーのような光
源をコリメートし、3の入力パターンに対しある入射角
で入射させる。この光は1の基板の反射層で反射し、4
のレンズに入射し収束光となって再び反射層で反射して
5の空間フィルターに入射する。ここで空間周波数フィ
ルタリング、例えばエッジ抽出のためのハイパスフィル
タリングされて、出射しまた反射層で反射し6の平板型
反射レンズに入射してコリメート光となり7の受光素子
に入射する。次に、本発明の光集積光学系2の1例を図
3に示す。図中1は透明基板、2はシリコン基板、3は
入力パターン、4は反射型のレンズ、5は平板型空間変
調素子、6は4とは異なる焦点距離を表わす反射型のレ
ンズ、7は受光素子である。動作は以下のようになる。
光は図の矢印のように基板内を反射しながら進む。半導
体レーザーのような光源をコリメートし、3の入力パタ
ーンに対しある入射角で入射させる。この光は1の基板
の反射層で反射し、4のレンズに入射し収束光となって
再び反射層で反射して5の空間フィルターに入射する。
ここで空間周波数フィルタリング、例えばエッジ抽出の
ためのハイパスフィルタリングされて、出射しまた反射
層で反射し6の平板型反射レンズに入射してコリメート
光となり7の受光素子に入射する。
According to a first aspect of the present invention, at least a light emitting element, a flat plate type lens, a flat plate type spatial modulation element and a light receiving element are arranged on one transparent substrate, and at least one of them is formed by a sol-gel method. An optical integrated optical system characterized by being directly formed on a substrate (hereinafter referred to as the optical integrated optical system 1
That) and its manufacturing method. A second aspect of the present invention is characterized in that at least a light emitting element, a flat plate type lens and a flat plate type spatial modulation element are arranged on one transparent substrate, and a light receiving element is arranged on the opposite surfaces with the transparent substrate interposed therebetween. Optical integrated optical system (hereinafter referred to as optical integrated optical system 2) and its manufacturing method. The light-emitting element used in the present invention means an input pattern, but an element which emits light to form a pattern may be used, and a signal such as light intensity when transmitting a light-emitting body and light incident from the light-emitting body. You may use the combination with the substance which changes. Further, the flat plate type lens in the present invention must be a reflection type lens. For example, a Fresnel zone type lens having a reflective layer on its surface can be used. In this case, it is preferable that a variable substance is used in the form of a Fresnel zone plate and its pattern is variable because the size of the lens aperture and the focal length can be controlled. The flat-plate type spatial modulation element used in the present invention is a reflection type spatial modulation element in which the directions of input light and output light are the same. It is preferable to use a substance having an electro-optical effect for this because various treatments can be performed by one optical system without changing the optical system. As the light receiving element used in the present invention, a general element is used. For example, photodiodes and charge transfer devices are used, but since these devices cannot be directly formed on a transparent substrate, they can be easily and accurately manufactured by arranging them on the surface facing the substrate of other optical devices. Can be done. Since the photodiode and the charge transfer device are made of silicon doped with impurities, they are also used as the reflective layer of the substrate (optical integrated optical system 2). The transparent substrate in which light is handled in the present invention is a medium having a constant refractive index and having a thickness and a size capable of utilizing a normal light propagation phenomenon. Examples include glass and crystal. In the present invention, the sol-gel method, which is a method of directly forming a film on an optical element on a substrate, generally means that a metal-organic compound such as a metal alkoxide is hydrolyzed in a solution system and polycondensed to form a metal-oxygen-metal bond. This is a method for producing an inorganic oxide, which is completed by growing and finally sintering. The feature of the sol-gel method is that a uniform film can be obtained at a low substrate temperature. Further, since the film is formed from the solution, it has excellent adhesion to the substrate and easy alignment. Specifically, a solution containing a metal organic compound is applied onto the substrate, dried and then sintered. Examples of the metal organic compound used include alkoxides such as methoxides, ethoxides, propoxides, butoxides, etc., of metals constituting an inorganic oxide, and acetate compounds. Inorganic salts such as nitrates, oxalates and perchlorates may be used. In order to produce an inorganic oxide from these compounds, it is necessary to proceed with hydrolysis and polycondensation reactions, and therefore it is necessary to add water to the coating solution. The amount of addition varies depending on the system, but if it is too large, the reaction proceeds rapidly and the quality of the film obtained tends to be non-uniform, and it is difficult to control the reaction rate. If the amount of water added is too small, it is difficult to control the reaction, and there is an appropriate amount. Furthermore, a reaction rate and a reaction form can be controlled by adding a hydrolysis acceleration catalyst or a chelating agent which coordinates with a metal atom. As the hydrolysis, acids and bases usually used in the hydrolysis reaction are used.
It is said that the acid catalyst is easy to form a linear polymer and the basic catalyst is easy to form a three-dimensional polymer, but it cannot be said unconditionally because of the balance with the concentration and pH of the whole solution. Further, examples of the chelating agent include acetylacetone, ethylacetoacetate, diethyl malonate and the like. As the solvent, those in which the above materials do not precipitate, that is, those having excellent compatibility are desirable. The solution concentration depends on the coating method, but in the case of the spin coating method, it is preferable to adjust the solution viscosity to be several cP to several tens of cP. Sintering of the coated film promotes desorption and crystallization of organic substances. Although the sintering temperature varies depending on the material, the sintering can be performed at a temperature lower than the temperature required for firing the usual metal oxide powder. Depending on the device configuration, there are many cases in which reaction, composition change, or structure change occurs at high temperature, and therefore the possibility of use is expanded by using this method. A general photolithography technique is used as a patterning method for film formation. Particularly, if all the optical elements constituting the optical system are aligned at the same time with one photomask, highly accurate and efficient patterning can be performed. Specifically, the transparent substrate is masked with a resist, leaving the optical element portion to be arranged, to form a desired inorganic oxide film by the sol-gel method. However, the optical element is S
When a commercially available product, which is not produced by the ol-Gel method, is adhered and used, an alignment mark for facilitating alignment at the time of adhering may be provided in the process of photolithography. A film is obtained by applying the above solution, drying and sintering. Other patterning methods using the photolithography technology include, for example, a method of performing selective coating by processing the substrate into a desired pattern and changing the wettability, or a surface-roughening process to the substrate desired pattern and selecting A method of patterning through etching may be used. In the optical integrated optical system 2, a light receiving element is formed on the surface of the substrate (for example, ion-doped on a silicon substrate), and this is attached to a transparent substrate, and then another optical element is formed on the opposite surface of the transparent substrate. It is provided by the above patterning. An example of the optical integrated optical system 1 of the present invention is shown in FIG. In the figure, 1 is a transparent substrate provided with a reflective layer on one side, 3 is an input pattern, 4 is a reflection type lens, 5 is a flat plate type spatial modulation element, 6 is a reflection type lens, and 7 is a light receiving element. The operation is as follows. Light travels while being reflected in the substrate as shown by the arrow in the figure. A light source such as a semiconductor laser is collimated and is incident on the input pattern of 3 at a certain incident angle. This light is reflected by the reflective layer of the substrate 1 and 4
The light enters the lens of No. 2 and becomes convergent light, which is reflected again by the reflection layer and enters the spatial filter of No. 5. Here, spatial frequency filtering, for example, high-pass filtering for edge extraction, is emitted, reflected by the reflection layer, and incident on the flat-plate type reflective lens 6 to be collimated light, which then enters the light-receiving element 7. Next, an example of the optical integrated optical system 2 of the present invention is shown in FIG. In the figure, 1 is a transparent substrate, 2 is a silicon substrate, 3 is an input pattern, 4 is a reflection type lens, 5 is a flat-plate type spatial modulation element, 6 is a reflection type lens showing a focal length different from 4, and 7 is light receiving. It is an element. The operation is as follows.
Light travels while being reflected in the substrate as shown by the arrow in the figure. A light source such as a semiconductor laser is collimated and is incident on the input pattern of 3 at a certain incident angle. This light is reflected by the reflective layer of the substrate 1 and is incident on the lens 4 to be converged light, which is reflected again on the reflective layer and is incident on the spatial filter 5.
Here, spatial frequency filtering, for example, high-pass filtering for edge extraction, is emitted, reflected by the reflection layer, and incident on the flat-plate type reflective lens 6 to be collimated light, which then enters the light-receiving element 7.

【0005】[0005]

【実施例】【Example】

実施例1 この実施例は、光集積光学系1の製造例である。図1の
光学系を作成した。作成手順を図2のa〜eとして示
す。下部にアルミニウム反射層13を有する透明ガラス
基板1をレジスト8で図2aのようなパターンにマスキ
ングした。次にレンズ部、受光部を熱融着性のプラスチ
ックフィルム10でマスキングし、スリット型偏光子9
を入力部とフィルター部に蒸着により作成した(図2
b)。その上から以下に示す組成のPLZT溶液を塗布
した。酢酸鉛1モルに対して酢酸ランタニウム0.1モ
ル、チタニウムテトライソプロポキシドを0.35モ
ル、ジルコニウムテトラプロポキシドを0.65モルと
なるように調整したメトキシエタノール溶液(0.25
mol/リットル)に水を−OR基と等量、触媒として
硝酸を0.1mol/リットルを添加した(ここで−O
R基とは金属有機化合物に結合している有機化合物を表
わす。)。溶液を基板上に塗布した後、120℃で1時
間乾燥後さらに600℃で1時間加熱した。塗布から焼
結までの作業を10回繰り返して厚さ1μmのPLZT
焼結体11を作成し、さらにPLZTの上部に櫛型に電
極12を付けた(図2c)。次にプラスチックフィルム
10を剥離して反射型レンズ4、6を以下の手順で作成
した。レンズ部に下記の組成のSiO2溶液を塗布し
た。テトラエトキシシラン、水、硝酸、及びポリエチレ
ングリコール(分子量600)をメトキシエタノールに
溶かした溶液を塗布し、スタンパーを用いた転写を行っ
た後同様に焼結をしてフレネル型レンズを作成し、レン
ズの上部に反射層を付けた(図2d)。最後に受光素子
としてフォトダイオード7をアライメントにより積層し
て平板型光学系を作成した(図2e)。各光学素子の位
置合わせが精密で、かつ安定で小型な光学系が得られ
た。 実施例2 この実施例は、光集積光学系2の製造例である。図3の
光集積光学系を作成した。作成手順を図4a〜fに示
す。シリコン基板2の受光部にイオンドープして受光素
子7を作製し、透明ガラス基板1とはりあわせ(図4
a)、レジスト8で図4bのようなパターンにマスキン
グした。次にレンズ部を熱融着性のプラスチックフィル
ム10でマスキングし、スリット型偏光子9を入力部と
フィルター部に蒸着により作成した(図4c)。この上
から以下に示す組成のPLZT溶液を塗布した。酢酸鉛
1モルに対して酢酸ランタニウム0.1モル、チタニウ
ムテトライソプロポキシドを0.35モル、ジルコニウ
ムテトラプロポキシドを0.65モルとなるように調整
したメトキシエタノール溶液(0.25mol/リット
ル)に水を−OR基と等量、触媒として硝酸を0.1m
ol/リットルを添加した(ここで−OR基とは金属有
機化合物に結合している有機化合物を表わす。)。溶液
を基板上に塗布した後、120℃で1時間乾燥後さらに
600℃で1時間加熱した。塗布から焼結までの作業を
10回繰り返して厚さ1μmのPLZT焼結体11を作
成し、さらにPLZTの上部にマトリックス状に電極1
2を付けた(図4d)。次にプラスチックフィルム10
を剥離して反射型レンズ4、6を以下の手順で作成し
た。レンズ部に下記の組成のSiO2溶液を塗布した。
テトラエトキシシラン、水、硝酸、及びポリエチレング
リコール(分子量600)をメトキシエタノールに溶か
した溶液を塗布し、スタンパーを用いた転写を行った後
同様に焼結をしてフレネル型レンズを作成し、レンズの
上部に反射層を付けた(図4e)。各光学素子の位置合
わせが精密で、かつ安定で小型な光学系が得られた。
Example 1 This example is a manufacturing example of the optical integrated optical system 1. The optical system of FIG. 1 was created. The creation procedure is shown as a to e in FIG. The transparent glass substrate 1 having the aluminum reflective layer 13 underneath was masked with a resist 8 in a pattern as shown in FIG. 2a. Next, the lens portion and the light receiving portion are masked with a heat-fusible plastic film 10, and the slit type polarizer 9
Was formed on the input part and the filter part by vapor deposition (Fig. 2
b). From there, a PLZT solution having the composition shown below was applied. A methoxyethanol solution (0.25 mol) of lanthanum acetate 0.1 mol, titanium tetraisopropoxide 0.35 mol, and zirconium tetrapropoxide 0.65 mol per mol of lead acetate (0.25
(mol / liter), water was added in an amount equal to that of the -OR group, and nitric acid as a catalyst was added in an amount of 0.1 mol / liter (here, -O).
The R group represents an organic compound bonded to a metal organic compound. ). After the solution was applied onto the substrate, it was dried at 120 ° C. for 1 hour and further heated at 600 ° C. for 1 hour. The process from coating to sintering is repeated 10 times and the thickness of PLZT is 1 μm.
A sintered body 11 was prepared, and a comb-shaped electrode 12 was attached to the upper portion of PLZT (FIG. 2c). Next, the plastic film 10 was peeled off, and the reflective lenses 4 and 6 were prepared by the following procedure. A SiO 2 solution having the following composition was applied to the lens portion. A solution of tetraethoxysilane, water, nitric acid, and polyethylene glycol (molecular weight 600) dissolved in methoxyethanol was applied, transferred using a stamper, and then sintered in the same manner to create a Fresnel lens. A reflective layer was applied on top of (Fig. 2d). Finally, the photodiodes 7 as light receiving elements were laminated by alignment to form a flat plate type optical system (FIG. 2e). An optical system was obtained in which the alignment of each optical element was precise, stable, and small. Example 2 This example is a manufacturing example of the optical integrated optical system 2. The integrated optical system of FIG. 3 was created. The creation procedure is shown in FIGS. A light receiving element 7 is manufactured by ion-doping the light receiving portion of the silicon substrate 2 and is bonded to the transparent glass substrate 1 (see FIG. 4).
a) The resist 8 was used to mask the pattern as shown in FIG. 4b. Next, the lens portion was masked with the heat-fusible plastic film 10, and the slit-type polarizer 9 was formed on the input portion and the filter portion by vapor deposition (FIG. 4c). From this, a PLZT solution having the composition shown below was applied. A methoxyethanol solution (0.25 mol / liter) in which lanthanum acetate 0.1 mol, titanium tetraisopropoxide 0.35 mol, and zirconium tetrapropoxide 0.65 mol were prepared per 1 mol of lead acetate. Water equal to -OR group, nitric acid 0.1m as catalyst
ol / liter was added (here, the —OR group represents an organic compound bonded to a metal organic compound). After the solution was applied onto the substrate, it was dried at 120 ° C. for 1 hour and further heated at 600 ° C. for 1 hour. The process from application to sintering is repeated 10 times to form a PLZT sintered body 11 having a thickness of 1 μm, and the electrodes 1 are arranged in a matrix on the upper portion of PLZT.
2 was attached (Fig. 4d). Next, plastic film 10
Then, the reflective lenses 4 and 6 were prepared by the following procedure. A SiO 2 solution having the following composition was applied to the lens portion.
A solution of tetraethoxysilane, water, nitric acid, and polyethylene glycol (molecular weight 600) dissolved in methoxyethanol was applied, transferred using a stamper, and then sintered in the same manner to create a Fresnel lens. A reflective layer was applied on top of (Fig. 4e). An optical system was obtained in which the alignment of each optical element was precise, stable, and small.

【0006】[0006]

【効果】本発明の光集積光学系1は、(1)平板型の少
なくとも1つの光学素子を直接透明基板上にゾル−ゲル
法により製膜して集積させることにより密着性に優れた
小型な光学系を作成することができ、また(2)光学系
を構成する基板上の全ての光学素子を1つのマスクを用
いて同時にパターニングして製膜することにより、平板
型光学素子を高精度でかつ効率良く位置合わせすること
を可能にした。本発明の光集積光学系2は、(1)1つ
の透明基板上に少なくとも発光素子と平板型レンズと平
板型空間変調素子を配置し、透明基板をはさんで対向す
る面に受光素子を配置することにより正確な位置合わせ
ができ、(2)平板型の光学素子を直接透明基板上にゾ
ル−ゲル法により製膜して集積させることにより密着性
に優れた小型の光学系を作成することができ、また
(3)光学系を構成する基板上の全ての光学素子を1つ
のマスクを用いて同時にパターニングして製膜すること
により、光学素子を高精度でかつ効率良く位置合わせす
ることを可能にした。
The optical integrated optical system 1 of the present invention is (1) a compact and excellent in adhesion by at least one flat plate type optical element being directly formed on a transparent substrate by a sol-gel method to be integrated. An optical system can be created, and (2) all optical elements on the substrate forming the optical system are simultaneously patterned by using a single mask to form a film, so that the flat optical element can be formed with high accuracy. In addition, it is possible to align the position efficiently. In the integrated optical system 2 of the present invention, (1) at least a light emitting element, a flat plate type lens, and a flat plate type spatial modulation element are arranged on one transparent substrate, and a light receiving element is arranged on the surfaces facing each other across the transparent substrate. By doing so, accurate alignment can be achieved. (2) A flat optical element is directly formed on a transparent substrate by a sol-gel method to form a film, and the small optical system having excellent adhesion is produced. In addition, (3) all optical elements on the substrate constituting the optical system are simultaneously patterned using a single mask to form a film, so that the optical elements can be aligned with high precision and efficiency. Made possible

【図面の簡単な説明】[Brief description of drawings]

【図1】透明な基板上に発光素子、平板型レンズ、平板
型空間変調素子および受光素子が配置されている本発明
の光集積光学系の1具体例の斜視図。
FIG. 1 is a perspective view of one specific example of an optical integrated optical system of the present invention in which a light emitting element, a flat plate type lens, a flat plate type spatial modulation element and a light receiving element are arranged on a transparent substrate.

【図2】a〜eは図1の光集積光学系の製造工程図。2A to 2E are manufacturing process diagrams of the optical integrated optical system of FIG.

【図3】透明な基板上に発光素子、平板型レンズおよび
平板型空間変調素子が配置され、透明基板をはさんで対
向する基板面に受光素子が配置されている本発明の光集
積光学系の1具体例の斜視図。
FIG. 3 is an optical integrated optical system of the present invention in which a light emitting element, a flat plate type lens and a flat plate type spatial modulation element are arranged on a transparent substrate, and a light receiving element is arranged on opposite substrate surfaces with a transparent substrate interposed therebetween. 3 is a perspective view of one specific example of FIG.

【図4】a〜fは図3の光集積光学系の製造工程図。4A to 4F are manufacturing process diagrams of the optical integrated optical system of FIG.

【符号の説明】[Explanation of symbols]

1 透明ガラス基板 2 シリコン基板 3 入力パターン 4 平板型レンズ 5 平板型空間変調素子 6 平板型レンズ 7 受光素子 8 レジスト 9 スリット型偏光子 10 熱融着性プラスチックフィルム 11 PLZT焼結体 12 櫛型電極 13 アルミニウム反射層 1 Transparent Glass Substrate 2 Silicon Substrate 3 Input Pattern 4 Flat Plate Lens 5 Flat Plate Spatial Modulator 6 Flat Plate Lens 7 Photoreceptor 8 Resist 9 Slit Polarizer 10 Thermal Fusion Plastic Film 11 PLZT Sintered Body 12 Comb Electrode 13 Aluminum reflective layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤村 格 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Fujimura 1-3-6 Nakamagome, Ota-ku, Tokyo Inside Ricoh Co., Ltd.

Claims (1)

【特許請求の範囲】 【請求項1】 1つの透明基板上に少なくとも発光素
子、平板型レンズ、平板型空間変調素子および受光素子
が配置され、その光学素子の少なくとも1つがゾル−ゲ
ル(Sol−Gel)法により基板に直接製膜されてい
ることを特徴とする光集積光学系。 【請求項2】 1つの透明基板上に少なくとも発光素
子、平板型レンズおよび平板型空間変調素子が配置さ
れ、透明基板をはさんで対向する面に受光素子が配置さ
れたことを特徴とする光集積光学系。 【請求項3】 1つの透明基板上に設ける平板型の光学
素子の少なくとも1つをゾル−ゲル法により直接基板上
に製膜し、かつ透明基板上の全ての光学素子を1つのマ
スクを用いて同時にパターニングして製膜することを特
徴とする請求項1および2記載の光集積光学系の製法。
Claims: 1. At least a light emitting element, a flat plate lens, a flat plate spatial modulation element and a light receiving element are arranged on one transparent substrate, and at least one of the optical elements is a sol-gel (Sol-gel). An optical integrated optical system characterized in that a film is directly formed on a substrate by the Gel method. 2. A light comprising at least a light emitting element, a flat plate type lens and a flat plate type spatial modulation element arranged on one transparent substrate, and a light receiving element arranged on a surface facing each other across the transparent substrate. Integrated optics. 3. At least one of flat plate type optical elements provided on one transparent substrate is directly formed on the substrate by a sol-gel method, and all the optical elements on the transparent substrate use one mask. 3. The method for producing an integrated optical system according to claim 1, wherein the film is formed by patterning at the same time.
JP3181981A 1991-06-26 1991-06-26 Optical integrated optical system integrated with flat plate type optical element and production thereof Pending JPH055922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3181981A JPH055922A (en) 1991-06-26 1991-06-26 Optical integrated optical system integrated with flat plate type optical element and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3181981A JPH055922A (en) 1991-06-26 1991-06-26 Optical integrated optical system integrated with flat plate type optical element and production thereof

Publications (1)

Publication Number Publication Date
JPH055922A true JPH055922A (en) 1993-01-14

Family

ID=16110239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3181981A Pending JPH055922A (en) 1991-06-26 1991-06-26 Optical integrated optical system integrated with flat plate type optical element and production thereof

Country Status (1)

Country Link
JP (1) JPH055922A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619478A1 (en) * 1996-05-14 1997-11-20 Sick Ag Optical arrangement with diffractive optical element
US6288822B2 (en) 1997-10-29 2001-09-11 Teloptics Corporation Discrete element light modulating microstructure devices
US6486996B1 (en) 1998-10-27 2002-11-26 Teloptics Corporations Discrete element light modulating microstructure devices
WO2007014631A2 (en) * 2005-08-03 2007-02-08 Schott Ag Substrate comprising at least one entire surface or partial surface macrostructured layer, method for the production thereof and its use

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19619478A1 (en) * 1996-05-14 1997-11-20 Sick Ag Optical arrangement with diffractive optical element
US6288822B2 (en) 1997-10-29 2001-09-11 Teloptics Corporation Discrete element light modulating microstructure devices
US6297899B1 (en) 1997-10-29 2001-10-02 Teloptics Corporation Discrete element light modulating microstructure devices
US6310712B1 (en) * 1997-10-29 2001-10-30 Teloptics Corporation Discrete element light modulating microstructure devices
US6381060B1 (en) 1997-10-29 2002-04-30 Teloptics Corporation Total internal reflection light modulating microstructure devices
US6486996B1 (en) 1998-10-27 2002-11-26 Teloptics Corporations Discrete element light modulating microstructure devices
WO2007014631A2 (en) * 2005-08-03 2007-02-08 Schott Ag Substrate comprising at least one entire surface or partial surface macrostructured layer, method for the production thereof and its use
WO2007014631A3 (en) * 2005-08-03 2008-03-13 Schott Ag Substrate comprising at least one entire surface or partial surface macrostructured layer, method for the production thereof and its use

Similar Documents

Publication Publication Date Title
US7215491B2 (en) Optical path switching device and method
JP2002523802A (en) Beam deflectors and scanners
Uhlmann et al. Sol-gel synthesis of optical thin films and coatings
US20090267245A1 (en) Transmission Type Optical Element
US5911944A (en) Method for production of fiber
JPH07505728A (en) Method for fabricating microsystems and formation of microsystem laser sources from this method
JPH055922A (en) Optical integrated optical system integrated with flat plate type optical element and production thereof
CN101535177B (en) Si-o containing hydrogenated carbon film, optical device including the same, and method for manufacturing the si-o containing hydrogenated film and the optical device
Vu et al. Planar waveguide lenses in GaAs by using ion milling
US12025826B2 (en) Optical light guides and methods of manufacturing the same
JPH03150509A (en) Method for connecting between waveguide substrate and optical fiber, and reflection preventive film with ultraviolet-ray cutting-off function used for the method
JPS61133911A (en) Coupling method of light emitting element and photodetector as well as optical waveguide
JPS58198001A (en) Refractive index distributed type flat plate microlens array
JPH04335317A (en) Optically integrated optical system and formation thereof
JPS6039606A (en) Geodesic optical part
JPH04344611A (en) Optical integrated system and its production
JP2855774B2 (en) Manufacturing method of optical waveguide lens and waveguide type optical element
JPH05224578A (en) Optical integrated device for hologram formation and its formation
JPS61122602A (en) Fresnel lens
JPS57158834A (en) Method for optical recording
WO2003029159A1 (en) Coated optical components
CN116810162A (en) Chalcogenide glass photon chip and direct exposure manufacturing method thereof
JPH01147527A (en) Liquid crystal device for laser scan
JP3078395B2 (en) Optical element
KR100526679B1 (en) Focusing waveguide grating coupler and method of fabricating the same