JPH05322998A - Battery capacity discriminator - Google Patents
Battery capacity discriminatorInfo
- Publication number
- JPH05322998A JPH05322998A JP4125054A JP12505492A JPH05322998A JP H05322998 A JPH05322998 A JP H05322998A JP 4125054 A JP4125054 A JP 4125054A JP 12505492 A JP12505492 A JP 12505492A JP H05322998 A JPH05322998 A JP H05322998A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- current
- value
- capacity
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、バッテリ容量を検出す
るバッテリ容量判定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery capacity determination device for detecting battery capacity.
【0002】[0002]
【従来の技術】特公昭59ー8789号公報は、スタ−
タ始動時のバッテリ放電特性より求めた初期特性に走行
中の充放電電流の積算値を加減算してバッテリ容量を検
出することを開示している。2. Description of the Related Art Japanese Patent Publication No. 59-8789 discloses a starter.
It is disclosed that the battery capacity is detected by adding / subtracting the integrated value of the charging / discharging current during traveling to / from the initial characteristic obtained from the battery discharging characteristic at the time of starting the battery.
【0003】[0003]
【発明が解決しようとする課題】しかしながら通常の電
流センサはオフセット誤差(すなわち、検出値に一定量
含まれる固定誤差)を有するために、このバッテリ容量
検出方式では電流センサのオフセット誤差が積算され、
その結果としてバッテリ容量が大きな誤差を含むという
問題が生じた。例えば、1Aのオフセット発生時、30
分走行では0.5AHの誤差であるが、5Hr走行では
5AHの誤差となる。もちろん、極めてオフセット誤差
が小さい電流センサを用いれば上記問題を回避し得る
が、そのためには高価で精密な電流センサを採用する必
要があり、費用及び保守上の問題を生じる。However, since an ordinary current sensor has an offset error (that is, a fixed error included in the detected value by a fixed amount), the offset error of the current sensor is accumulated in this battery capacity detection method.
As a result, there arises a problem that the battery capacity includes a large error. For example, when an offset of 1A occurs, 30
An error of 0.5 AH is obtained in minute driving, but an error of 5 AH is obtained in 5 hour traveling. Of course, if a current sensor with an extremely small offset error is used, the above problem can be avoided, but for that purpose, it is necessary to employ an expensive and precise current sensor, which causes cost and maintenance problems.
【0004】本発明は上記問題点に鑑みなされたもので
あり、簡単な装置構成により電流検出に際するオフセッ
ト誤差の累積を削減し得るバッテリ容量判定装置を提供
することを、その目的としている。The present invention has been made in view of the above problems, and an object thereof is to provide a battery capacity determination device capable of reducing the accumulation of offset errors in current detection with a simple device configuration.
【0005】[0005]
【課題を解決するための手段】第一発明のバッテリ容量
判定装置は、バッテリの充放電電流を検出するバッテリ
電流検出手段と、前記バッテリ電流検出手段の誤差電流
値を予め記憶するとともに、前記誤差電流値を用いて前
記バッテリ電流検出手段の出力を補正するバッテリ電流
補償手段と、前記バッテリ電流補償手段の出力を積算す
る充放電電流積算手段と、前記充放電電流積算手段の出
力を所定の基準値と比較してバッテリ容量を判定するバ
ッテリ容量判定手段とを備えることを特徴としている。A battery capacity determination device according to the first aspect of the present invention stores a battery current detecting means for detecting a charging / discharging current of a battery, an error current value of the battery current detecting means in advance, and the error. A battery current compensating means for correcting the output of the battery current detecting means using a current value, a charging / discharging current integrating means for integrating the output of the battery current compensating means, and an output of the charging / discharging current integrating means as a predetermined reference. And a battery capacity determination means for determining the battery capacity by comparing with the value.
【0006】第二発明のバッテリ容量判定装置は、バッ
テリの充放電電流を検出するバッテリ電流検出手段と、
前記バッテリ電流検出手段の出力を積算する充放電電流
積算手段と、前記バッテリ電流検出手段の誤差電流値を
予め記憶するとともに、前記誤差電流値を積算して誤差
電流積算値を出力する誤差電流積算手段と、前記誤差電
流積算値により所定の基準値を補正する基準値補正手段
と、前記充放電電流積算手段の出力を前記補正済みの基
準値と比較してバッテリ容量を判定するバッテリ容量判
定手段とを備えることを特徴としている。A battery capacity determination device according to a second aspect of the present invention is a battery current detection means for detecting a charging / discharging current of a battery,
Charge / discharge current integrating means for integrating the output of the battery current detecting means and error current integrating means for storing the error current value of the battery current detecting means in advance and integrating the error current value to output the error current integrated value. Means, reference value correction means for correcting a predetermined reference value based on the error current integrated value, and battery capacity determination means for comparing the output of the charge / discharge current integration means with the corrected reference value to determine the battery capacity. It is characterized by having and.
【0007】[0007]
【作用】第一発明において、バッテリ電流検出手段はバ
ッテリの充放電電流を検出し、バッテリ電流補償手段は
バッテリ電流検出手段の誤差電流値を予め記憶するとと
もに、この誤差電流値を用いてバッテリ電流検出手段の
出力を補正する。充放電電流積算手段は上記補正された
バッテリ電流補償手段の出力を積算し、バッテリ容量判
定手段は上記積算された値を所定の基準値と比較してバ
ッテリ容量を判定する。In the first aspect of the invention, the battery current detecting means detects the charging / discharging current of the battery, the battery current compensating means stores the error current value of the battery current detecting means in advance, and the battery current detecting means uses the error current value. The output of the detection means is corrected. The charging / discharging current integrating means integrates the corrected output of the battery current compensating means, and the battery capacity determining means compares the integrated value with a predetermined reference value to determine the battery capacity.
【0008】第二発明において、バッテリ電流検出手段
はバッテリの充放電電流を検出し、充放電電流積算手段
はバッテリ電流検出手段の出力を積算する。一方、誤差
電流積算手段はバッテリ電流検出手段の誤差電流値を予
め記憶するとともにこの誤差電流値を積算して誤差電流
積算値を出力し、基準値補正手段は誤差電流積算値によ
り所定の基準値を補正する。そして、バッテリ容量判定
手段は充放電電流積算手段の出力をこの補正済みの基準
値と比較してバッテリ容量を判定する。In the second invention, the battery current detecting means detects the charge / discharge current of the battery, and the charge / discharge current integrating means integrates the output of the battery current detecting means. On the other hand, the error current integrating means stores the error current value of the battery current detecting means in advance and integrates the error current value to output the error current integrated value, and the reference value correcting means determines the predetermined reference value based on the error current integrating value. To correct. Then, the battery capacity determination means compares the output of the charge / discharge current integration means with the corrected reference value to determine the battery capacity.
【0009】[0009]
【発明の効果】以上説明したように第一発明のバッテリ
容量判定装置は、予め記憶したバッテリ電流検出手段の
誤差電流値を用いてバッテリ電流検出手段の出力を補正
するバッテリ電流補償手段を備え、この補正出力の積算
値の大小によりバッテリ容量を検出しているので、バッ
テリ電流検出手段の誤差電流値が積算されるのを回避で
き、簡単かつ正確にバッテリ容量を検出することができ
る。As described above, the battery capacity judging device of the first invention comprises the battery current compensating means for correcting the output of the battery current detecting means by using the error current value of the battery current detecting means stored in advance, Since the battery capacity is detected based on the magnitude of the integrated value of the correction output, it is possible to prevent the error current value of the battery current detecting means from being integrated, and it is possible to detect the battery capacity easily and accurately.
【0010】また第二発明のバッテリ容量判定装置は、
予め記憶したバッテリ電流検出手段の誤差電流値を記憶
し、積分する誤差電流積算手段と、誤差電流積算値によ
り所定の基準値を補正する基準値補正手段と、バッテリ
充放電電流の積算値をこの補正済みの基準値と比較して
バッテリ容量を判定しているので、上記第一発明と同様
の効果を奏することができる。The battery capacity determination device of the second invention is
The error current value of the battery current detection means stored in advance is stored and integrated, the error current integration means, the reference value correction means for correcting a predetermined reference value by the error current integration value, and the integrated value of the battery charge / discharge current Since the battery capacity is determined by comparing it with the corrected reference value, the same effect as the first invention can be obtained.
【0011】[0011]
(実施例1)第一発明の一実施例を図面を参照して以下
に説明する。図1において、1は車載バッテリ、2は車
両駆動用エンジン、3はエンジン始動用のスタ−タ、4
はスタ−タ始動用のスタ−タスイッチであり、周知の如
く、スタ−タスイッチ4を投入し、バッテリ1からの電
力をスタ−タに供給することで、スタ−タ3が回転し
て、エンジン2が始動する。(Embodiment 1) An embodiment of the first invention will be described below with reference to the drawings. In FIG. 1, 1 is an in-vehicle battery, 2 is a vehicle driving engine, 3 is an engine starting starter, 4
Is a starter switch for starting the starter. As is well known, the starter switch 4 is turned on to supply electric power from the battery 1 to the starter, whereby the starter 3 is rotated. , The engine 2 starts.
【0012】5はエンジン2により、図示しないベルト
及びプ−リを介して駆動され、バッテリ1を充電すると
共に、ランプ、ブロアモ−タ、デフォッガ等の電気負荷
8に電力を供給する発電機、6はバッテリ1の充放電電
流を検出する電流検出器(本発明でいうバッテリ電流検
出手段の一部)、7はバッテリ1の温度を検出する温度
検出器、9はエンジン2の状態、バッテリ1の電圧、電
流、及び温度を検出して、エンジン2の回転数、発電機
5の発電を制御し、さらにバッテリの寿命を検出して表
示器10により表示する制御回路である。A generator 5 is driven by the engine 2 via a belt and pulley (not shown) to charge the battery 1 and supply electric power to an electric load 8 such as a lamp, a blower motor, a defogger, and the like. Is a current detector for detecting the charge / discharge current of the battery 1 (a part of the battery current detecting means in the present invention), 7 is a temperature detector for detecting the temperature of the battery 1, 9 is the state of the engine 2, The control circuit detects the voltage, the current, and the temperature to control the rotation speed of the engine 2 and the power generation of the power generator 5, and further detects the life of the battery to display it on the display 10.
【0013】次に、制御回路9について図2に示すブロ
ック図により説明する。この制御回路9は、通常のマイ
コン装置であって、D/A、A/Dコンバータを含むI
/Oインターフェイス、メモリ、CPUをバス接続して
なる。制御回路9は機能的には、バッテリ電流検出部9
a、バッテリ温度検出部9b、バッテリ電圧検出部9c
(本発明でいうバッテリ電流検出手段の残部)、電流積
算部(本発明でいう充放電電流積算手段)9d、放電特
性演算部9e、発電制御部9f、バッテリ容量モニタ部
(本発明でいうバッテリ容量判定手段)9g、エンジン
状態検出部9h,エンジン制御部9j、警報部9i、バ
ッテリ電流補償部(本発明でいうバッテリ電流補償手
段)9kからなる。バッテリ電流検出部9a、バッテリ
温度検出部9b、バッテリ電圧検出部9cはそれぞれA
/Dコンバータからなる。Next, the control circuit 9 will be described with reference to the block diagram shown in FIG. The control circuit 9 is an ordinary microcomputer device, and includes an I / A converter including a D / A and A / D converter.
/ O interface, memory, and CPU are connected to the bus. The control circuit 9 is functionally equivalent to the battery current detector 9
a, battery temperature detector 9b, battery voltage detector 9c
(Remaining part of battery current detecting means in the present invention), current integrating section (charging / discharging current integrating means in the present invention) 9d, discharge characteristic calculating section 9e, power generation control section 9f, battery capacity monitoring section (battery in the present invention) It comprises a capacity determination means) 9g, an engine state detection section 9h, an engine control section 9j, an alarm section 9i, and a battery current compensation section (battery current compensation means in the present invention) 9k. The battery current detector 9a, the battery temperature detector 9b, and the battery voltage detector 9c each have A
It consists of a / D converter.
【0014】制御回路9について図3に示すフローチャ
ートに基いて説明する。まず、ステップS1でスタ−タ
スイッチ4を投入し、スタ−タ3を始動する。次のステ
ップS2はスタ−タ始動時の放電特性を測定するステッ
プであって、電流検出器6により検出されたバッテリ1
の放電電流IB1と、電圧検出部9cにより検出されたバ
ッテリ1の電圧VB1を読み込む。The control circuit 9 will be described with reference to the flowchart shown in FIG. First, in step S1, the starter switch 4 is turned on to start the starter 3. The next step S2 is a step of measuring the discharge characteristic at the start of the starter, and the battery 1 detected by the current detector 6
The discharge current I B1 and the voltage V B1 of the battery 1 detected by the voltage detector 9c are read.
【0015】ステップS2について、図9を参照して詳
細に説明する。電流検出器6により検出されたバッテリ
1の放電電流IB1をステップ302にて電流検出部9a
により読み込み、ステップ303にて放電電流IB1が1
00〔A〕以上になったことで、スタ−タ3の始動を確
認する。スタ−タ3の始動が確認されると、スタ−タ3
の始動直後は大電流が急激に流れることでノイズが発生
するため、このノイズの影響を受けないために、上記ス
テップ303にてスタ−タの始動が検出されてから50
ms待機し(ステップ304)、次のステップ305で
は電流検出部9aによりバッテリ1の放電電流I B1を読
み込む。Details of step S2 will be described with reference to FIG.
I will explain in detail. Battery detected by current detector 6
1 discharge current IB1In step 302, the current detector 9a
Read in, and in step 303 discharge current IB1Is 1
Since it is over 00 [A], it is possible to confirm the start of the starter 3.
Acknowledge. When it is confirmed that the starter 3 is started, the starter 3
Immediately after starting, a large current suddenly flows and noise is generated.
Therefore, in order not to be affected by this noise,
50 after the starter start is detected at step 303
Wait ms (step 304), and in the next step 305
Is the discharge current I of the battery 1 by the current detector 9a. B1Read
See in.
【0016】次のステップ306では、ステップ305
にて読み込まれた放電電流IB1が60〔A〕から250
〔A〕までの範囲に入っていれば、スタ−タ3が作動中
であると検出し、ステップ307にて電圧検出部9cに
よりバッテリ1の電圧VB1を読み込む。ここで、上述の
放電電流の範囲は、スタ−タ3が作動中で、まだエンジ
ンが始動していない時には、スタ−タ3に60〔A〕〜
250〔A〕の電流が流れると判断して設定したもので
あり、特にこの範囲に限定する必要はない。In the next step 306, step 305
The discharge current I B1 read in is from 60 [A] to 250
If it is within the range up to [A], it is detected that the starter 3 is in operation, and in step 307, the voltage detection unit 9c reads the voltage V B1 of the battery 1. Here, the above discharge current range is 60 [A] to the starter 3 when the starter 3 is operating and the engine is not yet started.
It is set by judging that the current of 250 [A] flows, and it is not particularly limited to this range.
【0017】次のステップ308では、上述のバッテリ
1の放電電流IB1、電圧VB1、時間tを記憶する。次の
ステップ309では、スタ−タ始動後3〔s〕(通常、
スタ−タの始動からエンジンの始動までに、1〔s〕も
必要としないことを考慮して、多めに設定している)経
過した際、上述の作動を停止するものであり、スタ−タ
始動後3〔s〕経過していない場合、再びステップ30
5に戻る。In the next step 308, the discharge current I B1 of the battery 1, the voltage V B1 and the time t are stored. In the next step 309, 3 [s] after starting the starter (normally,
The above operation is stopped when a certain amount of time has been set in consideration of the fact that 1 [s] is not required from the start of the starter to the start of the engine. If 3 [s] has not elapsed after the start, step 30 is performed again.
Return to 5.
【0018】この時、上述のステップ305からステッ
プ309の作動、つまり、スタ−タ作動時の放電電流I
B1、電圧VB1の読み込み、記憶を25〔ms〕間隔で繰
り返すようにし、その時の時間tに対応した放電電流I
B1、電圧VB1を記憶する。尚、これらデ−タは、常に新
しい10個のデ−タを記憶している。そして、ステップ
306にて、放電電流が60〔A〕以下となりエンジン
の始動を検出した際には、ステップ307及びステップ
308を除いた作動を繰り返して、スタ−タ始動から3
〔s〕経過後にステップ309からステップ310へ移
る。ステップ310では、ステップ308にて記憶して
いるデ−タから、バッテリの放電電流IB1、電圧VB1及
び、時間tの最大値IBmax、VBmax及び、tma x を算出
し、ステップ311では逆に、最小値IBmin、VBmin及
び、tmin を算出する。At this time, the discharge current I during the operation of the above-mentioned steps 305 to 309, that is, when the starter is operated.
B1 and voltage V B1 are read and stored at intervals of 25 [ms], and the discharge current I corresponding to the time t at that time is repeated.
B1 and the voltage V B1 are stored. It should be noted that these data always store new 10 data. Then, in step 306, when the discharge current becomes 60 [A] or less and the start of the engine is detected, the operation except step 307 and step 308 is repeated to start the start 3
After [s], the process moves from step 309 to step 310. In step 310, de-stored at step 308 - from the data, calculates the discharge current I B1 of the battery, and the voltage V B1, the maximum value I Bmax of the time t, V Bmax and the t ma x, step 311 On the contrary, the minimum values I Bmin , V Bmin, and t min are calculated.
【0019】次のステップ312では、横軸を放電電
流、縦軸を電圧として設定した座標に、ステップ31
0、ステップ311にて算出された放電電流、電圧の最
大値、最小値をブロットし、それらを直線で結んだ特性
図を描く。次に、この特性図により、放電電流が150
〔A〕の時の電圧を第1の容量検出電圧VBd1 とし、ま
た、スタ−タ始動開始時から上記電圧VBd1 検出までの
時間tは、ステップ308で記憶された10個の時間t
のデ−タを平均し、これを容量検出時間td とする。た
だし、第1の容量検出電圧VBd1 を決定するための放電
電流は特に150〔A〕に限定する必要はない。In the next step 312, the horizontal axis represents the discharge current and the vertical axis represents the voltage.
0, the discharge current and the maximum and minimum values of the voltage calculated in step 311 are blotted, and a characteristic diagram is drawn by connecting them with a straight line. Next, according to this characteristic diagram, the discharge current is 150
The voltage at the time of [A] is the first capacitance detection voltage V Bd1, and the time t from the start of the starter to the detection of the voltage V Bd1 is 10 times t stored in step 308.
Data is averaged and this is taken as the capacity detection time t d . However, the discharge current for determining the first capacitance detection voltage V Bd1 need not be limited to 150 [A].
【0020】次のステップS3では、上記第1の容量検
出電圧VBd1 を以下のように補正してスタ−タ作動時の
バッテリ容量VI1 を求める。図10のフロ−チャ−ト
を参照してこのステップS3を詳細に説明する。すなわ
ち、バッテリ1を放電した時のバッテリ電圧は時間と共
に低下し、放電開始から5秒程度経過すると安定した電
圧値を示す。これに対してスタ−タ3の駆動によるエン
ジン2の始動は、上述したように通常1秒以内で行なわ
れており、スタ−タ駆動時におけるバッテリ1の電圧の
測定値、つまり、上述のように測定した第1の容量検出
電圧VBd1 は安定した時の電圧より高い値を示す。In the next step S3, the first capacity detection voltage V Bd1 is corrected as follows to obtain the battery capacity VI 1 during starter operation. This step S3 will be described in detail with reference to the flowchart of FIG. That is, the battery voltage when the battery 1 is discharged decreases with time, and shows a stable voltage value after about 5 seconds have elapsed from the start of discharging. On the other hand, the start-up of the engine 2 by driving the starter 3 is normally performed within 1 second as described above, and the measured value of the voltage of the battery 1 when the starter is driven, that is, as described above. The first capacitance detection voltage V Bd1 measured in the above shows a value higher than the voltage when it is stable.
【0021】そこで、バッテリ特性の放電時間と電圧の
関係を予め求めておき、ステップ402にて、スタ−タ
作動時の放電電流により決定した第1の容量検出電圧V
Bd1と、スタ−タ3が始動して5秒後に得られる安定値
とのズレ△Vを、第1の容量検出電圧VBd1 より引いて
補正する。このように補正することで、バッテリ1が1
50〔A〕で放電している時の、より正確なバッテリ1
の電圧を得ることができ、これを第2の容量検出電流V
Bd2 とする。Therefore, the relationship between the discharge time and the voltage of the battery characteristics is obtained in advance, and in step 402, the first capacity detection voltage V determined by the discharge current during the starter operation.
A deviation ΔV between Bd1 and a stable value obtained 5 seconds after the starter 3 is started is corrected by subtracting it from the first capacitance detection voltage V Bd1 . By correcting in this way, the battery 1
More accurate battery 1 when discharging at 50 [A]
Of the second capacitance detection current V
Bd2 .
【0022】さらに、バッテリ電圧は温度特性を有して
いるため、ステップ403にて、バッテリ温度検出器7
により検出されたバッテリ温度TB をバッテリ温度検出
部9bに入力し、ステップ404にて、バッテリ温度T
B に応じて、第2の容量検出電圧VBd2 を補正する。こ
の補正により、さらに正確なバッテリ1の電圧を得るこ
とができ、これを第3の容量検出電圧VBd3 とする。Furthermore, since the battery voltage has a temperature characteristic, the battery temperature detector 7 is operated at step 403.
The battery temperature T B detected by is input to the battery temperature detection unit 9b, and in step 404, the battery temperature T B is input.
The second capacitance detection voltage V Bd2 is corrected according to B. By this correction, a more accurate voltage of the battery 1 can be obtained, which is used as the third capacity detection voltage V Bd3 .
【0023】次に、ステップ405にて、この第3の容
量検出電圧VBd3 よりスタ−タ作動時のバッテリ容量V
I1 を求めるが、以下にこれを説明する。図4に、バッ
テリ1が新しい状態であって所定電流を所定時間放電
し、かつバッテリ液比重の成層化、充電直後の分極の発
生等がない場合におけるバッテリ電圧とバッテリ容量と
の関係を示す特性を実線により示している。図4からバ
ッテリ容量が小さい時には、バッテリ電圧が低くなって
いることが理解できる。そして、この特性についてはメ
モリに記憶されている。Next, at step 405, the battery capacity V during starter operation is calculated from the third capacity detection voltage V Bd3.
I 1 is calculated, which will be described below. FIG. 4 is a characteristic showing the relationship between the battery voltage and the battery capacity in the case where the battery 1 is in a new state, is discharged at a predetermined current for a predetermined time, and there is no stratification of the battery liquid specific gravity or polarization immediately after charging. Is indicated by a solid line. It can be understood from FIG. 4 that the battery voltage is low when the battery capacity is small. Then, this characteristic is stored in the memory.
【0024】ステップ405では、この特性図により上
述のように求められた第3の容量検出電圧VBd3 を用い
て、スタ−タ作動時のバッテリ1の容量(以下、第1の
バッテリ容量とする)VI1 を決定する。このようにし
てステップS3が実行される。次のステップS4につい
て以下に説明する。In step 405, the capacity of the battery 1 during starter operation (hereinafter referred to as the first battery capacity) is determined by using the third capacity detection voltage V Bd3 obtained as described above from this characteristic diagram. ) Determine VI 1 . In this way, step S3 is executed. Next step S4 will be described below.
【0025】まず、前回が初回走行の場合には、電流検
出部6により検出されてバッテリ電流検出部9aに読み
込まれたエンジン始動開始以降のバッテリ1の充放電電
流を積算し(電流積算部9d)、この積算値を前記第1
のバッテリ容量VI1 に加えて走行時の第2のバッテリ
容量VI2 を検出する(バッテリ容量モニタ部9g)。
次に、第2のバッテリ容量VI2 の最後の値、つまり走
行終了時の値を、第3のバッテリ容量VI3 として記憶
する(バッテリ容量モニタ部9g)。First, in the case of the first running last time, the charging / discharging current of the battery 1 after the start of the engine detected by the current detecting unit 6 and read by the battery current detecting unit 9a is integrated (current integrating unit 9d). ), The integrated value is the first
In addition to the battery capacity VI 1 of the above, the second battery capacity VI 2 during traveling is detected (battery capacity monitor unit 9g).
Next, the last value of the second battery capacity VI 2 , that is, the value at the end of travel is stored as the third battery capacity VI 3 (battery capacity monitor unit 9g).
【0026】そして、今回の走行ではこのステップS4
にて、第3のバッテリ容量VI3 を読み出す。次のステ
ップS5(バッテリ容量モニタ部9g)では、第1、第
3のバッテリ容量VI1 、VI3 の大小を比較して、小
さい方の値を第4のバッテリ容量VI 4 とする。In this run, this step S4
At the third battery capacity VI3Read out. Next step
Up S5 (battery capacity monitor unit 9g)
Battery capacity VI of 31, VI3Compare the size of
The first value is the fourth battery capacity VI. FourAnd
【0027】バッテリ1の状態が良好であれば、上記第
1、第3のバッテリ容量は、略等しい値となり、従って
これら第1、第3のバッテリ容量のどちらの値を採用し
ても良い。しかし、以下の場合に備えて、第1、第3の
バッテリ容量VI1 、VI3の内、小さい方を採用して
おり、その理由を以下に説明する。第1には、第1のバ
ッテリ容量VI1 が、第3のバッテリ容量VI3 に対し
て所定値大きい場合である。If the state of the battery 1 is good, the first and third battery capacities have substantially equal values, and therefore either of the first and third battery capacities may be adopted. However, in case of the following case, the smaller one of the first and third battery capacities VI 1 and VI 3 is adopted, and the reason will be described below. Firstly, the first battery capacity VI 1 is larger than the third battery capacity VI 3 by a predetermined value.
【0028】これは、バッテリ液比重の成層化、或いは
充電着後に、電極付近でのバッテリ液の濃度が高くなる
こと(以下、分極と呼ぶ)により、図4の破線で示す特
性を示すため、実線で示す真の特性に対して、容量に対
するバッテリ電圧が大きくでるために、第1のバッテリ
容量VI1 が真の容量に対して大きく求められる場合で
ある。This is because the concentration of the battery liquid becomes high near the electrodes (hereinafter referred to as polarization) after stratification of the battery liquid specific gravity or after charging and charging, so that the characteristic shown by the broken line in FIG. 4 is obtained. This is a case where the first battery capacity VI 1 is required to be large relative to the true capacity because the battery voltage with respect to the capacity is large with respect to the true characteristic indicated by the solid line.
【0029】そのため、この場合は第2のバッテリ容量
VI2 が真のバッテリ容量に近いと判断し、第3のバッ
テリ容量VI3 をVI4 として選択する。第2には、第
3のバッテリ容量VI3 が第1のバッテリ容量VI1 に
対して所定値だけ大きい場合である。図5に示すよう
に、バッテリ1の容量が実容量(100%充電状態の容
量)の略80〔%〕以下では、充電効率(充電電流に対
する容量の増加率)は略100〔%〕であるが、バッテ
リ1の容量が実容量の略80〔%〕以上では、ガッシン
グ(バッテリを充電することで、容量が増加するに伴っ
て電極の電圧が上昇し、所定値以上に上昇した場合に、
充電電流によりバッテリ液中の水が電気分解される)か
起きるため、充電効率が徐々に低下するというように、
バッテリの充電効率がバッテリの容量によって変動す
る。Therefore, in this case, it is determined that the second battery capacity VI 2 is close to the true battery capacity, and the third battery capacity VI 3 is selected as VI 4 . Secondly, the third battery capacity VI 3 is larger than the first battery capacity VI 1 by a predetermined value. As shown in FIG. 5, when the capacity of the battery 1 is approximately 80% or less of the actual capacity (capacity in a 100% charged state), the charging efficiency (rate of increase in capacity with respect to charging current) is approximately 100%. However, when the capacity of the battery 1 is approximately 80% or more of the actual capacity, gassing (when the battery is charged, the voltage of the electrodes increases as the capacity increases, and when the voltage increases to a predetermined value or more,
As the charging current causes electrolysis of water in the battery fluid), the charging efficiency gradually decreases.
The charging efficiency of the battery varies depending on the capacity of the battery.
【0030】つまり、バッテリが充電されることで、そ
の容量が実容量の略80〔%〕以上となり、さらに充電
を続けた場合、ガッシングに用いられた充電電流が、バ
ッテリの充電に用いられたとして積算されるため、第3
のバッテリ容量VI3 が真の容量に対して大きく求めら
れるためである。さらに、バッテリが劣化している場合
は、破線で示すように、充電効率の低下が早くなるた
め、劣化時の第3のバッテリ容量VI3 の方が新品時に
対して、さらに大きく求められる。そのため、この場合
は第1のバッテリ容量VI1 が真のバッテリ容量に近い
と判断し、第1のバッテリ容量VI1 を第4のバッテリ
容量VI4 として選択する。That is, when the battery is charged, its capacity becomes approximately 80% or more of the actual capacity, and when charging is continued, the charging current used for gassing was used for charging the battery. Since it is accumulated as
This is because the battery capacity VI 3 is required to be larger than the true capacity. Further, when the battery is deteriorated, as shown by the broken line, the charging efficiency is reduced more rapidly, so that the third battery capacity VI 3 at the time of deterioration is required to be larger than that at the time of new product. Therefore, in this case, it is determined that the first battery capacity VI 1 is close to the true battery capacity, and the first battery capacity VI 1 is selected as the fourth battery capacity VI 4 .
【0031】尚、上述の成層化に対して、ガッシングは
電極から気泡が発生して、この気泡によりバッテリ液が
かき混ぜられるため、成層化とガッシングとは同時に発
生し難い。従って、第1、第3のバッテリ容量が共に大
きくならないため、上述のように小さい方の値を採用す
ることで正確な容量を知ることができる。次のS6で
は、バッテリの充電電流IB2を電流検出器6により検出
する。In contrast to the above-mentioned stratification, gassing causes bubbles in the electrodes, and the battery liquid is agitated by the bubbles, so stratification and gassing are unlikely to occur at the same time. Therefore, since the first and third battery capacities do not increase, it is possible to know the correct capacity by adopting the smaller value as described above. In the next S6, the charging current I B2 of the battery is detected by the current detector 6.
【0032】次のS7では、S5で求めたバッテリの初
期容量VI4 を初期値としてS6で求めたバッテリ電流
を積算する事により走行中のバッテリ容量VI2 を算出
する。なお、電流検出器6は一般には電流検出誤差を有
している。この誤差は積算時間(走行時間)が短い時に
は、さほど問題とはならないが積算時間が長くなると無
視できなくなる。(例えば1Aのオフセット誤差発生
時、30分走行では0.5AHの積算誤差であるが、5
Hr走行では5AHもの積算誤差となる。)次のS8
(バッテリ電流補償部9k)では、上記した電流検出器
6の電流検出誤差を補正する。具体的に説明すると、電
流検出誤差(電流検出器6およびバッテリ電流検出部9
aで生じる誤差分(特にオフセット誤差))を予め試験
により求めて記憶しておく。なお、この電流検出誤差は
装置個々に求めてもよく、電流検出器6およびバッテリ
電流検出部9aの各機種毎にそれらの平均値として求め
てもよい。ここでは、電流検出誤差は機種毎に所定範囲
として求めて記憶しており、電流検出誤差の内、+のも
のをIBH、ーのものをIBLとすると、真のバッテリ電流
はIB2ーIBHからIB2+IBLの間にある筈である。言い
換えれば、IBHは電流検出誤差として想定可能な電流過
剰方向の最大誤差を意味し、IBLは電流検出誤差として
想定可能な電流不足方向の最大誤差を意味する。In next step S7, the running battery capacity VI 2 is calculated by integrating the battery current obtained in S6 with the initial battery capacity VI 4 obtained in S5 as an initial value. The current detector 6 generally has a current detection error. This error does not cause much problem when the integrated time (running time) is short, but cannot be ignored when the integrated time becomes long. (For example, when an offset error of 1A occurs, a cumulative error of 0.5AH is obtained after running for 30 minutes.
Accumulation error of 5 AH will occur in Hr traveling. ) Next S8
The (battery current compensator 9k) corrects the current detection error of the current detector 6 described above. Specifically, the current detection error (the current detector 6 and the battery current detection unit 9
The error component (particularly the offset error) caused by a is obtained by a test in advance and stored. The current detection error may be obtained for each device, or may be obtained as an average value of the current detector 6 and the battery current detection unit 9a for each model. Here, the current detection error is obtained and stored as a predetermined range for each model. If the positive one of the current detection errors is I BH and the negative one is I BL , the true battery current is I B2 −. It should be between I BH and I B2 + I BL . In other words, I BH means the maximum error in the excess current direction that can be assumed as the current detection error, and I BL means the maximum error in the insufficient current direction that can be assumed as the current detection error.
【0033】更にS8では、最大積算容量VI2H=VI
4 +Σ(IB2+IBL)、最小積算容量VI2L=VI4 +
Σ(IB2ーIBH)を求める。つまり図7に示されるよう
に走行中のバッテリ容量はVI2HとVI2Lの間にあるこ
ととなる。そして、この真の容量の推定範囲(VI2Hと
VI2Lの差)は、電流検出器の誤差が大きい程、又積算
時間が長い程、広くなる。Further, in S8, the maximum integrated capacity VI 2H = VI
4 + Σ (I B2 + I BL ), minimum integrated capacity VI 2L = VI 4 +
Calculate Σ (I B2 −I BH ). That is, as shown in FIG. 7, the battery capacity during traveling is between VI 2H and VI 2L . The estimated range of the true capacity (difference between VI 2H and VI 2L ) becomes wider as the error of the current detector becomes larger and the integration time becomes longer.
【0034】次のS9〜S12はバッテリ容量に応じて
発電制御するステップであり、過充電の防止による液べ
りの防止や燃費の向上、又、過放電の防止によるバッテ
リ上りの防止を行う事を目的としている。次のS9で
は、S8で求めた最大積算容量VI2Hが予め設定したバ
ッテリ容量の上限値SOCH より大きいならS10にて
発電制御部9fで発電を抑制し過充電を防止する。The following steps S9 to S12 are steps for controlling power generation in accordance with the battery capacity. The prevention of overcharging prevents liquid slippage and the improvement of fuel consumption, and the prevention of overdischarge prevents the battery from going up. Has a purpose. In the next S9, if the maximum integrated capacity VI 2H obtained in S8 is larger than the preset upper limit SOC H of the battery capacity, the power generation control unit 9f suppresses power generation in S10 to prevent overcharging.
【0035】また、S11にて最小積算容量VI2Lが予
め設定した容量下限値SOCL より小さいなら(図7の
時間)、S12にて発電制御部9fで発電を増加してバ
ッテリ上りを防止する。必要ならエンジン制御部9jで
アイドル回転数を上昇させ発電機出力を増加させてもよ
い。このように、容量の上限値SOCH 及び下限値SO
CL (本発明でいう基準値)をそれぞれ最大積算容量V
I2H及び最小積算容量VI2Lと比較し、これら許容可能
な上下限値SOCH 、SOCL の範囲内に維持するべく
発電制御することにより、電流検出誤差の存在にかかわ
らず過充電および過放電の回避することができる。When the minimum integrated capacity VI 2L is smaller than the preset capacity lower limit value SOC L in S11 (time in FIG. 7), the power generation control unit 9f increases power generation in S12 to prevent the battery from going up. .. If necessary, the engine control unit 9j may increase the idle speed to increase the generator output. Thus, the upper limit value SOC H and the lower limit value SO of the capacity
C L (reference value in the present invention) is the maximum integrated capacity V
I 2H and minimum integrated capacity VI 2L are compared, and power generation is controlled so as to maintain them within the allowable upper and lower limit values SOC H and SOC L , thereby overcharging and overdischarging regardless of the presence of a current detection error. Can be avoided.
【0036】なお上記実施例では、電流検出誤差誤差分
(IBL、IBH)を固定値としたが、電流検出器6等の特
性に基づいて、温度や、バッテリ電流をパラメータとす
る変数としてもよい。S13ではバッテリ容量VI2 が
低下した時、バッテリ寿命又はバッテリ上り警報を行
う。S14ではキーSWを判断しONなら再びS6へ戻
りS6〜S14を繰り返す。S15では走行後の最終積
算結果をVI3 として記憶し、次回の走行にそなえる。
なお、S15にてVI2 に代えて最小積算容量VI2Lを
用いて、次回走行時の初期容量をバッテリ上りに対して
安全側に設定する事ができる。In the above embodiment, the current detection error error component (I BL , I BH ) is set to a fixed value. However, based on the characteristics of the current detector 6 and the like, the temperature and the battery current are used as variables. Good. In S13, when the battery capacity VI 2 has decreased, a battery life or battery up alarm is issued. In S14, the key SW is judged, and if ON, the process returns to S6 and repeats S6 to S14. The final accumulation result after running step S15 is stored as a VI 3, ready for the next run.
Incidentally, by using the least integrated capacity VI 2L in place of the VI 2 at S15, it can be set on the safe side the initial capacity of the next running against a dead battery.
【0037】なお上記説明において、ステップS8は、
本発明でいうバッテリ電流補償手段と、充放電電流積算
手段とを構成し、ステップS9及びS11はバッテリ容
量判定手段を構成している。(実施例2)また、上記実
施例ではステップS8で電流検出誤差分IBL、IBHを計
測電流I B2に対して補正しているが、上限容量SOCH
及び下限容量SOCL を補正しても同様の効果が得られ
る(図8参照)。In the above description, step S8 is
Battery current compensating means referred to in the present invention and charge / discharge current integration
Means and the steps S9 and S11 are battery capacity.
It constitutes a quantity determination means. (Example 2) Also, the above
In the embodiment, in step S8, the current detection error component IBL, IBHTotal
Measured current I B2The upper limit capacity SOC is corrected.H
And lower limit capacity SOCLEven if you correct the
(See FIG. 8).
【0038】つまりS8において以下の演算により上下
限容量SOCH 、SOCH を補正すればよい。 SOCH =SOCH ーΣIBL SOCL =SOCL +ΣIBH 更に、バッテリ1は図6に示されるように寿命によりそ
の満充電容量が低下するため(充電しても実容量は増加
せず、ガッシングに消費される)容量上限値SOCH も
バッテリ寿命により変更し設定するのが望ましい。ま
た、上下限容量(SOCH 、SOCL )を上記のように
補正した場合には、E/G始動時に初期値(電流検出誤
差による補正前)に設定してもよいなおこの実施例にお
いて、S7は充放電電流積算手段を構成し、S8は誤差
電流積算手段と、基準値補正手段とを構成することとな
る。That is, in S8, the upper and lower limit capacities SOC H and SOC H may be corrected by the following calculation. SOC H = SOC H over ΣI BL SOC L = SOC L + ΣI BH Furthermore, the battery 1 is the real capacity be (charge for the full-charge capacity is lowered due to the life, as shown in FIG. 6 is not increased, gassing It is desirable to change and set the upper limit value SOC H of the capacity (which is consumed by the battery) according to the battery life. The upper limit capacity (SOC H, SOC L) when the corrected as described above, in this embodiment should be noted that it may be set to an initial value at the time of E / G starts (before the correction by the current detection error), S7 constitutes charging / discharging current integrating means, and S8 constitutes error current integrating means and reference value correcting means.
【0039】以上述べたように、本実施例では電流検出
器で発生する電流検出誤差に対して特別な回路構成を設
ける事なく、検出誤差の累積によるバッテリの過充電や
バッテリ上りを防止することが可能となる。As described above, in this embodiment, it is possible to prevent the battery from being overcharged or the battery going up due to the accumulation of the detection error without providing a special circuit configuration for the current detection error generated in the current detector. Is possible.
【図1】本発明のバッテリ容量判定装置を採用した車両
用電源装置のブロック図、FIG. 1 is a block diagram of a vehicle power supply device that employs a battery capacity determination device of the present invention;
【図2】図1の制御回路9の機能構成を示す機能構成
図、FIG. 2 is a functional configuration diagram showing a functional configuration of a control circuit 9 of FIG.
【図3】図1の制御回路9の動作を示すフローチャー
ト、3 is a flowchart showing the operation of the control circuit 9 of FIG. 1,
【図4】バッテリのバッテリ電圧とバッテリ容量との関
係を示す特性図、FIG. 4 is a characteristic diagram showing a relationship between a battery voltage and a battery capacity of a battery,
【図5】バッテリの充電効率とバッテリ容量との関係を
示す特性図、FIG. 5 is a characteristic diagram showing the relationship between battery charging efficiency and battery capacity,
【図6】図1におけるバッテリの電流積算量とバッテリ
容量との関係を示す特性図、FIG. 6 is a characteristic diagram showing the relationship between the integrated current amount of the battery and the battery capacity in FIG.
【図7】図1におけるバッテリ容量の時間変化を示す特
性図、FIG. 7 is a characteristic diagram showing a time change of the battery capacity in FIG.
【図8】変形態様におけるバッテリ容量の時間変化を示
す特性図、FIG. 8 is a characteristic diagram showing a time variation of the battery capacity in a modified mode,
【図9】図2のS3の詳細を示すフローチャート、FIG. 9 is a flowchart showing details of S3 in FIG.
【図10】図2のS3の詳細を示すフローチャート、10 is a flowchart showing the details of S3 in FIG.
1はバッテリ、6は電流センサ(バッテリ電流検出手
段)、9は制御回路(バッテリ電流補償手段 充放電電
流積算手段 バッテリ容量判定手段)1 is a battery, 6 is a current sensor (battery current detecting means), 9 is a control circuit (battery current compensating means, charging / discharging current integrating means, battery capacity determining means)
Claims (2)
電流検出手段と、 前記バッテリ電流検出手段の誤差電流値を予め記憶する
とともに、前記誤差電流値を用いて前記バッテリ電流検
出手段の出力を補正するバッテリ電流補償手段と、 前記バッテリ電流補償手段の出力を積算する充放電電流
積算手段と、 前記充放電電流積算手段の出力を所定の基準値と比較し
てバッテリ容量を判定するバッテリ容量判定手段とを備
えることを特徴とするバッテリ容量判定装置。1. A battery current detecting means for detecting a charging / discharging current of a battery, an error current value of the battery current detecting means is stored in advance, and the output of the battery current detecting means is corrected using the error current value. Battery current compensating means, charging / discharging current accumulating means for accumulating the output of the battery current compensating means, and battery capacity judging means for judging the battery capacity by comparing the output of the charging / discharging current accumulating means with a predetermined reference value. And a battery capacity determination device.
電流検出手段と、 前記バッテリ電流検出手段の出力を積算する充放電電流
積算手段と、 前記バッテリ電流検出手段の誤差電流値を予め記憶する
とともに、前記誤差電流値を積算して誤差電流積算値を
出力する誤差電流積算手段と、 前記誤差電流積算値により所定の基準値を補正する基準
値補正手段と、 前記充放電電流積算手段の出力を所定の基準値と比較し
てバッテリ容量を判定するバッテリ容量判定手段とを備
えることを特徴とするバッテリ容量判定装置。2. A battery current detecting means for detecting a charge / discharge current of a battery, a charge / discharge current integrating means for integrating outputs of the battery current detecting means, and an error current value of the battery current detecting means stored in advance. An error current integration unit that integrates the error current value and outputs an error current integration value; a reference value correction unit that corrects a predetermined reference value based on the error current integration value; and an output of the charge / discharge current integration unit. A battery capacity determination device comprising: a battery capacity determination means for determining a battery capacity by comparing with a predetermined reference value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4125054A JPH05322998A (en) | 1992-05-18 | 1992-05-18 | Battery capacity discriminator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4125054A JPH05322998A (en) | 1992-05-18 | 1992-05-18 | Battery capacity discriminator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05322998A true JPH05322998A (en) | 1993-12-07 |
Family
ID=14900687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4125054A Pending JPH05322998A (en) | 1992-05-18 | 1992-05-18 | Battery capacity discriminator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05322998A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709943A2 (en) * | 1994-10-27 | 1996-05-01 | Canon Kabushiki Kaisha | Battery operated information processing apparatus |
WO2001018938A1 (en) * | 1999-09-09 | 2001-03-15 | Toyota Jidosha Kabushiki Kaisha | Apparatus for battery capacity measurement and for remaining capacity calculation |
EP1321773A1 (en) * | 2000-09-28 | 2003-06-25 | Japan Storage Battery Co., Ltd. | Method of detecting residual capacity of secondary battery |
US7813769B2 (en) | 2004-02-12 | 2010-10-12 | Denso Corporation | Onboard wireless communication system |
WO2011104752A1 (en) * | 2010-02-24 | 2011-09-01 | 三菱重工業株式会社 | Charging-rate computation system |
CN117154268A (en) * | 2023-09-14 | 2023-12-01 | 上海融和元储能源有限公司 | SOC correction method, device and equipment based on water system sodium ion energy storage battery cabinet and storage medium |
-
1992
- 1992-05-18 JP JP4125054A patent/JPH05322998A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0709943A2 (en) * | 1994-10-27 | 1996-05-01 | Canon Kabushiki Kaisha | Battery operated information processing apparatus |
EP0709943A3 (en) * | 1994-10-27 | 1999-11-10 | Canon Kabushiki Kaisha | Battery operated information processing apparatus |
WO2001018938A1 (en) * | 1999-09-09 | 2001-03-15 | Toyota Jidosha Kabushiki Kaisha | Apparatus for battery capacity measurement and for remaining capacity calculation |
EP1220413A4 (en) * | 1999-09-09 | 2006-02-08 | Toyota Motor Co Ltd | Apparatus for battery capacity measurement and for remaining capacity calculation |
US6621250B1 (en) | 1999-09-09 | 2003-09-16 | Toyota Jidosha Kabushiki Kaisha | Battery capacity measuring and remaining capacity calculating system |
US6920404B2 (en) | 2000-09-28 | 2005-07-19 | Japan Storage Battery Co., Ltd. | Method of detecting residual capacity of secondary battery |
EP1321773A4 (en) * | 2000-09-28 | 2004-03-03 | Japan Storage Battery Co Ltd | Method of detecting residual capacity of secondary battery |
EP1321773A1 (en) * | 2000-09-28 | 2003-06-25 | Japan Storage Battery Co., Ltd. | Method of detecting residual capacity of secondary battery |
US7813769B2 (en) | 2004-02-12 | 2010-10-12 | Denso Corporation | Onboard wireless communication system |
WO2011104752A1 (en) * | 2010-02-24 | 2011-09-01 | 三菱重工業株式会社 | Charging-rate computation system |
CN102472801A (en) * | 2010-02-24 | 2012-05-23 | 三菱重工业株式会社 | Charging-rate computation system |
KR101356899B1 (en) * | 2010-02-24 | 2014-01-28 | 미츠비시 쥬고교 가부시키가이샤 | Charging-rate computation system |
US9026389B2 (en) | 2010-02-24 | 2015-05-05 | Mitsubishi Heavy Industries, Ltd. | State of charge computation system |
CN117154268A (en) * | 2023-09-14 | 2023-12-01 | 上海融和元储能源有限公司 | SOC correction method, device and equipment based on water system sodium ion energy storage battery cabinet and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9219377B2 (en) | Battery charging apparatus and battery charging method | |
JP3736268B2 (en) | Control device for hybrid vehicle | |
KR100554241B1 (en) | Apparatus for battery capacity measurement and for remaining capacity calculation | |
JP4006881B2 (en) | Battery discharge capacity detection method and apparatus, and vehicle battery control apparatus | |
US9184613B2 (en) | Secondary battery state detecting apparatus and secondary battery state detecting method | |
EP2058891B1 (en) | Charging control device for a storage battery | |
JP5493407B2 (en) | Battery pack capacity adjustment device | |
JP5397013B2 (en) | Battery control device | |
JPH10288654A (en) | Device for detecting remaining battery capacity | |
JPH1138104A (en) | Residual capacity detecting device for battery | |
JP2000069606A (en) | Battery control unit | |
JP3767150B2 (en) | Battery remaining capacity detection device | |
JPH0763830A (en) | Apparatus for detecting residual capacity of battery for hybrid vehicle | |
JPH05322998A (en) | Battery capacity discriminator | |
JP4961861B2 (en) | Battery detection device | |
JP4149682B2 (en) | Battery pack state control method for hybrid vehicles | |
JP3750412B2 (en) | In-vehicle battery control system | |
JP2003127807A (en) | Method and device for determining residual capacity of secondary battery mounted on vehicle having idling stop function | |
JPH05316666A (en) | Charge controller for vehicle | |
JP3084789B2 (en) | Vehicle charge control device | |
JP3475894B2 (en) | Apparatus for determining full charge of vehicle secondary battery and apparatus for calculating remaining capacity | |
JP2003178811A (en) | Condition detector for storage battery | |
JPH05172915A (en) | Device for displaying state of battery | |
JP3036000B2 (en) | Battery state detector | |
JP2000023384A (en) | Battery charger |