JPH05271094A - Cancer metastasis-inhibiting agent using carboxymethylated chitin derivative - Google Patents
Cancer metastasis-inhibiting agent using carboxymethylated chitin derivativeInfo
- Publication number
- JPH05271094A JPH05271094A JP4068674A JP6867492A JPH05271094A JP H05271094 A JPH05271094 A JP H05271094A JP 4068674 A JP4068674 A JP 4068674A JP 6867492 A JP6867492 A JP 6867492A JP H05271094 A JPH05271094 A JP H05271094A
- Authority
- JP
- Japan
- Prior art keywords
- chitin
- peptide
- asp
- gly
- arg
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、Arg-Gly-Asp
のトリペプチドを必須単位として有するカルボキシメチ
ル化キチン誘導体(以下、「CM−キチン誘導体」と略
す。)およびその薬理学的に許容される塩を有効成分と
する癌転移抑制剤に関する。The present invention relates to Arg-Gly-Asp.
The present invention relates to a cancer metastasis inhibitor comprising a carboxymethylated chitin derivative (hereinafter abbreviated as “CM-chitin derivative”) having the tripeptide as an essential unit and a pharmacologically acceptable salt thereof as an active ingredient.
【0002】[0002]
【従来の技術】フィブロネクチンは細胞−細胞外基質の
接着に関与するタンパク質であり、血小板凝集やガン転
移にも関与していると考えられている。これらの相互作
用は一連の細胞表面のレセプターにより仲介されてい
る。フィブロネクチンは分子量約25万の巨大分子であ
るにもかかわらず、これらのレセプターは、その中のAr
g-Gly-Asp配列を特異的に認識することが明らかにさ
れ、レセプターとの相互作用に重要なものであることが
報告されている(ネイチャー(Nature)、第309巻、30
頁、1984年)。このArg-Gly-Asp配列はビトロネクチン
等の他の接着性蛋白質にも存在しており、上記コア配列
を介して、被接着細胞のレセプターと接合し、その情報
を接着細胞に伝達する。また、ヘパリン、コラーゲン、
フィブリン等の生体高分子との結合能も有し、細胞と間
質結合組織との接着、細胞の分化、増殖に関与している
とも考えられている。このように細胞接着活性蛋白質は
種々の生物活性を有するため、医薬、医用材料への応用
が検討されている。例えば、Arg-Gly-Asp配列を有する
種々の鎖状および環状のオリゴペプチドを用いて血小板
凝集を阻害する方法(高分子学会予稿集(Polymer Prepr
ints, Japan)、第38巻、3149頁、1989年、特開平2-1747
97号)、Arg-Gly-Asp配列を有するペプチドを細胞移動
抑制剤として用いる方法(特開平2-4716号)、Arg-Gly-
Aspを固定化したPMMA膜を細胞接着膜として用いる方法
(高分子学会予稿集(Polymer Preprints,Japan) 、第37
巻、705頁、1988年)等が報告されている。また、ポリ
マーにArg-Gly-Aspを必須構成単位とするペプチドを共
有結合させ動物細胞培養基体、生体複合人工臓器用基体
として用いる方法(特開平1-309682号、特開平1-305960
号)、Arg-Gly-Asp-Ser配列を有するポリペプチドを体
外血液用血小板保護剤として用いる方法も開示されてい
る(特開昭64-6217号)。さらに細胞接着活性蛋白質は
癌転移に関係する物質としても注目されている。癌転移
の一連の段階では、癌細胞は種々の宿主細胞や生体高分
子と接触する。このときフィブロネクチンのような細胞
接着分子が存在すると細胞は多細胞塊を形成し、癌細胞
の増殖や生存をより容易にする。ところが上記細胞接着
活性蛋白質が存在すると、該蛋白質に含まれる、フィブ
ロネクチンの接着コアであるトリペプチド Arg-Gly-Asp
が癌細胞上のレセプターと接合することにより、逆に癌
転移阻害活性を示すことが報告されている(サイエンス
(Science)、第238巻、467頁、1986年)。さら
に、この配列を有するオリゴペプチドあるいはその繰り
返し構造を有するポリペプチドを用いてより効率的に癌
転移を抑制する方法も開示されている(Int.J.Biol.Macr
omol.、第11巻、23頁、1989年;同誌、第11巻、226頁、
1989年;Jpn.J.Cancer Res.、第60巻、722頁、1989
年)。一方、キチンはN−アセチル−D−グルコサミン
がβ−(1→4)結合した多糖で、甲殻類や昆虫類の外
骨格の主成分である。下等動物や無脊髄動物に広く分布
し生体の支持や防護の役割を担っており、植物界のセル
ロースに相当する。キチンは最後のバイオマスとも呼ば
れ近年その誘導体の研究が盛んに行われており、特に溶
媒に可溶なキチン誘導体に関する研究が多く報告されて
いる。N−アセチル−D−グルコサミン単位のC−6位
の水酸基をカルボキシメチル化したカルボキシメチルキ
チン(CM−キチン)は水溶性であり、各種キチン誘導
体の出発物質としても重要な化合物である。そして、C
M−キチンのC−6位あるいはC−3位の水酸基を硫酸
化したCM−キチン誘導体が硫酸化カルボキシメチルキ
チン(SCM−キチン)である。これらのキチンおよび
その誘導体については、キチン・キトサン研究会編“キ
チン・キトサンの応用”(技報堂、1990年)、キチ
ン・キトサン研究会編“最後のバイオマス キチン・キ
トサン”(技報堂、1988年)、キチン・キトサン実
験マニュアル(技報堂、1991年)に詳しく記載され
ている。また、癌の湿潤過程において、細胞外マトリッ
クスや基底膜の重要な構成成分のひとつであるヘパラン
硫酸が癌転移性メラノーマ細胞から産出されるヘパラナ
ーゼにより分解され、この酵素的分解はヘパリンにより
阻害されることが報告されている(Science、第220
巻、611頁、1984年;J. Biol. Chem.、第59
巻、2283頁、1984年)。そして、抗凝結作用を
持たないヘパリンおよびヘパリン誘導体が癌転移を抑制
することが見いだされており(GANN Monograph of Can
cer Res.、第20巻、147頁、1977年;Bioche
m.、第25巻、5322頁、1986年)、さらにヘパ
リン様の構造を有しているSCM−キチンが癌転移を抑
制することも知られている(Jpn. J. of Cancer Res.、
第80巻、866頁、1989年;Cancer Res.、第5
0巻、3631頁、1990年;Cancer Res.、第51
巻、22頁、1991年)。上述のように、Arg-Gly-As
pトリペプチド、SCMキチン誘導体等の癌転移抑制作
用は報告されているが、CM−キチンの誘導体であって
Arg-Gly-Aspを必須単位とするオリゴペプチドあるいは
その繰返し構造を有するポリペプチドを導入した化合物
の癌転移抑制剤への応用は全く知られていない。2. Description of the Related Art Fibronectin is a protein involved in cell-extracellular matrix adhesion and is also considered to be involved in platelet aggregation and cancer metastasis. These interactions are mediated by a series of cell surface receptors. Although fibronectin is a macromolecule with a molecular weight of about 250,000, these receptors
It was revealed that the g-Gly-Asp sequence was specifically recognized, and it was reported that it is important for the interaction with the receptor (Nature, Vol. 309, 30).
Page, 1984). This Arg-Gly-Asp sequence is also present in other adhesive proteins such as vitronectin, and through the core sequence, it binds to the receptor of adherent cells and transmits the information to adherent cells. Also, heparin, collagen,
It also has the ability to bind to biopolymers such as fibrin, and is also considered to be involved in adhesion between cells and stromal connective tissue, cell differentiation, and proliferation. As described above, since the cell adhesion-activating protein has various biological activities, its application to medicines and medical materials has been studied. For example, a method of inhibiting platelet aggregation using various linear and cyclic oligopeptides having Arg-Gly-Asp sequence (Polymer Prepr
ints, Japan), Volume 38, page 3149, 1989, JP-A 2-1747
97), a method of using a peptide having an Arg-Gly-Asp sequence as a cell migration inhibitor (Japanese Patent Laid-Open No. 2-4716), Arg-Gly-
Method of using Asp-immobilized PMMA membrane as cell adhesion membrane
(Polymer Preprints, Japan), 37th
Vol., P. 705, 1988). Further, a method of covalently bonding a peptide having Arg-Gly-Asp as an essential constituent unit to a polymer and using it as a substrate for animal cell culture or a substrate for biocomposite artificial organs (JP-A-1-309682, JP-A-1-305960)
No.), and a method of using a polypeptide having an Arg-Gly-Asp-Ser sequence as a platelet protecting agent for extracorporeal blood (JP-A-64-6217). Furthermore, cell adhesion activating proteins are also attracting attention as substances related to cancer metastasis. During a series of stages of cancer metastasis, cancer cells come into contact with various host cells and biopolymers. At this time, when a cell adhesion molecule such as fibronectin is present, the cells form a multicellular mass, which facilitates the growth and survival of cancer cells. However, when the above-mentioned cell adhesive activity protein is present, the tripeptide Arg-Gly-Asp, which is an adhesion core of fibronectin, contained in the protein.
Has been reported to exhibit cancer metastasis-inhibiting activity by binding to a receptor on cancer cells (Science, 238, 467, 1986). Furthermore, a method for more efficiently suppressing cancer metastasis using an oligopeptide having this sequence or a polypeptide having a repeating structure thereof is also disclosed (Int. J. Biol. Macr.
omol., vol. 11, p. 23, 1989; ibid., vol. 11, p. 226,
1989; Jpn. J. Cancer Res., 60, 722, 1989.
Year). On the other hand, chitin is a polysaccharide in which N-acetyl-D-glucosamine is β- (1 → 4) linked, and is a main component of the exoskeleton of crustaceans and insects. It is widely distributed in lower animals and invertebrates, plays a role in supporting and protecting the living body, and corresponds to cellulose in the plant kingdom. Chitin is also called the last biomass, and studies on its derivatives have been actively conducted in recent years, and many studies on chitin derivatives which are soluble in a solvent have been particularly reported. Carboxymethyl chitin (CM-chitin) obtained by carboxymethylating the hydroxyl group at the C-6 position of N-acetyl-D-glucosamine unit is water-soluble and is an important compound as a starting material for various chitin derivatives. And C
The CM-chitin derivative in which the hydroxyl group at the C-6 position or the C-3 position of M-chitin is sulfated is sulfated carboxymethyl chitin (SCM-chitin). Regarding these chitins and their derivatives, "application of chitin-chitosan" edited by Chitin-Chitosan Study Group (Gihodo, 1990), "last biomass Chitin-Chitosan" edited by Chitin-Chitosan Research Group (Gihodo, 1988), It is described in detail in the Chitin-Chitosan Experiment Manual (Gihodo, 1991). In addition, heparan sulfate, which is one of the important components of extracellular matrix and basement membrane, is decomposed by heparanase produced from cancer metastatic melanoma cells during the wetting process of cancer, and this enzymatic decomposition is inhibited by heparin. (Science, No. 220)
Volume, 611, 1984; J. Biol. Chem., 59th.
Vol., 2283, 1984). Heparin and heparin derivatives, which have no anticoagulant effect, have been found to suppress cancer metastasis (GANN Monograph of Can.
cer Res., Volume 20, 147, 1977; Bioche.
m., 25, 5322, 1986), SCM-chitin having a heparin-like structure is also known to suppress cancer metastasis (Jpn. J. of Cancer Res.,
Volume 80, 866, 1989; Cancer Res., 5th.
0, 3631, 1990; Cancer Res., 51st.
Vol. 22, p. 1991). As mentioned above, Arg-Gly-As
Although it has been reported that p-tripeptide, SCM chitin derivative and the like have cancer metastasis-suppressing action, it is a derivative of CM-chitin
The application of a compound introduced with an oligopeptide containing Arg-Gly-Asp as an essential unit or a polypeptide having a repeating structure thereof to a cancer metastasis inhibitor is not known at all.
【0003】[0003]
【発明が解決しようとする課題】上述のように、フィブ
ロネクチン等の細胞接着活性蛋白質あるいはそのペプチ
ド断片は様々な生物活性を有しており、その関連物質を
医薬として応用する技術の開発が望まれていた。特に、
接着コア配列の癌転移抑制作用は医薬として応用価値が
高いと考えられる。しかし、上記接着コア配列のトリペ
プチド自体では生体内で種々の代謝作用を受けたり早期
に体外に排出されやすく、血中での濃度を安定に維持す
ることができず、従って所望の癌転移抑制効果を得るこ
とが困難であった。そこで本発明者らは、天然多糖類が
多様な性状、機能を有し、生体との間で示す相互作用も
低分子や他のポリマーとは非常に異なっていることに着
目し、接着コア配列の持つ生物活性を充分に保持し、合
成も容易で且つ生体に重大な副作用を示さない新規な化
合物を求めて鋭意研究を行なった結果、Arg-Gly-Aspの
トリペプチドを必須単位として有する新規なCM−キチ
ン誘導体とその薬理学的に許容される塩を見出し、本研
究を完成したものである。従って本発明の目的は、レセ
プターに対する結合能が増強され、血液中で安定性が高
く、しかもより簡便な手法で生産可能な、Arg-Gly-Asp
のトリペプチドを必須単位として有する、新規なCM−
キチン誘導体およびその薬理学的に許容される塩を含有
する医薬組成物を提供することである。As described above, cell adhesion-activating proteins such as fibronectin or peptide fragments thereof have various biological activities, and it is desired to develop a technique for applying the related substances as a medicine. Was there. In particular,
The cancer metastasis suppressive action of the adhesive core sequence is considered to have high application value as a medicine. However, the tripeptide of the adhesion core sequence itself undergoes various metabolic actions in vivo and is likely to be excreted out of the body at an early stage, and its concentration in blood cannot be stably maintained. It was difficult to get the effect. Therefore, the present inventors have focused on the fact that natural polysaccharides have various properties and functions, and the interaction with living organisms is very different from that of low molecular weight compounds and other polymers. As a result of earnest research for a novel compound that retains the biological activity of sucrose, is easy to synthesize and has no serious side effects on the living body, a new compound having the tripeptide Arg-Gly-Asp as an essential unit This study has been completed by discovering various CM-chitin derivatives and their pharmacologically acceptable salts. Therefore, an object of the present invention is to enhance the ability to bind to the receptor, have high stability in blood, and produce Arg-Gly-Asp that can be produced by a simpler method.
Novel CM-having the tripeptide of
It is intended to provide a pharmaceutical composition containing a chitin derivative and a pharmacologically acceptable salt thereof.
【0004】[0004]
【課題を解決するための手段】本発明の医薬組成物は、
側鎖にアルギニン残基−グリシン残基−アスパラギン酸
残基からなるペプチド配列を有するCM−キチン誘導体
またはその薬理学的に許容される塩を有効成分として含
有してなる癌転移抑制剤である。上記トリペプチド配列
は、他のアミノ酸を含むペプチド配列の一部として存在
してもよく、またCM−キチン誘導体に、アルキレン
基、アリーレン基等の、化合物の生理活性に影響を与え
ない有機基を介して結合されてもよい。さらに、化合物
の製造を考慮して、アミド結合、エステル結合、エーテ
ル結合、ウレタン結合等を介して結合されていてもよ
い。また、上記トリペプチド配列を含む基の非結合末端
は、アルキル基、アリール基等を有していてもよい。特
に好ましい実施態様においては、本発明の癌転移抑制剤
は、カルボキシメチル化キチン誘導体の側鎖にアミド結
合、エステル結合、エーテル結合、ウレタン結合のいず
れかを介して結合した、下記一般式[1]で表される接
着性ペプチドを必須単位として有するペプチド配列担持
カルボキシメチル化キチン誘導体またはその薬理学的に
許容される塩を有効成分として含有することを特徴とす
る。 [R1]-[CO]-([X]-Arg-Gly-Asp-[Y])n-[Z]-[R2] [1] 式中、Argはアルギニン、Glyはグリシン、Aspはアスパ
ラギン酸残基を示す。[ ]は[ ]内の基が存在して
もよくあるいは存在しなくてもよいことを表し、存在す
る場合は、X、Yはそれぞれセリン(Ser)、グリシン
(Gly)、バリン(Val)、アスパラギン(As
n)、アスパラギン酸(Asp)、プロリン(Pro)
から選択されるアミノ酸残基またはこれらのアミノ酸残
基から構成されるペプチド残基を示し、Zは−O−また
は−NH−を示す。R1、R2のいずれか一方は、水素、
あるいは置換基を有していてもよくまた不飽和結合を含
んでいてもよい、炭素数が1〜9の直鎖もしくは分岐の
アルキル基または炭素数が6〜9のアリール基を表し、
他方は、置換基を有していてもよくまた不飽和結合を含
んでいてもよい、炭素数が1〜9の直鎖もしくは分岐の
アルキレン基、または炭素数が6〜9のアリーレン基を
表す。nは1〜5の整数を示す。アルキル基およびアル
キレン基の置換基としては、カルボニル基、カルボキシ
ル基、アミノ基、ヒドロキシル基、スルホ基、ハロゲン
原子、アリール基、ニトロ基、シアノ基等が挙げられ、
同一鎖に2つ以上有していてもよい。不飽和結合は2重
結合、3重結合のいずれでもよい。本発明のペプチド配
列担持CM−キチン誘導体に使用される好ましいCM−
キチン誘導体としては、硫酸化カルボキシメチルキチン
(SCM−キチン)、カルボキシル化CM−キチン及び
CM−キチンが挙げられる。本発明に使用されるペプチ
ド配列担持CM−キチン誘導体の分子量は好ましくは2
0万以下、特に3000〜10万の範囲で、室温で水溶
性であることが好ましい。カルボキシル化キチンのカル
ボキシル化剤としては、無水コハク酸、無水マレイン
酸、無水フタル酸、無水イタコン酸、無水シトラコン
酸、ピロメリット酸無水物、トリメリット酸無水物等が
挙げられる。本発明に係る細胞接着性ペプチドに用いら
れるアミノ酸はL体、D体どちらでもよいが、好ましく
はL体である。本発明のペプチド配列担持CM−キチン
誘導体の塩としては、例えば、塩酸塩、硫酸塩、硝酸
塩、リン酸塩、ホウ酸塩等の無機酸との塩や、酢酸塩、
トリフルオロ酢酸塩、トリフルオロメタンスルホン酸
塩、乳酸塩、酒石酸塩等の有機酸との塩が挙げられ、こ
のような塩への変換は慣用手段で行うことができる。ペ
プチドの合成方法は特に限定されないが、液相法、固相
法および自動合成装置による合成方法が挙げられる。こ
れらの合成方法の詳細については、生化学実験講座”タ
ンパク質の化学IV” p207−495(日本生化学会
編、東京化学同人)、”続生化学実験講座タンパク質の
化学(下)”(日本生化学会編、東京化学同人)、泉屋
ら編”ペプチド合成の基礎と実験”(丸善)に記載され
ている。また、市販されている合成ペプチドを利用する
ことも可能である。CM−キチン誘導体と接着性ペプチ
ドとを結合するために用いられる方法としては、臭化シ
アン、酸アジド、水溶性カルボジイミド等を利用したア
ミド結合合成方法が挙げられる。本発明のペプチド配列
担持CM−キチン誘導体は、細胞接着性蛋白質のコア配
列Arg-Gly-Aspを有し、該コア配列を介して細
胞接着性蛋白質と同様の機序で細胞に接着する。そのた
め、細胞接着性蛋白のアゴニストまたはアンタゴニスト
として種々の生物活性を示し、免疫調整作用、創傷治癒
作用、毛細血管中で起る癌細胞による血小板凝集抑制作
用、神経疾患治癒作用などの広範な生物活性が認められ
ている。従って、本発明のペプチド配列担持CM−キチ
ン誘導体は、その少なくとも一種を、場合により慣用の
担体または医薬用助剤とともに、癌転移抑制剤としての
みならず、創傷治癒剤、免疫調整剤、血小板凝集粘着抑
制剤として患者に投与することが可能である。その投与
量は、0.2μg/kg〜400mg/kgの範囲で、
症状、年齢、体重等に基いて決定される。本発明のキチ
ン誘導体は、ペプチド系医薬に一般に使用されている投
与方法、即ち非経口投与方法、例えば静脈内投与、筋肉
内投与、皮下投与等によって投与するのが好ましい。そ
のような注射用製剤を製造する場合、本発明のキチン誘
導体を例えば、後記実施例で示すようにPBSまたは生
理食塩水に溶解して注射用製剤としてもよく、あるいは
0.1N程度の酢酸水等に溶解した後、凍結乾燥製剤と
してもよい。このような製剤にはグリシンやアルブミン
等の慣用の安定剤を添加してもよい。さらに本発明のキ
チン誘導体またはその塩は、例えばリポソーム中に包容
したマイクロカプセル剤あるいはミクロスフェア状、ハ
イドロゲル状とすれば経口投与することも可能であり、
また座剤、舌下錠、点鼻スプレー剤等の形にすれば消化
菅以外の粘膜からも吸収させることも可能である。[Means for Solving the Problems] The pharmaceutical composition of the present invention comprises:
A cancer metastasis inhibitor comprising, as an active ingredient, a CM-chitin derivative having a peptide sequence consisting of an arginine residue-glycine residue-aspartic acid residue in its side chain or a pharmacologically acceptable salt thereof. The tripeptide sequence may be present as part of a peptide sequence containing other amino acids, and the CM-chitin derivative may be provided with an organic group such as an alkylene group or an arylene group that does not affect the physiological activity of the compound. It may be coupled via. Further, in consideration of the production of the compound, it may be bonded via an amide bond, an ester bond, an ether bond, a urethane bond or the like. The non-bonded end of the group containing the above tripeptide sequence may have an alkyl group, an aryl group or the like. In a particularly preferred embodiment, the cancer metastasis inhibitor of the present invention has the following general formula [1] bonded to a side chain of a carboxymethylated chitin derivative through any of an amide bond, an ester bond, an ether bond and a urethane bond. ] A peptide sequence-carrying carboxymethylated chitin derivative having an adhesive peptide represented by the following as an essential unit or a pharmacologically acceptable salt thereof is contained as an active ingredient. [R 1 ]-[CO]-([X] -Arg-Gly-Asp- [Y]) n- [Z]-[R 2 ] [1] In the formula, Arg is arginine, Gly is glycine, and Asp is Indicates an aspartic acid residue. [] Represents that the group in [] may or may not be present, and when it is present, X and Y are respectively serine (Ser), glycine (Gly), valine (Val), Asparagine (As
n), aspartic acid (Asp), proline (Pro)
Represents a amino acid residue selected from or a peptide residue composed of these amino acid residues, and Z represents -O- or -NH-. One of R 1 and R 2 is hydrogen,
Alternatively, a linear or branched alkyl group having 1 to 9 carbon atoms or an aryl group having 6 to 9 carbon atoms, which may have a substituent and may contain an unsaturated bond,
The other represents a linear or branched alkylene group having 1 to 9 carbon atoms, which may have a substituent or may contain an unsaturated bond, or an arylene group having 6 to 9 carbon atoms. .. n shows the integer of 1-5. Examples of the substituent of the alkyl group and the alkylene group include a carbonyl group, a carboxyl group, an amino group, a hydroxyl group, a sulfo group, a halogen atom, an aryl group, a nitro group, and a cyano group.
You may have two or more in the same chain. The unsaturated bond may be a double bond or a triple bond. Preferred CM-used in the peptide sequence-carrying CM-chitin derivative of the present invention
Chitin derivatives include sulfated carboxymethyl chitin (SCM-chitin), carboxylated CM-chitin and CM-chitin. The peptide sequence-carrying CM-chitin derivative used in the present invention preferably has a molecular weight of 2
It is preferably water-soluble at room temperature in the range of 0,000 or less, particularly in the range of 3,000 to 100,000. Examples of the carboxylating agent for carboxylated chitin include succinic anhydride, maleic anhydride, phthalic anhydride, itaconic anhydride, citraconic anhydride, pyromellitic dianhydride, trimellitic dianhydride, and the like. The amino acid used in the cell-adhesive peptide according to the present invention may be L-form or D-form, but is preferably L-form. Examples of the salt of the peptide sequence-supporting CM-chitin derivative of the present invention include salts with inorganic acids such as hydrochlorides, sulfates, nitrates, phosphates and borates, and acetates,
Examples thereof include salts with organic acids such as trifluoroacetates, trifluoromethanesulfonates, lactates, and tartrates, and conversion into such salts can be carried out by a conventional means. The peptide synthesis method is not particularly limited, and examples thereof include a liquid phase method, a solid phase method, and a synthetic method using an automatic synthesizer. For details of these synthetic methods, see Biochemistry Experiment Course "Protein Chemistry IV" p207-495 (edited by the Japanese Biochemical Society, Tokyo Kagaku Dojin), "Sequence Biochemistry Experimental Course Protein Chemistry (below)" (Japan Biochemical Society) Ed., Tokyo Kagaku Dojin), Izumiya et al., "Basics and Experiments of Peptide Synthesis" (Maruzen). It is also possible to use a commercially available synthetic peptide. Examples of the method used for binding the CM-chitin derivative to the adhesive peptide include an amide bond synthesizing method using cyanogen bromide, acid azide, water-soluble carbodiimide and the like. The peptide sequence-carrying CM-chitin derivative of the present invention has a core sequence Arg-Gly-Asp of a cell adhesive protein, and adheres to cells through the core sequence by a mechanism similar to that of the cell adhesive protein. Therefore, it shows various biological activities as an agonist or antagonist of cell adhesive protein, and has a wide range of biological activities such as immunomodulatory action, wound healing action, platelet aggregation inhibitory action by cancer cells occurring in capillaries, and neurological disease healing action. Is recognized. Therefore, the peptide sequence-carrying CM-chitin derivative of the present invention is used not only as a cancer metastasis inhibitor, but also as a wound healing agent, an immunomodulator, a platelet aggregation agent, together with a conventional carrier or a pharmaceutical aid, if necessary. It can be administered to a patient as an anti-adhesion agent. The dose is in the range of 0.2 μg / kg to 400 mg / kg,
It is determined based on symptoms, age, weight, etc. The chitin derivative of the present invention is preferably administered by an administration method generally used for peptide drugs, that is, a parenteral administration method such as intravenous administration, intramuscular administration, subcutaneous administration and the like. In the case of producing such an injectable preparation, the chitin derivative of the present invention may be dissolved in PBS or physiological saline to give an injectable preparation, as shown in the Examples below, or an aqueous solution of about 0.1N acetic acid. And the like, and then may be used as a freeze-dried preparation. A conventional stabilizer such as glycine or albumin may be added to such a preparation. Furthermore, the chitin derivative of the present invention or a salt thereof can be orally administered, for example, in the form of microcapsules encapsulated in liposomes, microspheres, or hydrogels.
Further, in the form of suppository, sublingual tablet, nasal spray, etc., it can be absorbed from mucous membranes other than digestive tract.
【0005】[実施例]以下、実施例により本発明を更
に説明するが本発明はこれに限定されるものではない。
なお、アミノ酸、各種保護基および脱保護試薬等は通常
用いられている略号を使って表した。保護基および脱保
護試薬等の表記に用いた主な略号は以下の通りである。 Bzl:ベンジル基 t-Boc:t−ブトキシカルボニル基 Z:ベンジルオキシカルボニル基 Pac:フェナシル基 Ac: アセチル基 TFA:トリフルオロ酢酸 HOBt: 1−ヒドロキシベンゾトリアゾール DCC:ジシクロヘキシルカルボジイミド DCウレア:ジシクロヘキシル尿素 AcOEt:酢酸エチル[Examples] The present invention will be further described with reference to the following examples, but the present invention is not limited thereto.
Amino acids, various protecting groups, deprotection reagents and the like are represented by commonly used abbreviations. The main abbreviations used for the notation of protecting groups and deprotection reagents are as follows. Bzl: benzyl group t-Boc: t-butoxycarbonyl group Z: benzyloxycarbonyl group Pac: phenacyl group Ac: acetyl group TFA: trifluoroacetic acid HOBt: 1-hydroxybenzotriazole DCC: dicyclohexylcarbodiimide DC urea: dicyclohexylurea AcOEt: Ethyl acetate
【0006】製造例1 接着性ペプチドの固相法に
よる合成 Merrifield方式によるペプチド合成装置を用いて合成を
行った。α−アミノ基の保護にはBoc基を用い、樹脂
から切出した後、分取用HPLC(高速液体クロマトグ
ラフィー)で精製し、単一ピークを示す接着性合成ペプ
チドを得た。Production Example 1 Synthesis of Adhesive Peptide by Solid Phase Method Synthesis was carried out using a peptide synthesizer by the Merrifield method. The Boc group was used for the protection of the α-amino group, and the peptide was cleaved from the resin and then purified by preparative HPLC (high performance liquid chromatography) to obtain an adhesive synthetic peptide showing a single peak.
【0007】 表1 接着性合成ペプチド ───────────────────────────────── 名称 構造式 略号 収率 ───────────────────────────────── ペプチド−1 H-Arg-Gly-Asp-OH RGD 37% ペプチド−2 H-(Arg-Gly-Asp)2-OH (RGD)2 28% ペプチド−3 H-(Arg-Gly-Asp)3-OH (RGD)3 19% ペプチド−4 H-(Arg-Gly-Asp)5-OH (RGD)5 11% ─────────────────────────────────Table 1 Adhesive synthetic peptides ───────────────────────────────── Name Structural formula Abbreviation Yield ── ─────────────────────────────── Peptide-1 H-Arg-Gly-Asp-OH RGD 37% Peptide-2 H -(Arg-Gly-Asp) 2 -OH (RGD) 2 28% peptide-3H- (Arg-Gly-Asp) 3 -OH (RGD) 3 19% peptide-4H- (Arg-Gly-Asp) 5 -OH (RGD) 5 11% ─────────────────────────────────
【0008】製造例2 接着性ペプチドRGDの液
相法による合成 文献(Chem. Pharm. Bull., 24, 3025 (1976))に記載の
方法により、国産化学(株)から購入したBoc-Asp(OBzl)
32.3g、トリエチルアミン 14ml 、臭化ベンジル 17.1
g、酢酸エチル 200ml の混合物を3時間加熱還流した。
反応液を室温になるまで放冷した後に、1N 炭酸水素ナ
トリウム水溶液、飽和食塩水各200mlで洗浄し、無水硫
酸ナトリウムで乾燥した。硫酸ナトリウムをろ過して除
き、ろ液を減圧濃縮して無色油状物を得た。この反応混
合物をシリカゲルクロマトグラフィー(溶出液 ヘキサ
ン/酢酸エチル 95:5)で精製し、Boc-Asp(OBzl)-O
Bzl 36g を得た。ジクロロメタン 20mlに溶解し、トリ
フルオロ酢酸20mlを加えて室温で30分間撹拌しTFA-Asp
(OBzl)-OBzlを定量的に得た。TFA-Asp(OBzl)-OBzl 8.5
gをジクロロメタンに溶解して、Boc-Gly 無水物6.7g、
ジメチルアミノピリジン(DMAP)2.5gを加え室温で6時
間撹拌した。反応液を水で洗い無水硫酸ナトリウムで乾
燥した。硫酸ナトリウムをろ過して除き、ろ液を減圧濃
縮した。残留物をジクロロメタン 20mlに溶解し、トリ
フルオロ酢酸20mlを加えて室温で30分間撹拌した。溶媒
を減圧留去した後にクロロホルム100mlを加え、1N 炭酸
水素ナトリウム水溶液、飽和食塩水各100mlで数回洗浄
し、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを
ろ過して除き、ろ液を減圧濃縮してGly-Asp(OBzl)-OBzl
を得た。これを、精製すること無しにBoc-Arg(Z)2( 国
産化学(株)から購入) 10.83g、DCC 4.54g、HOB
t 2.76g、DMF80mlを加えて一昼夜撹拌し、DCウ
レアを除去した後に溶媒を減圧留去し、クロロホルム10
0mlを加え、1N 炭酸水素ナトリウム水溶液、飽和食塩水
各200mlで洗浄し、無水硫酸ナトリウムで乾燥した。硫
酸ナトリウムをろ過して除き、ろ液を減圧濃縮した。残
留物をシリカゲルカラムクロマトグラフィー(溶出液ク
ロロホルム・酢酸エチル 6:4)により精製して、白
色粉末としてBoc-Arg(Z)2-Gly-Asp(OBzl)-OBzl 13.2g
を得た。FAB-MASS (M+H)+ 894。 Boc-Arg(Z)2-Gly-Asp(OBzl)-OBzl 1.34gを塩化メチレ
ン10mlに溶解し、トリフルオロ酢酸10mlを加えて室温で
30分間撹拌した。溶媒を減圧留去した。残留物に酢酸エ
チルを加え5%パラジウム炭素100mgを加え加水素分解
を行い(室温、8時間)、反応液をろ過して濃縮した後
にイオン交換処理を行ってペプチド-1 H-Arg-Gly-Asp
-OHを定量的に得た。Production Example 2 Synthesis of Adhesive Peptide RGD by Liquid-Phase Method Boc-Asp (Purchased from Domestic Chemical Co., Ltd.) by the method described in the literature (Chem. Pharm. Bull., 24, 3025 (1976)). OBzl)
32.3 g, triethylamine 14 ml, benzyl bromide 17.1
A mixture of g and 200 ml of ethyl acetate was heated under reflux for 3 hours.
The reaction solution was allowed to cool to room temperature, washed with 1N aqueous sodium hydrogen carbonate solution and saturated saline (200 ml each), and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to give a colorless oil. The reaction mixture was purified by silica gel chromatography (eluent hexane / ethyl acetate 95: 5), Boc-Asp (OBzl) -O.
36 g of Bzl were obtained. Dissolve in 20 ml of dichloromethane, add 20 ml of trifluoroacetic acid and stir for 30 minutes at room temperature.
(OBzl) -OBzl was obtained quantitatively. TFA-Asp (OBzl) -OBzl 8.5
g in dichloromethane, Boc-Gly anhydrous 6.7 g,
2.5 g of dimethylaminopyridine (DMAP) was added, and the mixture was stirred at room temperature for 6 hours. The reaction solution was washed with water and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was dissolved in 20 ml of dichloromethane, 20 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 30 minutes. After the solvent was distilled off under reduced pressure, 100 ml of chloroform was added, and the mixture was washed several times with 100 ml of 1N sodium hydrogen carbonate aqueous solution and 100 ml of saturated saline each time, and dried over anhydrous sodium sulfate. Sodium sulfate was filtered off and the filtrate was concentrated under reduced pressure to give Gly-Asp (OBzl) -OBzl.
Got Boc-Arg (Z) 2 (purchased from Kokusan Kagaku Co., Ltd.) 10.83g, DCC 4.54g, HOB without purification
t 2.76 g and DMF 80 ml were added and the mixture was stirred for 24 hours to remove DC urea, and then the solvent was distilled off under reduced pressure.
0 ml was added, the mixture was washed with 1N aqueous sodium hydrogen carbonate solution and 200 ml each of saturated saline and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent chloroform / ethyl acetate 6: 4) to give Boc-Arg (Z) 2 -Gly-Asp (OBzl) -OBzl 13.2g as a white powder.
Got FAB-MASS (M + H) + 894. 1.34 g of Boc-Arg (Z) 2 -Gly-Asp (OBzl) -OBzl was dissolved in 10 ml of methylene chloride, 10 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature.
Stir for 30 minutes. The solvent was distilled off under reduced pressure. Peptide-1 H-Arg-Gly- was added to the residue by adding ethyl acetate and adding 5% palladium-carbon (100 mg) for hydrogenolysis (room temperature, 8 hours), filtering and concentrating the reaction solution, followed by ion exchange treatment. Asp
-OH was obtained quantitatively.
【0009】Boc-Asp(OBzl)-OPacの調製 Boc-Asp(OBzl) 16.2g(50mmol)、トリエチルアミン(Et
3N) 5.05g(50mmol)をDMF 50mlに溶解させて撹拌
し、フェナシルブロマイド 9.95g(50mmol)のDMF溶
液 50mlを氷冷下で滴下した。室温に戻し、4時間撹拌
してDMFを減圧留去させた後、残留物を酢酸エチル(A
cOEt)に溶解させ10%クエン酸水溶液で洗浄した。続いて
有機層を10%炭酸水素ナトリウム水溶液で洗浄し、有機
層を硫酸ナトリウムで乾燥させた後ろ過し、ろ液を減圧
下で濃縮した。残留物をAcOEt-ヘキサン系で再結晶して
Boc-Asp(OBzl)-0Pac 18.0g(41mmol 、収率 82%) を無色
パウダーとして得た。Preparation of Boc-Asp (OBzl) -OPac 16.2 g (50 mmol) of Boc-Asp (OBzl), triethylamine (Et
5.05 g (50 mmol) of 3 N) was dissolved in 50 ml of DMF and stirred, and 50 ml of a DMF solution containing 9.95 g (50 mmol) of phenacyl bromide was added dropwise under ice cooling. After returning to room temperature and stirring for 4 hours to distill off DMF under reduced pressure, the residue was washed with ethyl acetate (A
It was dissolved in cOEt) and washed with 10% aqueous citric acid solution. Subsequently, the organic layer was washed with a 10% aqueous sodium hydrogen carbonate solution, the organic layer was dried over sodium sulfate and then filtered, and the filtrate was concentrated under reduced pressure. Recrystallize the residue with AcOEt-hexane system
18.0 g (41 mmol, yield 82%) of Boc-Asp (OBzl) -0Pac was obtained as a colorless powder.
【0010】製造例3 細胞接着性ペプチドRGDSの
合成 文献(Chem. Pharm. Bull., 24, 3025 (1976))に記載の
方法により、国産化学(株)から購入したBoc-Ser(Bzl) 2
9.5g、トリエチルアミン 14ml 、臭化ベンジル 17.1g、
酢酸エチル 200ml の混合物を3時間加熱還流した。反
応液を室温になるまで放冷した後に、1N 炭酸水素ナト
リウム水溶液、飽和食塩水各200mlで洗浄し、無水硫酸
ナトリウムで乾燥した。硫酸ナトリウムをろ過して除
き、ろ液を減圧濃縮して無色油状物を得た。この反応混
合物をシリカゲルクロマトグラフィー(溶出液 ヘキサ
ン/酢酸エチル 40:1)で精製し、Boc-Ser(Bzl)-OBzl 3
6gを得た。次に、Boc-Ser(Bzl)-OBzl 7.71 gを塩化メチ
レン20mlに溶解し、トリフルオロ酢酸20mlを加えて室温
で30分間撹拌した。溶媒を減圧留去した後にクロロホル
ム100mlを加え、1N炭酸水素ナトリウム水溶液、飽和食
塩水各100mlで数回洗浄し、無水硫酸ナトリウムで乾燥
した。硫酸ナトリウムをろ過して除き、ろ液を減圧濃縮
して無色油状物を得た。これとBoc-Asp(OBzl)(国産化学
(株)から購入) 6.47g 、ジシクロヘキシルカルボジイミ
ド(DCC) 4.54g、ヒドロキシベンゾトリアゾール
(HOBt) 2.76g、DMF80mlの混合物を0℃で3時
間、さらに室温で12時間撹拌した。DCウレアを除去し
た後に溶媒を減圧留去し、クロロホルム100mlを加え、1
N炭酸水素ナトリウム水溶液、飽和食塩水各200mlで洗浄
し、無水硫酸ナトリウムで乾燥した。硫酸ナトリウムを
ろ過して除き、ろ液を減圧濃縮し、ジクロロメタン 20
ml、トリフルオロ酢酸20mlを加えて室温で30分間撹拌し
た。溶媒を減圧留去した後にクロロホルム100mlを加
え、1N 炭酸水素ナトリウム水溶液、飽和食塩水各100ml
で数回洗浄し、無水硫酸ナトリウムで乾燥した。硫酸ナ
トリウムをろ過して除き、ろ液を減圧濃縮してAsp(OBz
l)-Ser(Bzl)-OBzl を得た。さらに、Boc-Gly(国産化学
(株)から購入)3.50g、DCC 4.54g、HOBt 2.76
g、DMF 80mlを加えて0℃で3時間、さらに室温で1
2時間撹拌した。DCウレアを除去した後に溶媒を減圧
留去し、クロロホルム100mlを加え、1N炭酸水素ナトリ
ウム水溶液、飽和食塩水各200mlで洗浄し、無水硫酸ナ
トリウムで乾燥した。硫酸ナトリウムをろ過して除き、
ろ液を減圧濃縮し、ジクロロメタン 20ml、トリフルオ
ロ酢酸20mlを加えて室温で30分間撹拌した。溶媒を減圧
留去した後にクロロホルム100mlを加え、1N 炭酸水素ナ
トリウム水溶液、飽和食塩水各100mlで数回洗浄し、無
水硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ過し
て除き、ろ液を減圧濃縮してGly-Asp(OBzl)-Ser(Bzl)-O
Bzl を得た。これを、精製すること無しにBoc-Arg(Z)
2(国産化学(株)から購入) 10.83g、DCC 4.54g、H
OBt 2.76g、DMF80mlを加えて一昼夜撹拌し、D
Cウレアを除去した後に溶媒を減圧留去し、クロロホル
ム100mlを加え、1N 炭酸水素ナトリウム水溶液、飽和食
塩水各200mlで洗浄し、無水硫酸ナトリウムで乾燥し
た。硫酸ナトリウムをろ過して除き、ろ液を減圧濃縮し
た。残留物をシリカゲルカラムクロマトグラフィー(溶
出液クロロホルム・メタノール 99:1)により精製
して、白色粉末としてBoc-Arg(Z)2-Gly-Asp(OBzl)-Ser
(Bzl)-OBzl 14.4g を得た。FAB-MASS(M+H)+ 1071。 Boc-Arg(Z)2-Gly-Asp(OBzl)-Ser(Bzl)-OBzl 1.03gを塩
化メチレン10mlに溶解し、トリフルオロ酢酸10mlを加え
て室温で30分間撹拌した後、溶媒を減圧留去した。残留
物に酢酸エチルを加え5%パラジウム炭素100mgを加え
加水素分解を行い(室温、8時間)、反応液をろ過して
濃縮した後にイオン交換処理を行いペプチド−5 H-Ar
g-Gly-Asp-Ser-OHを定量的に得た。Production Example 3 Synthesis of Cell Adhesive Peptide RGDS Boc-Ser (Bzl) 2 purchased from Kokusan Kagaku Co., Ltd. by the method described in the literature (Chem. Pharm. Bull., 24, 3025 (1976)).
9.5 g, triethylamine 14 ml, benzyl bromide 17.1 g,
A mixture of 200 ml of ethyl acetate was heated to reflux for 3 hours. The reaction solution was allowed to cool to room temperature, washed with 1N aqueous sodium hydrogen carbonate solution and saturated saline (200 ml each), and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to give a colorless oil. The reaction mixture was purified by silica gel chromatography (eluent hexane / ethyl acetate 40: 1) to give Boc-Ser (Bzl) -OBzl 3
Obtained 6 g. Next, 7.71 g of Boc-Ser (Bzl) -OBzl was dissolved in 20 ml of methylene chloride, 20 ml of trifluoroacetic acid was added, and the mixture was stirred at room temperature for 30 minutes. After the solvent was distilled off under reduced pressure, 100 ml of chloroform was added, and the mixture was washed several times with 100 ml of a 1N sodium hydrogen carbonate aqueous solution and 100 ml of a saturated saline solution and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to give a colorless oil. This and Boc-Asp (OBzl) (domestic chemical
A mixture of 6.47 g (purchased from KK), dicyclohexylcarbodiimide (DCC) 4.54 g, hydroxybenzotriazole (HOBt) 2.76 g and DMF 80 ml was stirred at 0 ° C. for 3 hours and further at room temperature for 12 hours. After removing the DC urea, the solvent was distilled off under reduced pressure, 100 ml of chloroform was added, and 1
The solution was washed with 200 ml each of an aqueous sodium hydrogencarbonate solution and saturated saline solution, and dried over anhydrous sodium sulfate. Sodium sulphate is filtered off and the filtrate is concentrated under reduced pressure and diluted with dichloromethane 20
ml and trifluoroacetic acid 20 ml were added and the mixture was stirred at room temperature for 30 minutes. After distilling off the solvent under reduced pressure, 100 ml of chloroform was added, and 100 ml of 1N sodium hydrogen carbonate aqueous solution and saturated saline solution were added.
It was washed several times with and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, the filtrate was concentrated under reduced pressure, and Asp (OBz
l) -Ser (Bzl) -OBzl was obtained. In addition, Boc-Gly (domestic chemical
Purchased from Co., Ltd.) 3.50g, DCC 4.54g, HOBt 2.76
g, 80 ml of DMF was added, and the mixture was kept at 0 ° C for 3 hours and at room temperature for 1
Stir for 2 hours. After removing the DC urea, the solvent was distilled off under reduced pressure, 100 ml of chloroform was added, the mixture was washed with 200 ml of a 1N sodium hydrogen carbonate aqueous solution and 200 ml of a saturated saline solution, and dried over anhydrous sodium sulfate. Sodium sulfate is filtered off,
The filtrate was concentrated under reduced pressure, 20 ml of dichloromethane and 20 ml of trifluoroacetic acid were added, and the mixture was stirred at room temperature for 30 minutes. After the solvent was distilled off under reduced pressure, 100 ml of chloroform was added, and the mixture was washed several times with 100 ml of 1N sodium hydrogen carbonate aqueous solution and 100 ml of saturated saline each time, and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to Gly-Asp (OBzl) -Ser (Bzl) -O.
I got Bzl. Boc-Arg (Z) without purification
2 (Purchased from Domestic Chemicals Co., Ltd.) 10.83g, DCC 4.54g, H
Add 2.76 g of OBt and 80 ml of DMF and stir all day and night.
After removing C urea, the solvent was distilled off under reduced pressure, 100 ml of chloroform was added, the mixture was washed with 200 ml of 1N sodium hydrogen carbonate aqueous solution and 200 ml of saturated saline solution, and dried over anhydrous sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (eluent chloroform / methanol 99: 1) to give Boc-Arg (Z) 2 -Gly-Asp (OBzl) -Ser as a white powder.
(Bzl) -OBzl 14.4 g was obtained. FAB-MASS (M + H) + 1071. 1.03 g of Boc-Arg (Z) 2 -Gly-Asp (OBzl) -Ser (Bzl) -OBzl was dissolved in 10 ml of methylene chloride, 10 ml of trifluoroacetic acid was added and the mixture was stirred at room temperature for 30 minutes, and then the solvent was distilled off under reduced pressure. Left. Peptide-5H-Ar was added to the residue by adding ethyl acetate and adding 100% of 5% palladium on carbon for hydrogenolysis (room temperature, 8 hours), filtering and concentrating the reaction solution, followed by ion exchange treatment.
g-Gly-Asp-Ser-OH was obtained quantitatively.
【0011】製造例4 ペプチド−6 H-Gly-Arg-Gly-Asp-Ser-Pro-OHの固相法
による合成 Merrifield方式によるペプチド合成装置を用
いて合成を行った。α−アミノ基の保護にはBoc基を
用い、樹脂から切出した後、分取用HPLC(高速液体
クロマトグラフィー)で精製し、単一ピークを示す接着
性合成ペプチドを得た。収率 25%。Production Example 4 Synthesis of Peptide-6 H-Gly-Arg-Gly-Asp-Ser-Pro-OH by Solid Phase Method Synthesis was carried out using a peptide synthesizer by the Merrifield method. The Boc group was used for the protection of the α-amino group, and the peptide was cleaved from the resin and then purified by preparative HPLC (high performance liquid chromatography) to obtain an adhesive synthetic peptide showing a single peak. Yield 25%.
【0012】製造例5 ペプチド−2の液相法による合成 Boc-Asp(OBzl)-OPac 15.4g(35mmol)をジクロロメタン(C
H2Cl2) 50mlに溶解し、トリフルオロ酢酸(TFA)50
mlを氷冷下で加え、室温に戻して30分間撹拌した。溶媒
を減圧留去して、エーテル(Et2O)で結晶化させAsp(OBz
l)-OPacのTFA塩を17.1g得た。次に、Boc-Gly 7.88g
(45mmol)、N-メチルモルホリン(NMM)4.55g(45mmol)をT
HF 30mlに溶解し撹拌させた。−10℃でギ酸クロロ
ホルメート(IBCF)のTHF溶液 10mlを加え撹拌した。
5分後、Asp(OBzl)-OPacTFA塩 13.6g(30mmol)を加え
た後、NMM 3.03g(30mmol)のTHF溶液 10mlを加え
た。4時間反応させた後、溶媒を減圧留去して、残留物
をAcOEtに溶解させ10%クエン酸水溶液で洗浄した。続い
て、有機層を5%炭酸水素ナトリウム水溶液、蒸留水で
洗浄し、有機層を硫酸ナトリウムで乾燥させた後ろ過
し、ろ液を減圧下で濃縮した。残留物をシリカゲルクロ
マトガラフィー(溶離液 AcOEt/ヘキサン=1/1)で精製
してBoc-Gly-Asp(OBzl)-OPac 13.6g(27mmol 、収率 91
%) を得た。Boc-Gly-Asp(OBzl)-OPac 13.6g(27mmol)をC
H2Cl2 50mlに溶解し、氷冷下でトリフルオロ酢酸(TF
A)50mlを加え、室温に戻して1時間撹拌した。溶媒を
減圧留去して、ジエチルエーテル(Et2O)で結晶化させGl
y-Asp(OBzl)-OPacのTFA塩を定量的に得た。次に、Bo
c-Arg(Mts) 20.5g(45mmol)、N-メチルモルホリン(NMM)
4.55g(45mmol)をTHF 30mlに溶解し撹拌した。−1
0℃でギ酸クロロホルメート(IBCF)のTHF溶液 10ml
を加え撹拌した。5分後、Gly-Asp(OBzl)-OPacTFA塩
14.8g(29mmol)を加えた後、NMM 3.03g(30mmol)のT
HF溶液 10mlを加えた。一昼夜反応させた後、溶媒を
減圧留去して、残留物をAcOEtに溶解させ、10% クエン
酸水溶液で洗浄した。続いて有機層を5%炭酸水素ナト
リウム水溶液、食塩水で洗浄し、有機層を硫酸ナトリウ
ムで乾燥させた後ろ過し、ろ液を減圧下で濃縮した。残
留物をシリカゲルクロマトガラフィー(溶離液 AcOEt)
で精製してBoc-Arg(Mts)-Gly-Asp(OBzl)-OPac 17.1g(21
mmol、収率 71%)を得た。Boc-Arg(Mts)-Gly-Asp(OBzl)-
OPac 5.0g(6.0mmol)を90%酢酸水溶液 132mlに溶解して
撹拌し、氷冷下で亜鉛粉末 11.7gを加え、室温で1.5
時間反応させた。その後溶媒を減圧留去させ、残留物に
10%クエン酸水溶液を加え、クロロホルム(CHCl3)で抽出
した。有機層を硫酸ナトリウムで乾燥させた後ろ過し、
ろ液を減圧下で濃縮した。残留物をAcOEt-ヘキサン系で
再結晶してBoc-Arg(Mts)-Gly-Asp(OBzl) 2.56g(3.6mmo
l、収率 60%) を無色パウダーとして得た。次に、Boc-A
rg(Mts)-Gly-Asp(OBzl) 2.56g(3.6mmol)をTHF 50ml
に溶解し、Arg(Mts)-Gly-Asp(OBzl)-OPac塩酸塩 2.77g
(3.6mmol)、ジフェニルホスホリルアジド(DPPA)
0.99g(3.6mmol)、トリエチルアミン 0.36g(3.6mmol)を
加え、一昼夜反応させた。その後溶媒を減圧留去して、
残留物をAcOEtに溶解させ10% クエン酸水溶液で洗浄し
た。続いて有機層を5%炭酸水素ナトリウム水溶液、食
塩水で洗浄し、有機層を硫酸ナトリウムで乾燥させた後
ろ過し、ろ液を減圧下で濃縮した。残留物を再結晶(Ac
OEt/ヘキサン)してBoc-Arg(Mts)-Gly-Asp(OBzl)-Arg(M
ts)-Gly-Asp(OBzl)-OPac 4.5g(3.13mmol、収率 87%) を
得た。Boc-Arg(Mts)-Gly-Asp(OBzl)-Arg(Mts)-Gly-Asp
(OBzl)-OPac 4.3g(3.0mmol)を90%酢酸水溶液 100mlに溶
解し撹拌させ、氷冷下で亜鉛粉末 9.75gを加え、室温で
1.5時間反応させた。そして、溶媒を減圧留去させ、
残留物をに10%クエン酸水溶液を加え、クロロホルム(CH
Cl3)で抽出した。有機層を硫酸ナトリウムで乾燥させた
後、ろ過し、ろ液を減圧下で濃縮した。残留物をAcOEt-
ヘキサン系で再結晶してBoc-Arg(Mts)-Gly-Asp(OBzl)-A
rg(Mts)-Gly-Asp(OBzl) 3.55g (2.7mmol、収率 90%)を
無色パウダーとして得た。次に、Boc-Arg(Mts)-Gly-Asp
(OBzl)-Arg(Mts)-Gly-Asp(OBzl) 3.55g(2.7mmol)を1M-
トリフルオロメタンスルホン酸、チオアニソール、m-ク
レゾール、トリフルオロ酢酸溶液 100mlに溶解し室温
で1時間撹拌した。反応液をEt2Oに注ぎ結晶化させArg-
Gly-Asp-Arg-Gly-Asp 1.48g(2.2mmol、収率 81%)を得
た。Production Example 5 Synthesis of Peptide-2 by Liquid Phase Method 15.4 g (35 mmol) of Boc-Asp (OBzl) -OPac in dichloromethane (C
H 2 Cl 2 ) dissolved in 50 ml, trifluoroacetic acid (TFA) 50
ml was added under ice cooling, the temperature was returned to room temperature, and the mixture was stirred for 30 minutes. The solvent was evaporated under reduced pressure, and the residue was crystallized from ether (Et 2 O) and Asp (OBz
17.1 g of l) -OPac TFA salt was obtained. Next, Boc-Gly 7.88g
(45 mmol), N-methylmorpholine (NMM) 4.55 g (45 mmol)
It was dissolved in 30 ml of HF and stirred. At -10 ° C, 10 ml of a THF solution of chloroformate formate (IBCF) was added and stirred.
After 5 minutes, 13.6 g (30 mmol) of Asp (OBzl) -OPacTFA salt was added, and then 10 ml of a THF solution of 3.03 g (30 mmol) of NMM was added. After reacting for 4 hours, the solvent was distilled off under reduced pressure, the residue was dissolved in AcOEt and washed with a 10% aqueous citric acid solution. Subsequently, the organic layer was washed with a 5% aqueous sodium hydrogen carbonate solution and distilled water, the organic layer was dried over sodium sulfate and then filtered, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel chromatography (eluent AcOEt / hexane = 1/1) and Boc-Gly-Asp (OBzl) -OPac 13.6 g (27 mmol, yield 91)
%) Boc-Gly-Asp (OBzl) -OPac 13.6 g (27 mmol) in C
Dissolved in 50 ml of H 2 Cl 2 and trifluoroacetic acid (TF
A) 50 ml was added, and the mixture was returned to room temperature and stirred for 1 hour. The solvent was distilled off under reduced pressure and the residue was crystallized with diethyl ether (Et 2 O) and Gl
The TFA salt of y-Asp (OBzl) -OPac was obtained quantitatively. Then Bo
c-Arg (Mts) 20.5 g (45 mmol), N-methylmorpholine (NMM)
4.55 g (45 mmol) was dissolved in 30 ml of THF and stirred. -1
10 ml of THF solution of chloroformate formate (IBCF) at 0 ℃
Was added and stirred. After 5 minutes, Gly-Asp (OBzl) -OPacTFA salt
After adding 14.8 g (29 mmol), NMM 3.03 g (30 mmol) T
10 ml of HF solution was added. After reacting overnight, the solvent was distilled off under reduced pressure, the residue was dissolved in AcOEt, and washed with 10% aqueous citric acid solution. Subsequently, the organic layer was washed with 5% aqueous sodium hydrogen carbonate solution and brine, the organic layer was dried over sodium sulfate and then filtered, and the filtrate was concentrated under reduced pressure. Silica gel chromatography (eluent AcOEt)
Purified with Boc-Arg (Mts) -Gly-Asp (OBzl) -OPac 17.1g (21
mmol, yield 71%) was obtained. Boc-Arg (Mts) -Gly-Asp (OBzl)-
5.0 g (6.0 mmol) of OPac was dissolved in 132 ml of 90% acetic acid aqueous solution and stirred, and 11.7 g of zinc powder was added under ice cooling, and the mixture was stirred at room temperature for 1.5
Reacted for hours. After that, the solvent was distilled off under reduced pressure to obtain a residue.
A 10% aqueous citric acid solution was added, and the mixture was extracted with chloroform (CHCl 3 ). The organic layer was dried over sodium sulfate and then filtered,
The filtrate was concentrated under reduced pressure. The residue was recrystallized with AcOEt-hexane system and Boc-Arg (Mts) -Gly-Asp (OBzl) 2.56g (3.6mmo
l, yield 60%) was obtained as a colorless powder. Next, Boc-A
2.56 g (3.6 mmol) of rg (Mts) -Gly-Asp (OBzl) in 50 ml of THF
Dissolved in Arg (Mts) -Gly-Asp (OBzl) -OPac hydrochloride 2.77g
(3.6 mmol), diphenylphosphoryl azide (DPPA)
0.99 g (3.6 mmol) and triethylamine 0.36 g (3.6 mmol) were added, and the mixture was reacted overnight. After that, the solvent was distilled off under reduced pressure,
The residue was dissolved in AcOEt and washed with 10% aqueous citric acid solution. Subsequently, the organic layer was washed with 5% aqueous sodium hydrogen carbonate solution and brine, the organic layer was dried over sodium sulfate and then filtered, and the filtrate was concentrated under reduced pressure. Recrystallize the residue (Ac
OEt / hexane) and then Boc-Arg (Mts) -Gly-Asp (OBzl) -Arg (M
4.5 g (3.13 mmol, yield 87%) of ts) -Gly-Asp (OBzl) -OPac was obtained. Boc-Arg (Mts) -Gly-Asp (OBzl) -Arg (Mts) -Gly-Asp
4.3 g (3.0 mmol) of (OBzl) -OPac was dissolved in 100 ml of 90% acetic acid aqueous solution and stirred, and 9.75 g of zinc powder was added under ice cooling, and the mixture was reacted at room temperature for 1.5 hours. Then, the solvent is distilled off under reduced pressure,
To the residue was added 10% aqueous citric acid solution, and chloroform (CH
And extracted with Cl 3). The organic layer was dried over sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure. AcOEt-
Boc-Arg (Mts) -Gly-Asp (OBzl) -A recrystallized in hexane
3.55 g (2.7 mmol, yield 90%) of rg (Mts) -Gly-Asp (OBzl) was obtained as a colorless powder. Then Boc-Arg (Mts) -Gly-Asp
(OBzl) -Arg (Mts) -Gly-Asp (OBzl) 3.55 g (2.7 mmol) 1M-
It was dissolved in 100 ml of a solution of trifluoromethanesulfonic acid, thioanisole, m-cresol and trifluoroacetic acid, and stirred at room temperature for 1 hour. The reaction solution is poured into Et 2 O to crystallize and Arg-
Gly-Asp-Arg-Gly-Asp 1.48 g (2.2 mmol, yield 81%) was obtained.
【0013】合成例1 CM−キチン−RGDS(化合
物1)の合成 粘度9cps(1%溶液、20℃)、エーテル化度0.
78のCM−キチン、脱アセチル化度 0.5 のCM
−キチン(焼津水産化学工業製)0.30gをpH7.
4リン酸バッファーに溶解し、0℃に保ちながら水溶性
カルボジイミド〔1−エチル−3−3−(ジメチルアミ
ノプロピル)−カルボジイミド〕128mgの2.6m
lリン酸バッファー溶液を加えて、1.5時間反応させ
た。次いで、8mlのリン酸バッファーに溶解した接着
性ペプチド Arg−Gly−Asp−Ser(RGD
S)(国産化学工業製)400mgを添加し4℃で一晩
反応させた。反応溶液を、Visking tubeに
入れイオン交換水、ついで純水に対して透析し低分子量
成分を除いて精製、凍結乾燥した。収量 0.24g 構造の確認はIRおよびアミノ酸分析により行った。C
M−キチンRGDSの構造式を以下に示す。Synthesis Example 1 Synthesis of CM-chitin-RGDS (Compound 1) Viscosity 9 cps (1% solution, 20 ° C.), degree of etherification 0.
78 CM-chitin, CM with deacetylation degree of 0.5
-0.30 g of chitin (produced by Yaizu Suisan Chemical Co., Ltd.) at a pH of 7.
Dissolve in 4-phosphate buffer and keep water-soluble carbodiimide [1-ethyl-3-3- (dimethylaminopropyl) -carbodiimide] 128 mg 2.6m while keeping at 0 ° C.
1-phosphate buffer solution was added and the reaction was carried out for 1.5 hours. Then, the adhesive peptide Arg-Gly-Asp-Ser (RGD) dissolved in 8 ml of phosphate buffer.
S) (made by Kokusan Kagaku Kogyo Co., Ltd.) (400 mg) was added, and the mixture was reacted overnight at 4 ° C. The reaction solution was put in a Visking tube, dialyzed against ion-exchanged water and then pure water to remove low molecular weight components, and purified and lyophilized. Yield 0.24 g The structure was confirmed by IR and amino acid analysis. C
The structural formula of M-chitin RGDS is shown below.
【化1】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 2.06:2.14:1.99:1.88 IR: アミドカルボニル(C=O)の伸縮振動 16
52cm-1 [Chemical 1] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 2.06: 2.14: 1.99: 1.88 IR: Stretching vibration of amidocarbonyl (C═O) 16
52 cm -1
【0014】合成例2 スクシニル化CM−キチン−R
GDS(化合物2)の合成 合成例1のCM−キチン20.0gを1%トリエチルア
ミン溶液100mlに溶解し、これに無水コハク酸3
4.0g、4−ジメチルアミノピリジン2.00gを加
え室温で一昼夜撹拌した。反応終了後溶液を大過剰のア
セトンに投入してスクシニル化CM−キチンを再沈殿さ
せた。沈殿を集め更に大量のメタノールで洗浄した後エ
ーテルで洗浄し真空乾燥させた。収量 22.40g。
スクシニル化CM−キチン0.30gをpH7.4リン
酸バッファーに溶解し、0℃に保ちながら水溶性カルボ
ジイミド(1−エチル−3−3−(ジメチルアミノプロ
ピル)−カルボジイミド)128mgの2.6mlリン
酸バッファー溶液を加えて、1.5時間反応させた。次
いで、8mlのリン酸バッファーに溶解したRGDS4
00mgを添加し4℃で一晩反応させた。反応溶液を、
Visking tubeに入れ、イオン交換水、次い
で純水に対して透析し低分子量成分を除いて精製し、そ
の後凍結乾燥した。収量 0.26g 構造の確認はIRおよびアミノ酸分析により行った。ス
クシニル化CM−キチン−RGDSの構造式を以下に示
す。Synthesis Example 2 Succinylated CM-chitin-R
Synthesis of GDS (Compound 2) 20.0 g of CM-chitin of Synthesis Example 1 was dissolved in 100 ml of 1% triethylamine solution, and succinic anhydride 3
4.0 g and 4-dimethylaminopyridine 2.00 g were added and it stirred at room temperature all day and night. After completion of the reaction, the solution was poured into a large excess of acetone to reprecipitate succinylated CM-chitin. The precipitate was collected, washed with a large amount of methanol, washed with ether, and vacuum dried. Yield 22.40g.
Succinylated CM-chitin (0.30 g) was dissolved in a pH 7.4 phosphate buffer, and water-soluble carbodiimide (1-ethyl-3-3 (dimethylaminopropyl) -carbodiimide) 128 mg (2.6 ml) was added while keeping it at 0 ° C. An acid buffer solution was added and reacted for 1.5 hours. Then RGDS4 dissolved in 8 ml phosphate buffer
00 mg was added and reacted overnight at 4 ° C. The reaction solution
The mixture was placed in a Visking tube, dialyzed against ion-exchanged water and then pure water to remove low molecular weight components, and purified, and then freeze-dried. Yield 0.26 g The structure was confirmed by IR and amino acid analysis. The structural formula of succinylated CM-chitin-RGDS is shown below.
【化2】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 2.36:2.13:2.39:2.00 IR: アミドカルボニル(C=O)の伸縮振動 16
52cm-1 [Chemical 2] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 2.36: 2.13: 2.39: 2.00 IR: Stretching vibration of amidocarbonyl (C = O) 16
52 cm -1
【0015】合成例3 マレイル化CM−キチン−RG
DS(化合物3)の合成 合成例1のCM−キチン20.00gと36.6gの無
水マレイン酸を合成例2と同様に反応させ、マレイル化
CM−キチン21.60gを得た。マレイル化CM−キ
チン0.30gをpH7.4リン酸バッファーに溶解
し、合成例2と同様にしてRGDSフラグメントを共有
結合させた。収量 0.33g 構造の確認はIRおよびアミノ酸分析により行った。マ
レイル化CM−キチンRGDSの構造式を以下に示す。Synthesis Example 3 Maleylated CM-chitin-RG
Synthesis of DS (Compound 3) 20.00 g of CM-chitin of Synthesis Example 1 and 36.6 g of maleic anhydride were reacted in the same manner as in Synthesis Example 2 to obtain 21.60 g of maleylated CM-chitin. 0.30 g of maleylated CM-chitin was dissolved in a pH 7.4 phosphate buffer, and the RGDS fragment was covalently bonded in the same manner as in Synthesis Example 2. Yield 0.33 g The structure was confirmed by IR and amino acid analysis. The structural formula of maleylated CM-chitin RGDS is shown below.
【化3】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 3.13:2.78:2.72:2.57 IR: アミドカルボニル(C=O)の伸縮振動 16
48cm-1 [Chemical 3] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 3.13: 2.78: 2.72: 2.57 IR: Stretching vibration of amidocarbonyl (C═O) 16
48 cm -1
【0016】合成例4 フタロイル化CM−キチン−R
GDS(化合物4)の合成 合成例1のCM−キチン20.0gと50.0gの無水
フタル酸を合成例2と同様に反応させフタロイル化CM
−キチン22.31gを得た。フタロイル化CM−キチ
ン0.30gをpH7.4リン酸バッファーに溶解し、
合成例2と同様にしてRGDSフラグメントを共有結合
させた。収量 0.44g 構造の確認はIRおよびアミノ酸分析により行なった。
フタロイル化CM−キチン−RGDSの構造式を以下に
示す。Synthesis Example 4 Phtharoylated CM-chitin-R
Synthesis of GDS (Compound 4) 20.0 g of CM-chitin of Synthesis Example 1 and 50.0 g of phthalic anhydride were reacted in the same manner as in Synthesis Example 2 to produce phthaloylated CM.
22.31 g of chitin was obtained. 0.30 g of phthaloylated CM-chitin was dissolved in a pH 7.4 phosphate buffer,
The RGDS fragment was covalently bound in the same manner as in Synthesis Example 2. Yield 0.44 g The structure was confirmed by IR and amino acid analysis.
The structural formula of phthaloylated CM-chitin-RGDS is shown below.
【化4】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 2.30:2.22:1.89:1.76 IR: アミドカルボニル(C=O)の伸縮振動 16
52cm-1 [Chemical 4] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 2.30: 2.22: 1.89: 1.76 IR: Stretching vibration of amidocarbonyl (C═O) 16
52 cm -1
【0017】合成例5 イタコニル化CM−キチン−R
GDS(化合物5)の合成 合成例1のCM−キチン20.00gと38.0gの無
水イタコン酸を合成例2と同様に反応させイタコニル化
CM−キチン21.45gを得た。イタコニル化CM−
キチン0.30gをpH7.4リン酸バッファーに溶解
し、合成例2と同様にしてRGDSフラグメントを共有
結合させた。収量 0.36g 構造の確認はIRおよびアミノ酸分析により行った。イ
タコニル化CM−キチン−RGDSの構造式を以下に示
す。Synthesis Example 5 Itaconylated CM-chitin-R
Synthesis of GDS (Compound 5) 20.00 g of CM-chitin of Synthesis Example 1 and 38.0 g of itaconic anhydride were reacted in the same manner as in Synthesis Example 2 to obtain 21.45 g of itaconylated CM-chitin. Itaconylated CM-
Chitin (0.30 g) was dissolved in a pH 7.4 phosphate buffer, and the RGDS fragment was covalently bonded in the same manner as in Synthesis Example 2. Yield 0.36 g The structure was confirmed by IR and amino acid analysis. The structural formula of itaconylated CM-chitin-RGDS is shown below.
【化5】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 3.17:3.25:3.10:2.88 IR: アミドカルボニル(C=O)の伸縮振動 16
50cm-1 [Chemical 5] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 3.17: 3.25: 3.10: 2.88 IR: Stretching vibration of amidocarbonyl (C═O) 16
50 cm -1
【0018】合成例6 トリメリチル化CM−キチン−
RGDS(化合物6)の合成 合成例1のCM−キチン20.00gと64.9gのト
リメリト酸無水物を合成例2と同様に反応させトリメリ
チル化CM−キチン23.74gを得た。トリメリチル
化CM−キチン0.30gをpH7.4リン酸バッファ
ーに溶解し、合成例2と同様にしてRGDSフラグメン
トを共有結合させた。収量 0.37g 構造の確認はIRおよびアミノ酸分析により行った。ト
リメリチル化CM−キチン−RGDSの構造式を以下に
示す。Synthesis Example 6 trimellitylated CM-chitin-
Synthesis of RGDS (Compound 6) 20.00 g of CM-chitin of Synthesis Example 1 and 64.9 g of trimellitic anhydride were reacted in the same manner as in Synthesis Example 2 to obtain 23.74 g of trimellitylated CM-chitin. 0.30 g of trimellitylated CM-chitin was dissolved in a pH 7.4 phosphate buffer, and the RGDS fragment was covalently bonded in the same manner as in Synthesis Example 2. Yield 0.37 g The structure was confirmed by IR and amino acid analysis. The structural formula of trimellitylated CM-chitin-RGDS is shown below.
【化6】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 2.62:2.79:2.55:2.27 IR: アミドカルボニル(C=O)の伸縮振動 16
56cm-1 [Chemical 6] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 2.62: 2.79: 2.55: 2.27 IR: Stretching vibration of amidocarbonyl (C═O) 16
56 cm -1
【0019】合成例7 CM−キチン−GRGD
S(化合物7)の合成 接着性ペプチドフラグメントとしてGly−Arg−G
ly−Asp−Ser(GRGDS)(国産化学工業
製)460mgを用い、合成例1と同様にしてCM−キ
チン−GRGDSを合成した。収量 0.36g 構造の確認はIRおよびアミノ酸分析により行った。C
M−キチン−GRGDSの構造式を以下に示す。Synthesis Example 7 CM-chitin-GRGD
Synthesis of S (Compound 7) Gly-Arg-G as an adhesive peptide fragment
CM-chitin-GRGDS was synthesized in the same manner as in Synthesis Example 1 using 460 mg of ly-Asp-Ser (GRGDS) (manufactured by Kokusan Kagaku Kogyo). Yield 0.36 g The structure was confirmed by IR and amino acid analysis. C
The structural formula of M-chitin-GRGDS is shown below.
【化7】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 1.53:3.21:1.34:1.11 IR: アミドカルボニル(C=O)の伸縮振動 16
54cm-1 [Chemical 7] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 1.53: 3.21: 1.34: 1.11 IR: Stretching vibration of amidocarbonyl (C = O) 16
54 cm -1
【0020】合成例8 スクシニル化CM−キチン−G
RGDS(化合物8)の合成 接着性ペプチドフラグメントとしてGRGDS460m
gを用い、合成例2と同様にしてスクシニル化CM−キ
チン−GRGDSを合成した。収量 0.39g 構造の確認はIRおよびアミノ酸分析により行った。ス
クシニル化CM−キチン−GRGDSの構造式を以下に
示す。Synthesis Example 8 Succinylated CM-chitin-G
Synthesis of RGDS (Compound 8) GRGDS460m as an adhesive peptide fragment
Succinylated CM-chitin-GRGDS was synthesized in the same manner as in Synthesis Example 2 using g. Yield 0.39 g The structure was confirmed by IR and amino acid analysis. The structural formula of succinylated CM-chitin-GRGDS is shown below.
【化8】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 3.64:7.06:3.57:3.30 IR: アミドカルボニル(C=O)の伸縮振動 16
48cm-1 [Chemical 8] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 3.64: 7.06: 3.57: 3.30 IR: Stretching vibration of amidocarbonyl (C═O) 16
48 cm -1
【0021】合成例9 スクシニル化CM−キチン−R
GD(化合物9)の合成 接着性ペプチドフラグメントとしてRGD460mgを
用い、合成例3と同様にしてスクシニル化CM−キチン
−RGDを合成した。収量 0.34g 構造の確認はIRおよびアミノ酸分析により行った。ス
クシニル化CM−キチン−RGDの構造式を以下に示
す。Synthesis Example 9 Succinylated CM-chitin-R
Synthesis of GD (Compound 9) Using 460 mg of RGD as an adhesive peptide fragment, succinylated CM-chitin-RGD was synthesized in the same manner as in Synthesis Example 3. Yield 0.34 g The structure was confirmed by IR and amino acid analysis. The structural formula of succinylated CM-chitin-RGD is shown below.
【化9】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 4.46:4.55:4.49 IR: アミドカルボニル(C=O)の伸縮振動 16
50cm-1 [Chemical 9] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 4.46: 4.55: 4.49 IR: Stretching vibration of amidocarbonyl (C═O) 16
50 cm -1
【0022】合成例10 スクシニル化CM−キチン−
(RGD)2(化合物10)の合成 接着性ペプチドフラグメントとして(RGD)2460m
gを用い、合成例4と同様にしてスクシニル化CM−キ
チン−(RGD)2を合成した。収量 0.31g 構造の確認はIRおよびアミノ酸分析により行った。ス
クシニル化CM−キチン−(RGD)2の構造式を以下に
示す。Synthesis Example 10 Succinylated CM-chitin-
Synthesis of (RGD) 2 (Compound 10) As an adhesive peptide fragment (RGD) 2 460 m
Succinylated CM-chitin- (RGD) 2 was synthesized in the same manner as in Synthesis Example 4 using g. Yield 0.31 g The structure was confirmed by IR and amino acid analysis. The structural formula of succinylated CM-chitin- (RGD) 2 is shown below.
【化10】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp= 6.05:5.59:5.90 IR: アミドカルボニル(C=O)の伸縮振動 16
54cm-1 [Chemical 10] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp = 6.05: 5.59: 5.90 IR: Stretching vibration of amidocarbonyl (C═O) 16
54 cm -1
【0023】合成例11 スクシニル化CM−キチン−
(RGD)3(化合物11)の合成 接着性ペプチドフラグメントとして(RGD)3460m
gを用い、合成例5と同様にしてスクシニル化CM−キ
チン−(RGD)3を合成した。収量0.33g 構造の確認はIRおよびアミノ酸分析により行った。ス
クシニル化CM−キチン−(RGD)3の構造式を以下に
示す。Synthesis Example 11 Succinylated CM-chitin-
Synthesis of (RGD) 3 (Compound 11) As an adhesive peptide fragment (RGD) 3 460 m
Succinylated CM-chitin- (RGD) 3 was synthesized in the same manner as in Synthesis Example 5 using g. Yield 0.33 g The structure was confirmed by IR and amino acid analysis. The structural formula of succinylated CM-chitin- (RGD) 3 is shown below.
【化11】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp= 6.69:6.51:6.23 IR: アミドカルボニル(C=O)の伸縮振動 16
48cm-1 [Chemical 11] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp = 6.69: 6.51: 6.23 IR: Stretching vibration of amidocarbonyl (C═O) 16
48 cm -1
【0024】合成例12 スクシニル化CM−キチン−
(RGD)5(化合物12)の合成 接着性ペプチドフラグメントとして(RGD)5460m
gを用い、合成例6と同様にしてスクシニル化CM−キ
チン−(RGD)5を合成した。収量 0.28g 構造の確認はIRおよびアミノ酸分析により行った。ス
クシニル化CM−キチン−(RGD)5の構造式を以下に
示す。Synthesis Example 12 Succinylated CM-chitin-
Synthesis of (RGD) 5 (Compound 12) As an adhesive peptide fragment (RGD) 5 460 m
Succinylated CM-chitin- (RGD) 5 was synthesized in the same manner as in Synthesis Example 6 using g. Yield 0.28 g The structure was confirmed by IR and amino acid analysis. The structural formula of succinylated CM-chitin- (RGD) 5 is shown below.
【化12】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:= 23.0:21.1:20.3 IR: アミドカルボニル(C=O)の伸縮振動 16
56cm-1 スルホン酸の伸縮振動 1250、800cm-1 [Chemical 12] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: = 23.0: 21.1: 20.3 IR: Stretching vibration of amidocarbonyl (C═O) 16
56cm -1 stretching vibration of acid 1250,800Cm -1
【0025】合成例13 硫酸化CM−キチン−RGD
S(化合物13)の合成 以下に示すエーテル化度および脱アセチル化度を持つC
M−キチンを戸倉らの方法(Jpn. J. Cancer Res.,80,8
66-872(1989),Cancer Res.,50,3631-3637(1990))に従い
硫酸化し、表1に示すようなエーテル化度、硫酸化度を
持つ硫酸化CM−キチンを得た。Synthesis Example 13 Sulfated CM-chitin-RGD
Synthesis of S (Compound 13) C having the degree of etherification and deacetylation shown below
The method of M-chitin by Tokura et al. (Jpn. J. Cancer Res., 80,8
66-872 (1989), Cancer Res., 50, 3631-3637 (1990)), and sulfated CM-chitin having an etherification degree and a sulfation degree as shown in Table 1 was obtained.
【0026】 表1 ────────────────────────────── サンプル エーテル化度 硫酸化度 脱アセチル化度 ────────────────────────────── 化合物13-1 0.9 0.5 0.5 13-2 0.7 0.2 0 13-3 0.4 0.6 0 13-4 0.6 1.7 0 ────────────────────────────── 次に、合成例1と同様にしてRGDSフラグメントを共
有結合させ、以下に示すような硫酸化CM−キチン−R
GDSを得た。構造の確認はIRおよびアミノ酸分析に
より行った。硫酸化CM−キチンの構造を以下に示す。
また各硫酸化CM−キチン−RGDSのアミノ酸分析値
を表2に示す。Table 1 ────────────────────────────── Samples Etherification degree Sulfation degree Deacetylation degree ──── ────────────────────────── Compound 13-1 0.9 0.5 0.5 13-2 0.7 0.2 0 13-3 0.4 0.6 0 13-4 0.6 1.7 0 ────────────────────────────── Next, the RGDS fragment was covalently bonded in the same manner as in Synthesis Example 1 and Sulfated CM-chitin-R as shown
GDS was obtained. The structure was confirmed by IR and amino acid analysis. The structure of sulfated CM-chitin is shown below.
The amino acid analysis values of each sulfated CM-chitin-RGDS are shown in Table 2.
【化13】 [Chemical 13]
【化14】 表2 アミノ酸分析*1 ───────────────────────────── サンプル Arg: Gly : Asp : Ser (nmol/10μg) ───────────────────────────── 化合物13-1 2.89: 3.14: 3.19: 3.38 13-2 3.93: 4.27: 4.37: 3.81 13-3 2.34: 2.30: 2.12: 1.42 13-4 4.30: 4.22: 3.43: 1.85 ───────────────────────────── *1: アミノ酸分析加水分解条件 6N-HCl、10時間、110
℃ IR: アミドカルボニル(C=O)の伸縮振動 16
50cm-1 スルホン酸の伸縮振動 1250、800cm-1 [Chemical 14] Table 2 Amino acid analysis * 1 ───────────────────────────── Sample Arg: Gly: Asp: Ser (nmol / 10μg) ── ─────────────────────────── Compound 13-1 2.89: 3.14: 3.19: 3.38 13-2 3.93: 4.27: 4.37: 3.81 13- 3 2.34: 2.30: 2.12: 1.42 13-4 4.30: 4.22: 3.43: 1.85 ───────────────────────────── * 1: Amino acid analysis Hydrolysis condition 6N-HCl, 10 hours, 110
° C IR: Stretching vibration of amidocarbonyl (C = O) 16
50 cm -1 Stretching vibration of sulfonic acid 1250, 800 cm -1
【0027】合成例14 硫酸化CM−キチン−GRG
DS(化合物14)の合成 接着性ペプチドフラグメントGRGDS 460mgと
合成例13の硫酸化CM−キチンとを合成例1同様にし
て共有結合させ、硫酸化CM−キチン−GRGDSを合
成した。収量 0.35g 構造の確認はIRおよびアミノ酸分析により行った。硫
酸化CM−キチン−GRGDSの構造式を以下に示す。Synthesis Example 14 Sulfated CM-chitin-GRG
Synthesis of DS (Compound 14) Adhesive peptide fragment GRGDS (460 mg) and the sulfated CM-chitin of Synthesis Example 13 were covalently bonded in the same manner as in Synthesis Example 1 to synthesize sulfated CM-chitin-GRGDS. Yield 0.35 g The structure was confirmed by IR and amino acid analysis. The structural formula of sulfated CM-chitin-GRGDS is shown below.
【化15】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 2.51:2.21:2.42:2.11 IR: アミドカルボニル(C=O)の伸縮振動 16
55cm-1 [Chemical 15] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 2.51: 2.21: 2.42: 2.11 IR: Stretching vibration of amidocarbonyl (C = O) 16
55 cm -1
【0028】合成例15 硫酸化スクシニル化CM−キ
チン−RGDS(化合物15)の合成 合成例2のスクシニル化CM−キチンを合成例13と同
じ方法で硫酸化し、合成例2と同様にしてRGDSフラ
グメントを共有結合させた。収量 0.37g 構造の確認はIRおよびアミノ酸分析により行った。硫
酸化スクシニル化CM−キチン−RGDSの構造式を以
下に示す。Synthesis Example 15 Synthesis of sulfated succinylated CM-chitin-RGDS (Compound 15) The succinylated CM-chitin of Synthesis Example 2 was sulfated in the same manner as in Synthesis Example 13 and treated in the same manner as in Synthesis Example 2 to prepare an RGDS fragment. Was covalently bonded. Yield 0.37 g The structure was confirmed by IR and amino acid analysis. The structural formula of sulfated succinylated CM-chitin-RGDS is shown below.
【化16】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 2.61:2.77:2.59:2.22 IR: アミドカルボニル(C=O)の伸縮振動 16
54cm-1 [Chemical 16] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 2.61: 2.77: 2.59: 2.22 IR: Stretching vibration of amidocarbonyl (C═O) 16
54 cm -1
【0029】合成例16 硫酸化スクシニル化CM−キ
チン−GRGDS (化合物16)の合成 合成例2のスクシニル化CM−キチンを合成例13と同
じ方法で硫酸化し、合成例7と同様にしてGRGDSフ
ラグメントを共有結合させた。収量0.31g 構造の確認はIRおよびアミノ酸分析により行った。硫
酸化スクシニル化CM−キチン−GRGDSの構造式を
以下に示す。Synthetic Example 16 Synthesis of sulfated succinylated CM-chitin-GRGDS (Compound 16) The succinylated CM-chitin of Synthetic Example 2 was sulfated in the same manner as in Synthetic Example 13, and the GRGDS fragment was synthesized in the same manner as in Synthetic Example 7. Was covalently bonded. Yield 0.31 g The structure was confirmed by IR and amino acid analysis. The structural formula of sulfated succinylated CM-chitin-GRGDS is shown below.
【化17】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 3.84:7.50:3.68:3.26 IR: アミドカルボニル(C=O)の伸縮振動 16
52cm-1 [Chemical 17] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 3.84: 7.50: 3.68: 3.26 IR: Stretching vibration of amidocarbonyl (C═O) 16
52 cm -1
【0030】合成例17 CM−キチン−RGDSG−
NH2(化合物17)の合成 接着性ペプチドフラグメントとしてカルボキシル末端を
アミド化したArg-Gly-Asp-Ser-Gly-NH2(RGDSG−N
H2)460mgを用い、合成例1と同様にしてCM−キ
チン−RGDSG−NH2を合成した。収量 0.36
g 構造の確認はIRおよびアミノ酸分析により行った。C
M−キチン−RGDSG−NH2の構造式を以下に示
す。Synthesis Example 17 CM-chitin-RGDSG-
Synthesis of NH 2 (compound 17) Arg-Gly-Asp-Ser-Gly-NH 2 (RGDSG-N) with an amidated carboxyl terminus as an adhesive peptide fragment
CM-chitin-RGDSG-NH 2 was synthesized in the same manner as in Synthesis Example 1 using 460 mg of H 2 ). Yield 0.36
Confirmation of the g structure was carried out by IR and amino acid analysis. C
Of M- Chitin -RGDSG-NH 2 The structural formula is shown below.
【化18】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 1.82:3.82:1.84:1.61 IR: アミドカルボニル(C=O)の伸縮振動 16
58cm-1 [Chemical 18] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 1.82: 3.82: 1.84: 1.61 IR: Stretching vibration of amidocarbonyl (C = O) 16
58 cm -1
【0031】合成例18 CM−キチン−RGDS(化
合物18)の合成 接着性ペプチドフラグメントとして RGDS1.5g
を用い、合成例1と同様にしてCM−キチン−RGDS
を合成した。収量0.32g 構造の確認はIRおよびアミノ酸分析により行った。C
M−キチン−RGDSの構造式を以下に示す。Synthesis Example 18 Synthesis of CM-chitin-RGDS (Compound 18) RGDS 1.5 g as an adhesive peptide fragment
And CM-chitin-RGDS in the same manner as in Synthesis Example 1.
Was synthesized. Yield 0.32 g The structure was confirmed by IR and amino acid analysis. C
The structural formula of M-chitin-RGDS is shown below.
【化19】 アミノ酸分析(nmol/10μg) Arg:Gly:Asp:Ser= 4.10:4.27:3.98:3.78 IR:アミドカルボニル(C=O)の伸縮振動 165
5cm-1 [Chemical 19] Amino acid analysis (nmol / 10 μg) Arg: Gly: Asp: Ser = 4.10: 4.27: 3.98: 3.78 IR: Stretching vibration of amidocarbonyl (C═O) 165
5 cm -1
【0032】合成例19 CM−キチン−GRGDSP
(化合物19)の合成 接着性ペプチドフラグメント−6(製造例3) Gly
−Arg−Gly−Asp−Ser−Pro(GRGD
SP)480mgを用い、合成例1と同様にしてCM−
キチン−GRGDSPを合成した。収量 0.35g 構造の確認はIRおよびアミノ酸分析により行った。C
M−キチンGRGDSPの構造式を以下に示す。Synthesis Example 19 CM-chitin-GRGDSP
Synthesis of (Compound 19) Adhesive peptide fragment-6 (Production Example 3) Gly
-Arg-Gly-Asp-Ser-Pro (GRGD
SP) using 480 mg and in the same manner as in Synthesis Example 1 CM-
Chitin-GRGDSP was synthesized. Yield 0.35 g The structure was confirmed by IR and amino acid analysis. C
The structural formula of M-chitin GRGDSP is shown below.
【化20】 アミノ酸分析(nmol/50μg) Arg:Gly:Asp:Ser:Pro= 1.53:3.21:1.34:1.11:1.33 IR: アミドカルボニル(C=O)の伸縮振動 16
57cm-1 [Chemical 20] Amino acid analysis (nmol / 50 μg) Arg: Gly: Asp: Ser: Pro = 1.53: 3.21: 1.34: 1.11: 1.33 IR: Stretching vibration of amidocarbonyl (C = O) 16
57 cm -1
【0033】試験例1(実験的肺転移) 本発明の化合物類の癌転移阻止作用について検討した。
RGDS担持CM−キチン誘導体(化合物1〜10)を
各々1000μgと、非常に転移性の強い癌細胞としてB
16-BL6 メラノーマ細胞をそれぞれPBS0.2 ml中で混合
後、その0.2 mlを1群5匹のC57BL/6の雌マウスに静脈
注射した。注射された混合物0.2ml中にはB16-BL6 細
胞が5×104個含まれていた。投与14日後にマウス
の肺コロニー数を数えて対照のPBS投与群と比較し、転
移抑制率を以下の式により算出した。 転移抑制率(%)=(1-(試料投与群の肺コロニー数/PBS
投与群の肺コロニー数))×100 結果を表3に示す。 表3 ──────────────────────── 試料 転移抑制率(範囲) ──────────────────────── 化合物1 98% (100-93%) 化合物2 77% (85-68%) 化合物3 73% (88-66%) 化合物4 65% (83-42%) 化合物5 56% (67-44%) 化合物6 88% (92-75%) 化合物7 68% (83-51%) 化合物8 47% (52-40%) 化合物9 66% (73-38%) 化合物10 80% (91-70%) 化合物11 66% (78-53%) 化合物12 80% (89-66%) 化合物13-1 54% (64-27%) 化合物13-2 50% (86-16%) 化合物13-3 52% (82-23%) 化合物13-4 23% (42- 6%) 化合物14 50% (72-44%) 化合物15 68% (76-60%) 化合物16 73% (80-63%) 化合物17 56% (65-39%) 化合物18 49% (67-40%) 化合物19 51% (73-37%) 比較試料 RGDS(Arg-Gly-Asp-Ser) 8% (38-(-32)%) ────────────────────────Test Example 1 (Experimental lung metastasis) The compounds of the present invention were examined for their cancer metastasis inhibitory action.
RGDS-carrying CM-chitin derivatives (Compounds 1 to 10) were added as 1000 μg each as a highly metastatic cancer cell B
Each 16-BL6 melanoma cell was mixed in 0.2 ml of PBS, and 0.2 ml of the mixture was intravenously injected into 5 female C57BL / 6 mice per group. The injected mixture (0.2 ml) contained 5 × 10 4 B16-BL6 cells. Fourteen days after the administration, the number of mouse lung colonies was counted and compared with the control PBS administration group, and the metastasis inhibition rate was calculated by the following formula. Metastasis inhibition rate (%) = (1- (Number of lung colonies in the sample administration group / PBS
The number of lung colonies in the administration group)) × 100 The results are shown in Table 3. Table 3 ──────────────────────── Sample metastasis inhibition rate (range) ────────────────── ─────── Compound 1 98% (100-93%) Compound 2 77% (85-68%) Compound 3 73% (88-66%) Compound 4 65% (83-42%) Compound 5 56 % (67-44%) Compound 6 88% (92-75%) Compound 7 68% (83-51%) Compound 8 47% (52-40%) Compound 9 66% (73-38%) Compound 10 80 % (91-70%) Compound 11 66% (78-53%) Compound 12 80% (89-66%) Compound 13-1 54% (64-27%) Compound 13-2 50% (86-16%) ) Compound 13-3 52% (82-23%) Compound 13-4 23% (42-6%) Compound 14 50% (72-44%) Compound 15 68% (76-60%) Compound 16 73% ( 80-63%) Compound 17 56% (65-39%) Compound 18 49% (67-40%) Compound 19 51% (73-37%) Comparative sample RGDS (Arg-Gly-Asp-Ser) 8% ( 38-(-32)%) ────────────────────────
【0034】また、本発明の化合物群をB16-BL 6細胞と
混合せずに、B16-BL 6細胞を投与した5分後にマウスに
静脈投与しても、やはり高い転移抑制効果が得られた。
この結果は、本発明の化合物を静脈注射等の適当な方法
で投与して、癌の転移抑制効果が得られることを示して
いる。尚、本発明の化合物群について、マウスを用いて
毒性試験を行ったところ、毒性は全く認められなかっ
た。Even when the compound of the present invention was not mixed with B16-BL 6 cells and was intravenously administered to mice 5 minutes after the administration of B16-BL 6 cells, a high metastasis-inhibiting effect was still obtained. ..
This result indicates that the compound of the present invention can be administered by an appropriate method such as intravenous injection to obtain a cancer metastasis suppressing effect. In addition, when the compound group of the present invention was subjected to a toxicity test using mice, no toxicity was observed at all.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 駒澤 宏幸 神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内 (72)発明者 済木 育夫 北海道札幌市厚別区厚別北3条西5丁目12 −6 (72)発明者 東 市郎 北海道札幌市南区真駒内上町5丁目3−2 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroyuki Komazawa, Inventor, 210 Nakanuma, Minamiashigara City, Kanagawa Prefecture, Fuji Photo Film Co., Ltd. (72) Inventor Ichiro Higashi 5-3-2 Makomanaikamimachi, Minami-ku, Sapporo-shi, Hokkaido
Claims (3)
アスパラギン酸残基からなるペプチド配列を有するカル
ボキシメチル化キチン誘導体またはその薬理学的に許容
される塩を有効成分として含有してなる癌転移抑制剤。1. An arginine residue-glycine residue-on the side chain
A cancer metastasis inhibitor comprising a carboxymethylated chitin derivative having a peptide sequence consisting of an aspartic acid residue or a pharmacologically acceptable salt thereof as an active ingredient.
ーテル結合、ウレタン結合のいずれかを介して下記一般
式[1]で表される接着性ペプチドが結合されたカルボ
キシメチル化キチン誘導体またはその薬理学的に許容さ
れる塩を有効成分として含有してなる請求項1記載の癌
転移抑制剤。 [R1]-[CO]-([X]-Arg-Gly-Asp-[Y])n-[Z]-[R2] [1] 式中、Argはアルギニン、Glyはグリシン、Aspはアスパ
ラギン酸残基を示す。[ ]は[ ]内の基が存在して
もしなくてもよいことを表す。存在する場合、Xおよび
Yはそれぞれセリン(Ser)、グリシン(Gly)、バ
リン(Val)、アスパラギン(Asn)、アスパラギ
ン酸(Asp)、プロリン(Pro)から選択されるア
ミノ酸残基またはこれらのアミノ酸残基から構成される
ペプチド残基を示し、Zは−O−または−NH−を示
す。R1、R2のいずれか一方は、水素、あるいは置換基
を有していてもよくまた不飽和結合を含んでいてもよ
い、炭素数が1〜9の直鎖もしくは分岐のアルキル基ま
たは炭素数が6〜9のアリール基を表し、他方は、置換
基を有していてもよくまた不飽和結合を含んでいてもよ
い、炭素数が1〜9の直鎖もしくは分岐のアルキレン基
または炭素数が6〜9のアリーレン基を表す。nは1〜
5の整数を示す。2. A carboxymethylated chitin derivative having an adhesive peptide represented by the following general formula [1] bonded to a side chain via an amide bond, an ester bond, an ether bond or a urethane bond or a derivative thereof. The cancer metastasis inhibitor according to claim 1, which comprises a pharmacologically acceptable salt as an active ingredient. [R 1 ]-[CO]-([X] -Arg-Gly-Asp- [Y]) n- [Z]-[R 2 ] [1] In the formula, Arg is arginine, Gly is glycine, and Asp is Indicates an aspartic acid residue. [] Represents that the group in [] may or may not be present. When present, X and Y are amino acid residues selected from serine (Ser), glycine (Gly), valine (Val), asparagine (Asn), aspartic acid (Asp), proline (Pro), or amino acids thereof. A peptide residue composed of residues is shown, and Z is -O- or -NH-. One of R 1 and R 2 is hydrogen, or a linear or branched alkyl group having 1 to 9 carbon atoms or a carbon which may have a substituent and may contain an unsaturated bond. The number represents an aryl group having 6 to 9, and the other is a linear or branched alkylene group having 1 to 9 carbon atoms or a carbon which may have a substituent and may include an unsaturated bond. It represents an arylene group having a number of 6 to 9. n is 1
Indicates an integer of 5.
の範囲であるカルボキシメチル化キチン誘導体またはそ
の薬理学的に許容される塩を有効成分として含有してな
る請求項1または2記載の癌転移抑制剤。3. A molecular weight of about 3,000 to 100,000.
3. The cancer metastasis inhibitor according to claim 1 or 2, which comprises a carboxymethylated chitin derivative or a pharmacologically acceptable salt thereof within the range of 10 as an active ingredient.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4068674A JPH05271094A (en) | 1992-03-26 | 1992-03-26 | Cancer metastasis-inhibiting agent using carboxymethylated chitin derivative |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4068674A JPH05271094A (en) | 1992-03-26 | 1992-03-26 | Cancer metastasis-inhibiting agent using carboxymethylated chitin derivative |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05271094A true JPH05271094A (en) | 1993-10-19 |
Family
ID=13380503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4068674A Pending JPH05271094A (en) | 1992-03-26 | 1992-03-26 | Cancer metastasis-inhibiting agent using carboxymethylated chitin derivative |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05271094A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998011903A1 (en) * | 1996-09-18 | 1998-03-26 | Chicura Coöperatie U.A. | Chitosan derivatives for treating malignant tumours |
US6599720B2 (en) | 1993-12-01 | 2003-07-29 | Marine Polymer Technologies | Methods for making poly-β-1→4-N-acetylglucosamine |
GB2454221A (en) * | 2007-11-01 | 2009-05-06 | Mohamed Abdelhafez El-Far | Chemically modified chitosan as an anticancer agent |
US8858964B2 (en) | 2010-04-15 | 2014-10-14 | Marine Polymer Technologies, Inc. | Anti-bacterial applications of poly-N-acetylglucosamine nanofibers |
US8871247B2 (en) | 2007-02-19 | 2014-10-28 | Marine Polymer Technologies, Inc. | Hemostatic compositions and therapeutic regimens |
US10765698B2 (en) | 2011-04-15 | 2020-09-08 | Marine Polymer Technologies, Inc. | Treatment of disease with poly-N-acetylglucosamine nanofibers |
-
1992
- 1992-03-26 JP JP4068674A patent/JPH05271094A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6599720B2 (en) | 1993-12-01 | 2003-07-29 | Marine Polymer Technologies | Methods for making poly-β-1→4-N-acetylglucosamine |
US6610668B2 (en) | 1993-12-01 | 2003-08-26 | Marine Polymers Technologies | Methods and compositions for poly-β-1→4-N-acetylglucosamine cell therapy system |
US6630459B2 (en) | 1993-12-01 | 2003-10-07 | Marine Polymers Technologies | Pharmaceutical compositions comprising poly-β-1→4-N-acetylglucosamine |
US6649599B2 (en) | 1993-12-01 | 2003-11-18 | Marine Polymer Technologies, Inc. | Methods and compositions for poly-β-1-4-N-acetylglucosamine cell therapy system |
US6686342B2 (en) | 1993-12-01 | 2004-02-03 | Marine Polymer Technologies, Inc. | Bicompatible poly-β-1→4-N-acetylglucosamine |
US6864245B2 (en) | 1993-12-01 | 2005-03-08 | Marine Polymer Technologies, Inc. | Biocompatible poly-β-1→4-N-acetylglucosamine |
WO1998011903A1 (en) * | 1996-09-18 | 1998-03-26 | Chicura Coöperatie U.A. | Chitosan derivatives for treating malignant tumours |
US10383971B2 (en) | 2007-02-19 | 2019-08-20 | Marine Polymer Technologies, Inc. | Hemostatic compositions and therapeutic regimens |
US8871247B2 (en) | 2007-02-19 | 2014-10-28 | Marine Polymer Technologies, Inc. | Hemostatic compositions and therapeutic regimens |
US9139664B2 (en) | 2007-02-19 | 2015-09-22 | Marine Polymer Technologies, Inc. | Hemostatic compositions and therapeutic regimens |
US9139663B2 (en) | 2007-02-19 | 2015-09-22 | Marine Polymer Technologies, Inc. | Hemostatic compositions and therapeutic regimens |
GB2454221A (en) * | 2007-11-01 | 2009-05-06 | Mohamed Abdelhafez El-Far | Chemically modified chitosan as an anticancer agent |
US8858964B2 (en) | 2010-04-15 | 2014-10-14 | Marine Polymer Technologies, Inc. | Anti-bacterial applications of poly-N-acetylglucosamine nanofibers |
US9642871B2 (en) | 2010-04-15 | 2017-05-09 | Marine Polymer Technologies, Inc. | Anti-bacterial applications of poly-N-acetylglucosamine nanofibers |
US10206938B2 (en) | 2010-04-15 | 2019-02-19 | Marine Polymer Technologies, Inc. | Anti-bacterial applications of poly-N-acetylglucosamine nanofibers |
US9198928B2 (en) | 2010-04-15 | 2015-12-01 | Marine Polymer Technologies, Inc. | Anti-bacterial applications of poly-N-acetylglucosamine nanofibers |
US10561677B2 (en) | 2010-04-15 | 2020-02-18 | Marine Polymer Technologies, Inc. | Anti-bacterial applications of poly-N-acetylglucosamine nanofibers |
US10765698B2 (en) | 2011-04-15 | 2020-09-08 | Marine Polymer Technologies, Inc. | Treatment of disease with poly-N-acetylglucosamine nanofibers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2745351B2 (en) | Peptide derivatives and their uses | |
US5298488A (en) | CM-chitin derivatives and use thereof | |
GB2207922A (en) | Tripeptides with pharmacological properties | |
JPH0378374B2 (en) | ||
JPH05271094A (en) | Cancer metastasis-inhibiting agent using carboxymethylated chitin derivative | |
JP3274225B2 (en) | Amino acid derivatives and their uses | |
WO1995024421A1 (en) | Peptide derivative | |
JP2918746B2 (en) | Peptide derivatives and their uses | |
JP2611874B2 (en) | Water-soluble vinyl polymer derivatives and their uses | |
JPH04221397A (en) | Water-soluble polypeptide derivative and its use | |
JP2620727B2 (en) | Peptide lipid | |
JPH04235922A (en) | Cell-adhesion inhibiting agent containing glycosaminoglycan derivative | |
JPH04221400A (en) | Gelatin derivative and its use | |
JPH06306096A (en) | Peptide derivative and use thereof | |
JP3190758B2 (en) | Peptide derivatives and their uses | |
JP2745353B2 (en) | Immunosuppressants | |
JP3190765B2 (en) | Peptide derivatives and their uses | |
JPH06298797A (en) | Peptide derivative and its use | |
JP2662830B2 (en) | CM-chitin derivative and use thereof | |
JP2620728B2 (en) | Peptide-containing polyethylene glycol derivatives and their uses | |
JPH06128289A (en) | Peptide derivative and its use | |
JPH05163300A (en) | Peptide derivative and its use | |
JP2617700B2 (en) | Polypeptide consisting of repeating structure of cell adhesion active core sequence | |
JP2649871B2 (en) | Hydrophobic monomer, copolymer of said hydrophobic monomer and propenamide derivative monomer and use thereof | |
JP2620729B2 (en) | Peptide derivative |