JPH0516142B2 - - Google Patents

Info

Publication number
JPH0516142B2
JPH0516142B2 JP59168533A JP16853384A JPH0516142B2 JP H0516142 B2 JPH0516142 B2 JP H0516142B2 JP 59168533 A JP59168533 A JP 59168533A JP 16853384 A JP16853384 A JP 16853384A JP H0516142 B2 JPH0516142 B2 JP H0516142B2
Authority
JP
Japan
Prior art keywords
cadmium
electrode plate
active material
particles
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59168533A
Other languages
Japanese (ja)
Other versions
JPS6147067A (en
Inventor
Toshio Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP59168533A priority Critical patent/JPS6147067A/en
Publication of JPS6147067A publication Critical patent/JPS6147067A/en
Publication of JPH0516142B2 publication Critical patent/JPH0516142B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はニツケルカドミウム蓄電池、銀−カド
ミウム蓄電池などの負極板に用いるアルカリ蓄電
池用カドミウム極板の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a cadmium electrode plate for an alkaline storage battery, which is used as a negative electrode plate for a nickel-cadmium storage battery, a silver-cadmium storage battery, or the like.

従来の技術 ニツケル−カドミウム蓄電池などの負極板に用
いられるペースト式カドミウム極板は焼結式カド
ミウム極板に比べ、製法が簡単でエネルギー密度
が高いなどの特徴をもつているが、機械的強度と
活物質利用率などの極板性能は相反するものであ
る。つまり、従来は極板に機械的強度を持たせる
ために、結着剤として主にポリエチレン樹脂やフ
ツ素樹脂を用いているが、充分な機械的強度を得
るに必要な量の結着剤を使用すると、活物質利用
率などの極板性能が低下し、ペースト式カドミウ
ム極板の長所である高エネルギー密度が充分得ら
れないことになる。逆に極板性能が低下しないよ
うに結着剤を少なくすると、極板の機械的強度が
低下して、化成や電池組立までに活物質の脱落が
おこるために製品の歩留りが悪くなる。
Conventional technology Paste-type cadmium electrode plates, which are used for negative electrode plates in nickel-cadmium storage batteries, are easier to manufacture and have higher energy density than sintered-type cadmium electrode plates, but their mechanical strength and Plate performance such as active material utilization rate is contradictory. In other words, in the past, polyethylene resins and fluorine resins were mainly used as binders to give mechanical strength to electrode plates, but only the amount of binder necessary to obtain sufficient mechanical strength was used. If used, the electrode plate performance such as the active material utilization rate will deteriorate, and the high energy density, which is the advantage of the paste-type cadmium electrode plate, will not be sufficiently obtained. On the other hand, if the amount of binder is reduced to prevent deterioration of the electrode plate performance, the mechanical strength of the electrode plate will decrease and the active material will fall off during chemical formation and battery assembly, resulting in poor product yield.

発明が解決しようとする問題点 以上のように、従来のペースト式カドミウム極
板は、機械的強度あるいは極板性能のどちらか一
方を犠牲にせざるを得ず、両方を同時に満足させ
るものは困難であつた。
Problems to be Solved by the Invention As described above, conventional paste-type cadmium electrode plates have to sacrifice either mechanical strength or electrode plate performance, and it is difficult to achieve both at the same time. It was hot.

従つてペースト式カドミウム極板のような高エ
ネルギー密度を保持しつつ、電池組立までの操作
において活物質の脱落がない機械的強度の高いカ
ドミウム極板が望まれていた。
Therefore, there has been a desire for a cadmium electrode plate that maintains high energy density like a paste-type cadmium electrode plate and has high mechanical strength so that the active material does not fall off during operations up to battery assembly.

本発明は以上のような従来技術の問題点を解決
することを目的とするものである。
The present invention aims to solve the problems of the prior art as described above.

問題点を解決するための手段 本発明は活物質粉末が水酸化カドミウム単独あ
るいは酸化カドミウムおよび金属カドミウムのう
ち少くとも一つと水酸化カドミウムとの混合物か
らなり、該活物質粉末単独あるいは集電体の役目
を果す電子電導性材料と該活物質粉末との混合物
に、1ton/cm2以上の圧力と110℃から220℃の間の
温度とを同時に加えるホツトプレスをおこなつて
得た成形体をアルカリ蓄電池用カドミウム極板と
なすことにより、上述の問題点を解決せんとする
ものである。
Means for Solving the Problems The present invention provides an active material powder consisting of cadmium hydroxide alone or a mixture of cadmium hydroxide and at least one of cadmium oxide and metal cadmium, and the active material powder alone or as a current collector. The molded body obtained by hot pressing, which simultaneously applies a pressure of 1 ton/cm 2 or more and a temperature between 110°C and 220°C to a mixture of the active material powder and the electronically conductive material that plays a role, is used as an alkaline storage battery. The above-mentioned problems are attempted to be solved by using a cadmium electrode plate.

作 用 水酸化カドミウムを含む未成形体に、1ton/cm2
以上の圧力と110℃から220℃との間の温度とを同
時に加えると、未成形体中に含まれる水酸化カド
ミウムの粒子の一部分、特に粒子の表面が次の反
応式に従つて熱分解して酸化カドミウムと水とが
生成するとともに粒子の表面の化学結合が不安定
となる。
Effect: 1 ton/cm 2 on unformed bodies containing cadmium hydroxide.
When the above pressure and the temperature between 110°C and 220°C are applied simultaneously, a part of the cadmium hydroxide particles contained in the green body, especially the surface of the particles, is thermally decomposed according to the following reaction formula. As cadmium oxide and water are generated, the chemical bonds on the surface of the particles become unstable.

Cd(OH)2→CdO+H2O このとき水酸化カドミウム粒子とこの粒子に隣
接した水酸化カドミウム、酸化カドミウムあるい
は金属カドミウムとの間に新たな化学結合が生じ
て、成形体全体がいわば活物質自体の多孔質焼結
体となり、結着剤を一切用いなくとも強固な成形
体が得られる。
Cd(OH) 2 →CdO+H 2 O At this time, a new chemical bond is generated between the cadmium hydroxide particles and the cadmium hydroxide, cadmium oxide, or metal cadmium adjacent to the particles, and the entire molded body becomes the active material itself. It becomes a porous sintered body, and a strong molded body can be obtained without using any binder.

このようにして得た成形体の構造の模式図を第
1図に示す。この成形体は、本来絶縁体である水
酸化カドミウムの粒子1の一部が熱分解して電子
電導性を有する酸化カドミウム2が粒子間に生成
し、特に極板内に集電体を散布させなくても該成
形体をアルカリ電解液中に浸漬して陰分極するこ
とによつて、充電することが可能となる。図にお
いて3は酸化カドミウムの粒子、4は金属カドミ
ウムの粒子である。以後は充電生成物である金属
カドミウムがネツトワークを形成して極板の強度
の保持と集電体の役目を果たす。ただ、この成形
体中に含まれる熱分解生成物の酸化カドミウムは
微量であるので、最初の充電を大電流でおこなう
と、分極が非常に大きくなる。これを防ぐため
に、導電性の集電体を未成形体に混合してホツト
プレスし、成形体を得ることも可能である。ま
た、導電性を有して集電体の役目を果たすと同時
に活物質としても作用する酸化カドミウムあるい
は金属カドミウムを未成形体に混合しておくこと
も可能である。
A schematic diagram of the structure of the molded body thus obtained is shown in FIG. In this molded body, some of the particles 1 of cadmium hydroxide, which is originally an insulator, are thermally decomposed and cadmium oxide 2, which has electronic conductivity, is generated between the particles, and in particular, the current collector is dispersed in the electrode plate. Even if the molded body is not used, it can be charged by immersing the molded body in an alkaline electrolyte and subjecting it to negative polarization. In the figure, 3 is a particle of cadmium oxide, and 4 is a particle of metal cadmium. Thereafter, metal cadmium, which is a charging product, forms a network to maintain the strength of the electrode plate and serve as a current collector. However, since the amount of cadmium oxide that is a thermal decomposition product contained in this compact is very small, if the initial charging is performed with a large current, the polarization will be extremely large. In order to prevent this, it is also possible to obtain a molded body by mixing a conductive current collector with the unmolded body and hot pressing the mixture. Further, it is also possible to mix cadmium oxide or metal cadmium, which has conductivity and acts as a current collector and at the same time as an active material, into the unformed body.

このように本発明においては、充放電に何ら関
与することのない結着剤を多量に使用する必要も
なく、充放電反応に必要な極板内部の細孔がこの
結着剤によつて塞がれることもほとんどないの
で、優れた極板性能のものが得られる。
In this way, in the present invention, there is no need to use a large amount of a binder that is not involved in charging and discharging, and the pores inside the electrode plate necessary for the charging and discharging reaction are filled with this binder. Since there is almost no peeling, a plate with excellent plate performance can be obtained.

なお、ホツトプレス時の温度が110℃よりも低
いと、部分的な熱分解がおこらないので、成形体
の強度が低く使用に耐えない。さらにホツトプレ
ス時の温度が220℃よりも高いと、水酸化カドミ
ウムが急激に熱分解をおこしてしまい、このとき
多量に発生する分解生成物である水蒸気が成形体
の内部に残留する。それゆえプレスを除去した瞬
間に成形体内部の水蒸気が急激に膨張して成形体
が破壊してしまう。
Note that if the temperature during hot pressing is lower than 110°C, partial thermal decomposition will not occur, so the strength of the molded product will be low and it will not be usable. Furthermore, if the temperature during hot pressing is higher than 220°C, cadmium hydroxide will rapidly undergo thermal decomposition, and a large amount of water vapor, which is a decomposition product generated at this time, will remain inside the molded product. Therefore, the moment the press is removed, the water vapor inside the molded body expands rapidly and the molded body is destroyed.

一方、圧力をまつたく加えないで加熱すると、
水酸化カドミウムはホツトプレスしたときよりも
高温の約150℃から部分的な熱分解が始まり、約
250℃で急激に熱分解が進行するようになるが、
この部分的熱分解が進行する約150℃から約250℃
の間の温度による加熱のみでは、ホツトプレスし
たときのように粒子間の強固な結合が生じず、充
分な強度が得られない。使用に耐える強度の成形
体を得るには、ホツトプレス時の圧力を1ton/cm2
以上とする必要がある。
On the other hand, if you heat it without applying pressure,
Partial thermal decomposition of cadmium hydroxide begins at approximately 150°C, which is higher than when it was hot pressed, and approximately
Thermal decomposition begins to progress rapidly at 250℃,
This partial thermal decomposition progresses from approximately 150℃ to approximately 250℃.
If only heating is performed at a temperature between 100 and 200 mm, strong bonding between particles will not occur as in the case of hot pressing, and sufficient strength will not be obtained. To obtain a molded product strong enough to withstand use, the pressure during hot pressing must be 1 ton/cm 2
It is necessary to do more than that.

また、まつたく加熱しないで圧力のみを加えて
プレスしても、部分的な熱分解がおこらないので
粒子間の強固な化学結合が生じないため、成形体
の強度が小さく、わずかな変形を加えるだけで活
物質の脱落がおこり、使用に耐えない。
In addition, even if you press only by applying pressure without intense heating, partial thermal decomposition will not occur and strong chemical bonds between particles will not occur, so the strength of the molded product will be low and it will cause slight deformation. This alone causes the active material to fall off, making it unusable.

以上に述べたように、水酸化カドミウムの部分
的な熱分解と、粒子間の新たな化学結合とを同時
に起こして、強固な成形体を得るには、熱と圧力
とを同時に加える必要がある。
As mentioned above, it is necessary to apply heat and pressure simultaneously in order to simultaneously cause partial thermal decomposition of cadmium hydroxide and new chemical bonds between particles to obtain a strong compact. .

実施例 活物質である水酸化カドミウム粉末100重量部
に対して、集電体の役目を果たすカーボニルニツ
ケル粉末1重量部およびこれらをペースト状とす
るための分散剤の役目を果たすエチレングリコー
ル40重量部とを混練してペースト状となし、これ
を集電体の役目を果たす厚み100μの鉄にニツケ
ルメツキした金属多孔板の両側に、全体の厚みが
1mmとなるように塗布した後、約120℃にて乾燥
して、エチレングリコールを蒸発させた後、これ
を160℃にて1ton/cm2の圧力でホツトプレスする
という方法で本発明による極板Aを調製した。比
較のために、前述したペースト配合にポリエチレ
ン粉末を、7重量部用い、かつ、ホツトプレスを
おこなわない方法で、従来のペースト式カドミウ
ム極板Bを調製した。
Example: For 100 parts by weight of cadmium hydroxide powder, which is an active material, 1 part by weight of carbonyl nickel powder, which acts as a current collector, and 40 parts by weight, ethylene glycol, which acts as a dispersant to make these into a paste. The mixture was kneaded to form a paste, which was applied to both sides of a 100μ thick nickel-plated perforated metal plate that served as a current collector to a total thickness of 1mm, and then heated to approximately 120°C. Electrode plate A according to the present invention was prepared by drying the ethylene glycol and evaporating the ethylene glycol, followed by hot pressing at 160° C. and a pressure of 1 ton/cm 2 . For comparison, a conventional paste-type cadmium electrode plate B was prepared using 7 parts by weight of polyethylene powder in the paste formulation described above and without hot pressing.

以上のようにして調製した極板を40mm×40mmの
寸法に切断して試料とし、試料と同寸法の焼結式
ニツケル正極板2枚を対極として用い、比重
1.250(20℃)の水酸化カリウム水溶液を用いた試
験用の電池をつくり、試料の理論容量に対して2
時間率の通電電流で充放電した場合の、試料の放
電時の活物質利用率を第2図に示す。図から、結
着剤であるポリエチレン粉末の配合量が少ない本
発明によるカドミウム極板Aの活物質利用率は、
結着剤であるポリエチレン粉末の配合量が多い従
来のペースト式カドミウム極板Bよりも、約20%
高く、また充放電サイクルの進行にともなう利用
率の変化にも異常が認められないことがわかる。
なお、いずれの極板においてもこれらの極板を切
断して電池をつくる際や、上記した充放電サイク
ル中の活物質の脱落は一切認められず、本発明に
よりカドミウム極板Aは、従来のペースト式カド
ミウム極板と同様に、充分使用に耐える強度を有
していた。
The electrode plate prepared as described above was cut into a size of 40 mm x 40 mm as a sample, and two sintered nickel positive electrode plates of the same size as the sample were used as counter electrodes.
A test battery was made using a 1.250 (20°C) potassium hydroxide aqueous solution, and the theoretical capacity of the sample was 2.
FIG. 2 shows the utilization rate of the active material during discharge of the sample when charging and discharging with a current applied at a time rate. From the figure, the active material utilization rate of cadmium electrode plate A according to the present invention, which has a small amount of polyethylene powder as a binder, is as follows:
Approximately 20% lower than conventional paste-type cadmium electrode plate B, which contains a large amount of polyethylene powder as a binder.
It can be seen that no abnormality is observed in the change in the utilization rate as the charge/discharge cycle progresses.
In addition, no dropout of the active material was observed in any of the electrode plates when cutting these plates to make a battery or during the above-mentioned charge/discharge cycle, and according to the present invention, cadmium electrode plate A Like paste-type cadmium electrode plates, it had enough strength to withstand use.

発明の効果 以上のように本発明では機械的強度が充分で、
かつ活物質利用率などの極板性能の良好なアルカ
リ蓄電池用カドミウム極板が得られる。
Effects of the invention As described above, the present invention has sufficient mechanical strength,
Moreover, a cadmium electrode plate for an alkaline storage battery having good electrode plate performance such as active material utilization rate can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はホツトプレスして得た成形体の構造の
模式図、第2図は放電時の活物質利用率を比較し
た図である。 1……水酸化カドミウムの粒子、2……水酸化
カドミウムの粒子の表面が熱分解して生成した酸
化カドミウム、3……酸化カドミウムの粒子、4
……金属カドミウムの粒子、A……本発明品、B
……従来品。
FIG. 1 is a schematic diagram of the structure of a molded body obtained by hot pressing, and FIG. 2 is a diagram comparing the active material utilization rate during discharge. 1... Cadmium hydroxide particles, 2... Cadmium oxide generated by thermal decomposition of the surface of cadmium hydroxide particles, 3... Cadmium oxide particles, 4
...metallic cadmium particles, A...product of the present invention, B
...Conventional product.

Claims (1)

【特許請求の範囲】[Claims] 1 水酸化カドミウムを主体とする粉末に1ton/
cm2以上の圧力と110℃から220℃の間の温度の加熱
とを同時に加えて成形することを特徴とするアル
カリ蓄電池用カドミウム極板の製造方法。
1 1 ton of powder mainly composed of cadmium hydroxide
A method for producing a cadmium electrode plate for an alkaline storage battery, characterized by molding it by simultaneously applying a pressure of 2 cm2 or more and heating at a temperature between 110°C and 220°C.
JP59168533A 1984-08-10 1984-08-10 Cadmium plate for alkali storage battery Granted JPS6147067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168533A JPS6147067A (en) 1984-08-10 1984-08-10 Cadmium plate for alkali storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168533A JPS6147067A (en) 1984-08-10 1984-08-10 Cadmium plate for alkali storage battery

Publications (2)

Publication Number Publication Date
JPS6147067A JPS6147067A (en) 1986-03-07
JPH0516142B2 true JPH0516142B2 (en) 1993-03-03

Family

ID=15869781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168533A Granted JPS6147067A (en) 1984-08-10 1984-08-10 Cadmium plate for alkali storage battery

Country Status (1)

Country Link
JP (1) JPS6147067A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103640A (en) * 1974-01-18 1975-08-15
JPS5673859A (en) * 1979-11-16 1981-06-18 Japan Storage Battery Co Ltd Manufacture of negative plate for alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50103640A (en) * 1974-01-18 1975-08-15
JPS5673859A (en) * 1979-11-16 1981-06-18 Japan Storage Battery Co Ltd Manufacture of negative plate for alkaline battery

Also Published As

Publication number Publication date
JPS6147067A (en) 1986-03-07

Similar Documents

Publication Publication Date Title
US3486940A (en) Storage battery having a positive electrode comprising a supporting base of titanium nitride having a surface film of non-polarizing material
EP0677027A1 (en) Process for making cathode components for use in electrochemical cells
US4225346A (en) Process for fabricating porous nickel bodies
US3625765A (en) Production of battery electrode
US2643276A (en) Negative electrode for alkaline storage batteries and method of manufacturing the same
EP2951335B1 (en) Coated iron electrode and method of making same
US3446668A (en) Inorganic battery separator and battery
US3854999A (en) Mercuric oxide electrode and method of forming
JPH11288739A (en) Manufacture for lithium ion secondary battery
US5441833A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
US3725129A (en) Method for preparing pasted nickel hydroxide electrode
US5334226A (en) Method of manufacturing a sealed-type nickel-hydrogen cell
US3332801A (en) Electrodes for batteries
JPH0516142B2 (en)
JPS6335069B2 (en)
KR100362286B1 (en) Method for Manufacturing pole plate of Lithium Secondry Battery
JPS5942949B2 (en) nickel electrode
JP2608561B2 (en) Stacked battery
US3617592A (en) Process of forming a sintered zinc electrode
JP2733231B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0261095B2 (en)
JPH11233120A (en) Electrode for alkaline storage battery and its manufacture
JPS5978451A (en) Battery
JPS5848020B2 (en) Manufacturing method of sintered nickel substrate for alkaline battery electrode
JPS58198856A (en) Manufacture of negative cadmium plate for alkaline storage battery