JPH0455282Y2 - - Google Patents

Info

Publication number
JPH0455282Y2
JPH0455282Y2 JP1988073925U JP7392588U JPH0455282Y2 JP H0455282 Y2 JPH0455282 Y2 JP H0455282Y2 JP 1988073925 U JP1988073925 U JP 1988073925U JP 7392588 U JP7392588 U JP 7392588U JP H0455282 Y2 JPH0455282 Y2 JP H0455282Y2
Authority
JP
Japan
Prior art keywords
diffraction grating
optical diffraction
synthetic resin
flange
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1988073925U
Other languages
Japanese (ja)
Other versions
JPH01177702U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1988073925U priority Critical patent/JPH0455282Y2/ja
Publication of JPH01177702U publication Critical patent/JPH01177702U/ja
Application granted granted Critical
Publication of JPH0455282Y2 publication Critical patent/JPH0455282Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は光回折格子に係り、特に合成樹脂によ
つて高精度に成形可能な光回折格子の改良に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical diffraction grating, and more particularly to an improvement in an optical diffraction grating that can be molded with high precision using synthetic resin.

〔従来の技術〕[Conventional technology]

一般に、光回折格子は偏平なガラスやプラスチ
ツク基板の片面に微細な光回折溝を多数並行に形
成して構成されており、例えばコンパクト・デイ
スクのレーザ読取り装置において、そのレーザ光
路上に配置してトラツキングエラー信号の検出に
用いられる。
Generally, an optical diffraction grating is made up of a large number of fine optical diffraction grooves formed in parallel on one side of a flat glass or plastic substrate. Used to detect tracking error signals.

従来、この光回折格子は、第13図A〜Dに示
すような方法によつて製造されていた。
Conventionally, this optical diffraction grating has been manufactured by the method shown in FIGS. 13A to 13D.

すなわち、プラスチツク等の基板1の片面に有
機物を1μm程度の厚みで均一に塗布、固化して有
機物層3を形成し(第13図A)、この有機物層
3上にレジストによつて所定の微細な格子パター
ン5を焼付形成し(第13図B)、その有機物層
3にあつてレジストを溶かさない溶剤にてその格
子パターン5の形成されていない部分を溶解除去
するとともにその格子パターン5を除去し(第1
3図C)、格子パターン5に相当する部分の有機
物層3を残して第13図Dのように格子溝7を有
する光回折格子Eを形成していた。
That is, an organic material is uniformly applied to one side of a substrate 1 such as plastic to a thickness of about 1 μm and solidified to form an organic material layer 3 (FIG. 13A), and a resist is used to form a predetermined fine pattern on this organic material layer 3. A grid pattern 5 is formed by baking (FIG. 13B), and the part of the organic layer 3 where the grid pattern 5 is not formed is dissolved and removed using a solvent that does not dissolve the resist, and the grid pattern 5 is also removed. (1st
3C), an optical diffraction grating E having grating grooves 7 as shown in FIG. 13D was formed by leaving a portion of the organic layer 3 corresponding to the grating pattern 5.

そして、この光回折格子Eは、第14図に示す
ように、リング状のハウジング9の内側に支持さ
せて製品化されている。
As shown in FIG. 14, this optical diffraction grating E is supported inside a ring-shaped housing 9 and manufactured as a product.

〔考案が解決しようとする課題〕[The problem that the idea attempts to solve]

このように、基板1に有機物層3を介して格子
パターン5を形成し、この有機物層3を溶剤にて
部分的に溶解除去する方法では製造時間がかかる
うえ、製造装置の簡素化が困難で、コスト高とな
り易く、製品の小型化にも限度がある。
As described above, the method of forming the lattice pattern 5 on the substrate 1 through the organic material layer 3 and partially dissolving and removing the organic material layer 3 with a solvent requires manufacturing time and makes it difficult to simplify the manufacturing equipment. However, the cost tends to be high, and there is a limit to the miniaturization of the product.

一方、光回折格子Eを合成樹脂で射出成形して
製造できれば、製造工程が簡素化されるとともに
大幅なコスト低減が可能であるし、製造装置も簡
素化されると考えられる。
On the other hand, if the optical diffraction grating E can be manufactured by injection molding from a synthetic resin, the manufacturing process will be simplified and costs can be significantly reduced, and the manufacturing equipment will also be simplified.

しかし、光回折格子Eは深さ0.3μm、幅20μm
程度の格子溝7を±0.1μmの精度で形成する必要
があるが、溶解樹脂で射出成形すると溶解樹脂が
一定の分子配向となつた状態で固化し易い。
However, the optical grating E has a depth of 0.3 μm and a width of 20 μm.
It is necessary to form the lattice grooves 7 with an accuracy of ±0.1 μm, but when injection molding is performed using molten resin, the molten resin tends to solidify with a certain molecular orientation.

そのため、固化時に分子配向歪を生じて光回折
格子に捩れや歪が発生し易く、外部からの熱や湿
度の影響も受け易くなつて寸法精度が低下し、従
来では合成樹脂によつて実用的な光回折格子を形
成することが困難であつた。
As a result, molecular orientation distortion occurs during solidification, which tends to cause twisting and distortion in the optical diffraction grating, and it also becomes susceptible to the effects of external heat and humidity, reducing dimensional accuracy. It has been difficult to form an optical diffraction grating.

本考案はこのような状況の下になされたもの
で、合成樹脂によつて射出成形しても高精度の格
子溝の形成が容易で、実用的な精度を有する合成
樹脂製の光回折格子を提供するものである。
The present invention was developed under these circumstances, and it is easy to form highly accurate grating grooves even by injection molding with synthetic resin, and it is possible to create an optical diffraction grating made of synthetic resin with practical precision. This is what we provide.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を達成するために本考案は、多
数の光回折溝を有する光回折格子本体の周囲に、
これより厚みの厚いフランジがその光回折格子本
体とともに透過性合成樹脂にようて一体的に射出
成形されて構成されている。
In order to achieve this purpose, the present invention includes a main body of an optical diffraction grating having a large number of optical diffraction grooves.
A thicker flange is integrally injection molded with the optical diffraction grating body from transparent synthetic resin.

〔作用〕[Effect]

このような手段を備えた本考案は、フランジ部
分を注入ゲートとして溶解合成樹脂を金型に注入
して射出成形すれば、溶解合成樹脂がフランジ部
分に流れてから光回折格子本体部分に流れて成形
され、光回折格子本体では溶解合成樹脂が無配向
になり易い。
In the present invention equipped with such a means, if the molten synthetic resin is injected into the mold using the flange part as an injection gate and injection molding is performed, the molten synthetic resin flows into the flange part and then into the optical diffraction grating main body part. Molded synthetic resin tends to become non-oriented in the optical diffraction grating body.

〔実施例〕〔Example〕

以下本考案の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図および第2図は本考案に係る光回折格子
の一実施例を示す断面図および平面図である。
FIGS. 1 and 2 are a sectional view and a plan view showing an embodiment of an optical diffraction grating according to the present invention.

両図において、透過性合成樹脂例えばポリメチ
ルメタクリレート(PMMA)からなる厚さ約1.0
mmの円盤状の光回折格子本体11の片面には、深
さ0.3μm、幅20μm程度の断面凹状の格子溝13
が多数並行に形成されている。
In both figures, the thickness of approximately 1.0 mm is made of transparent synthetic resin, e.g. polymethyl methacrylate (PMMA).
On one side of the disc-shaped optical diffraction grating main body 11, there is a grating groove 13 having a concave cross section with a depth of 0.3 μm and a width of about 20 μm.
are formed in large numbers in parallel.

光回折格子本体11の周囲には、光回折格子本
体11の厚みの略2倍のフランジ15が光回折格
子本体11と同材料にてリング状に射出成形によ
つて一体成形され、光回折格子Eが形成されてい
る。
Around the optical diffraction grating body 11, a flange 15 approximately twice the thickness of the optical diffraction grating body 11 is integrally molded in a ring shape from the same material as the optical diffraction grating body 11 by injection molding. E is formed.

透過性合成樹脂としては、ポリメチルメタクリ
レート(PMMA)以外にも熱可塑性のポリ塩化
ビニル(PVC)、ポリスチレン(PS)、ポリカー
ボネート(PC)等や、熱硬化性のポリジエチレ
ングリコールビスアリルカーボネート(CR−39)
等を用いることが可能である。もつとも、透明
性、軽量性、易加工性、耐衝撃性等の観点からポ
リメチルメタクリレート(PMMA)が好適する。
In addition to polymethyl methacrylate (PMMA), transparent synthetic resins include thermoplastic polyvinyl chloride (PVC), polystyrene (PS), polycarbonate (PC), and thermosetting polydiethylene glycol bisallyl carbonate (CR- 39)
etc. can be used. However, polymethyl methacrylate (PMMA) is preferred from the viewpoints of transparency, lightness, ease of processing, impact resistance, etc.

このような光回折格子Eでは、光回折格子本体
11の周囲のフランジ15が光回折格子本体11
より厚くなつているから、これを金型で射出成形
にて製造する際には、溶解合成樹脂がフランジ部
分に流れてから光回折格子本体11が成形され、
光回折格子本体11では溶解合成樹脂が無配向に
なり易い。これらの関係は後述する製造方法によ
つて更に明確になるであろう。
In such an optical diffraction grating E, the flange 15 around the optical grating body 11 is connected to the optical grating body 11.
Since it is thicker, when manufacturing it by injection molding with a mold, the molten synthetic resin flows into the flange part and then the optical diffraction grating body 11 is molded.
In the optical diffraction grating body 11, the dissolved synthetic resin tends to become non-oriented. These relationships will become clearer through the manufacturing method described below.

上述した本考案の光回折格子本体11の外形形
状は円形になつていたが、光回折格子本体11の
形状はこれに限らず長方形等任意に選定可能であ
り、光回折格子本体11の周囲に一体形成するフ
ランジ15の形状も、第2図のようにリング状に
限定されない。
Although the external shape of the optical diffraction grating body 11 of the present invention described above is circular, the shape of the optical diffraction grating body 11 is not limited to this, and can be arbitrarily selected such as a rectangle. The shape of the integrally formed flange 15 is also not limited to the ring shape as shown in FIG.

例えば、第3図に示すように、光回折格子本体
11より大径の小判状のフランジ17でもよく、
光回折格子本体11よりも厚いフランジ15,1
7を光回折格子本体11の周囲に一体的に設けれ
ばよい。
For example, as shown in FIG. 3, an oval-shaped flange 17 having a larger diameter than the optical diffraction grating body 11 may be used.
Flange 15,1 thicker than optical diffraction grating body 11
7 may be integrally provided around the optical diffraction grating body 11.

次、このような光回折格子の製造方法の一例を
説明する。
Next, an example of a method for manufacturing such an optical diffraction grating will be described.

まず、第4図に示すように、鉄合金、銅合金、
アルミニウム合金等の金属化合物からなる円盤状
のコア基板19の片表面(第4図中上面)に、例
えばニツケルやアルミニウムの加工層21を
10μm以上の厚みで蒸着や無電解メツキ法等で均
一に形成する。
First, as shown in Figure 4, iron alloy, copper alloy,
A processed layer 21 of, for example, nickel or aluminum is formed on one surface (upper surface in FIG. 4) of a disk-shaped core substrate 19 made of a metal compound such as an aluminum alloy.
Form uniformly with a thickness of 10 μm or more using vapor deposition or electroless plating.

次いで、加工層21にダイヤモンドカツター等
の切削工具23にて格子溝13を深さ0.3μm、幅
20μm、ピツチ20μmで並行に多数形成してコア2
5を製造する(第5図および第6図)。
Next, a lattice groove 13 is formed in the processed layer 21 with a depth of 0.3 μm and a width using a cutting tool 23 such as a diamond cutter.
Core 2 is formed by forming many in parallel with a pitch of 20μm and a pitch of 20μm.
5 (Figures 5 and 6).

このコア25は光回折格子Eの光回折格子本体
11の成形に寄与するものであり、格子溝13の
寸法および形成ピツチ等は用途に応じて任意に選
定される。
This core 25 contributes to the shaping of the optical diffraction grating body 11 of the optical diffraction grating E, and the dimensions, formation pitch, etc. of the grating grooves 13 are arbitrarily selected depending on the application.

そして、第7図のように、射出成形機27の可
動側プラテン29から立設させた円柱状のコアサ
ポート31の先端にこのコア25を配置し、可動
側プラテン29と対向させた固定側プラテン33
から立設させた円柱状のコアサポート35の先端
に別のコ37を配置する。
Then, as shown in FIG. 7, the core 25 is placed at the tip of a cylindrical core support 31 that stands up from the movable platen 29 of the injection molding machine 27, and the fixed platen is placed opposite the movable platen 29. 33
Another column 37 is placed at the tip of the cylindrical core support 35 which is erected from the top.

なお、コア37はコア25と同径の円盤状とな
つており、例えばニツケルやアルミニウムで形成
されている。
Note that the core 37 has a disk shape with the same diameter as the core 25, and is made of, for example, nickel or aluminum.

各コアサポート31,35の周囲はこれより長
い金型ベース39,41で囲まれており、コア2
5,37は金型ベース39,41で囲まれ凹部内
に固定した状態になつている。
Each core support 31, 35 is surrounded by a longer mold base 39, 41, and the core 2
5 and 37 are surrounded by mold bases 39 and 41 and fixed within the recess.

さらに、各金型ベース39,41において、コ
ア25,37の周囲に相当する部分にスペースが
あり、これら金型ベース39,41の先端が当接
した時、コア25,37の周囲にリング状の空隙
43を形成されるようになつている。また、コア
25,37間にも空隙が形成される。なお、第7
図中符号45は溶融樹脂を注入する注入ゲートで
ある。
Furthermore, each mold base 39, 41 has a space around the core 25, 37, and when the tips of these mold bases 39, 41 come into contact, a ring-shaped space is formed around the core 25, 37. A void 43 is formed. Further, a gap is also formed between the cores 25 and 37. In addition, the seventh
Reference numeral 45 in the figure is an injection gate through which molten resin is injected.

そして、これら射出成形機27の可動側プラテ
ン29を固定側プラテン33に近づけてこれら金
型ベース39,41の先端を当接させ、例えば
220℃程度の溶解合成樹脂を注入ゲート45から
所定の圧力で注入して固化させて光回折格子Eを
製造する。
Then, the movable side platen 29 of these injection molding machines 27 is brought close to the fixed side platen 33, and the tips of these mold bases 39, 41 are brought into contact with each other, for example.
The optical diffraction grating E is manufactured by injecting molten synthetic resin at a temperature of about 220° C. at a predetermined pressure through the injection gate 45 and solidifying it.

一般に、射出成形金型に溶解合成樹脂を注入す
ると、第8図および第9図のように溶解合成樹脂
は金型の空隙、すなわちキヤビテイ47内を注入
ゲート45方向から押し流され、金型の内壁で押
し戻されながらキヤビテイ47内に充填される。
Generally, when molten synthetic resin is injected into an injection mold, the molten synthetic resin is swept away from the injection gate 45 through the cavity 47 of the mold, as shown in FIGS. It is filled into the cavity 47 while being pushed back.

そのため、キヤビテイ47内では分子配向が生
じ易く、その分子配向方向とこれに直交する方向
では収縮率が異なるので、分子配向歪が生じ、特
に光回折格子本体11の端部近傍で複屈折を生じ
易い。
Therefore, molecular orientation is likely to occur within the cavity 47, and the shrinkage rate is different between the molecular orientation direction and the direction perpendicular to this, resulting in molecular orientation distortion and birefringence, particularly near the ends of the optical grating body 11. easy.

これに対して、上述した製造方法では、第10
図および第11図の概略図に示すように、キヤビ
テイ49内では、まずフランジ15に相当する部
分に押し流されて充満し、その後に光回折格子本
体11に相当する部分にフランジ15の全周から
押し流されて充満される。
On the other hand, in the manufacturing method described above, the 10th
As shown in the figure and the schematic diagram of FIG. It is washed away and filled.

そのため、キヤビテイ49内では種々の方向の
分子配向が混在し、溶解合成樹脂の無分子配向状
態が形成されて分子配向歪が生じ難く、光回折格
子本体11の端部近傍での複屈折が抑えられるう
え、全体に均一な透過特性が得られる。
Therefore, within the cavity 49, molecular orientations in various directions coexist, and a non-molecular orientation state of the dissolved synthetic resin is formed, making it difficult for molecular orientation distortion to occur, and suppressing birefringence near the ends of the optical grating body 11. In addition, uniform transmission characteristics can be obtained throughout.

このように、本考案ではフランジ15が溶解合
成樹脂の分子配向に重要な意味を有するが、溶解
合成樹脂を光回折格子本体11部分で無分子配向
とするためには、溶解合成樹脂が金型内でフラン
ジ15に相当する部分から光回折格子本体11に
相当する部分へ全周から充満されることが好まし
い。
As described above, in the present invention, the flange 15 has an important meaning in the molecular orientation of the molten synthetic resin, but in order to make the molten synthetic resin non-molecularly oriented in the optical diffraction grating main body 11 portion, the molten synthetic resin must be placed in the mold. It is preferable that the entire circumference is filled from the portion corresponding to the flange 15 to the portion corresponding to the optical diffraction grating body 11.

そのため、フランジ15の厚みを光回折格子本
体11より厚くすることによつて無分子配向状態
となり易いが、更に詳しくはフランジ15の表面
積を光回折格子本体11の表面積より大きくする
方がよい。
Therefore, by making the flange 15 thicker than the optical diffraction grating main body 11, a non-molecular orientation state can be easily achieved, but more specifically, it is better to make the surface area of the flange 15 larger than the surface area of the optical diffraction grating main body 11.

本考案者は、第2図の構成においてフランジ1
5を光回折格子本体11より厚くするとともに、
それらの表面積比を変えて格子溝13の変形を測
定したところ、第12図に示すように、変形を
0.1μm以下に抑えるためにはフランジ15の表面
積を光回折格子本体11のそれより約1.5倍以上
に大きく選定すると良いことが分かつた。
The present inventor proposed that the flange 1 in the configuration shown in FIG.
5 is made thicker than the optical diffraction grating body 11,
When we measured the deformation of the grating grooves 13 by changing their surface area ratio, we found that the deformation was observed as shown in Fig. 12.
It has been found that in order to suppress the surface area to 0.1 μm or less, the surface area of the flange 15 should be selected to be approximately 1.5 times larger than that of the optical diffraction grating body 11.

特に、フランジ15厚みおよび表面積を光回折
格子本体11のそれより約1.5倍以上に大きく選
定する良いであろう。
In particular, the thickness and surface area of the flange 15 should be selected to be approximately 1.5 times or more larger than that of the optical diffraction grating body 11.

なお、上述したコア25,37の形状は平らな
板状に限らず、曲面加工したものを用いれば、曲
面を有する光回折格子本体11を備えた光回折格
子Eを製造できる。
Note that the shape of the cores 25 and 37 described above is not limited to a flat plate shape, and if a curved core is used, the optical diffraction grating E including the optical diffraction grating main body 11 having a curved surface can be manufactured.

〔考案の効果〕[Effect of idea]

以上説明したように本考案の光回折格子は、光
回折格子本体の周囲にこれより厚みの厚いフラン
ジを透過性合成樹脂によつてその光回折格子本体
と一体的に射出成形したから、フランジを注入ゲ
ートとして変形すれば、光回折格子本体では溶解
合成樹脂が無配向になり易い。
As explained above, in the optical diffraction grating of the present invention, a thicker flange is integrally injection molded with the optical diffraction grating body using transparent synthetic resin around the periphery of the optical diffraction grating body. If it is transformed into an injection gate, the molten synthetic resin tends to become non-oriented in the optical diffraction grating body.

そのため、光回折格子本体に捩れや歪が発生し
難く、フランジが外部からの熱や湿度による光回
折格子本体の変形を吸収するから、格子溝の成形
精度が格段に向上し、合成樹脂で射出成形しても
実用的な製品を提供できる。
Therefore, twisting and distortion are less likely to occur in the optical diffraction grating body, and the flanges absorb deformation of the optical diffraction grating body due to external heat and humidity, so the molding precision of the grating grooves is greatly improved. Even when molded, practical products can be provided.

さらに、通常の射出成形用金型を用いることが
可能であるから、簡単な製造装置で実施可能であ
る。
Furthermore, since it is possible to use a normal injection mold, it can be carried out with a simple manufacturing device.

なお、現在、合成樹脂で光学レンズを形成する
技術もあるが、本考案は光回折格子の分野で有用
である。
Although there is currently a technology for forming optical lenses using synthetic resin, the present invention is useful in the field of optical diffraction gratings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本考案に係る光回折格子
の一実施例を示す断面図および平面図、第3図は
本考案の光回折格子の他の実施例を示す平面図、
第4図〜第7図は第1図の光回折格子の製造方法
の一例を示す工程図、第8図〜第11図は第7図
に示す合成樹脂の固化過程において金型内での合
成樹脂の充填過程を説明する図、第12図は本考
案の光回折格子における光回折格子本体とフラン
ジの面積比に対する格子溝の歪の関係を示す特性
図、第13図A〜Dは従来の光回折格子の製造方
法を示す工程図、第14図は従来の光回折格子を
製品化した状態を示す断面図である。 1……基板、3……有機物層、5……格子パタ
ーン、7,13……格子溝、9……ハウジング、
11……光回折格子本体、15,17……フラン
ジ、19……コア基板、21……加工層、23…
…切削工具、25,37……コア、27……射出
成形機、29,33……プラテン、31,35…
…コアサポート、39,41……金型ベース、4
5……注入ゲート、47,49……キヤビテイ、
E……光回折格子。
1 and 2 are a sectional view and a plan view showing one embodiment of the optical diffraction grating according to the present invention, and FIG. 3 is a plan view showing another embodiment of the optical diffraction grating according to the present invention.
Figures 4 to 7 are process diagrams showing an example of the method for manufacturing the optical diffraction grating shown in Figure 1, and Figures 8 to 11 are process diagrams showing the synthesis in the mold during the solidification process of the synthetic resin shown in Figure 7. Fig. 12 is a diagram illustrating the resin filling process, Fig. 12 is a characteristic diagram showing the relationship between the distortion of the grating grooves and the area ratio of the optical grating body to the flange in the optical diffraction grating of the present invention, and Figs. FIG. 14, which is a process diagram showing a method for manufacturing an optical diffraction grating, is a sectional view showing a conventional optical diffraction grating as a product. DESCRIPTION OF SYMBOLS 1... Substrate, 3... Organic layer, 5... Lattice pattern, 7, 13... Lattice groove, 9... Housing,
11... Optical diffraction grating body, 15, 17... Flange, 19... Core substrate, 21... Processing layer, 23...
...cutting tool, 25,37...core, 27...injection molding machine, 29,33...platen, 31,35...
... Core support, 39, 41 ... Mold base, 4
5... Injection gate, 47, 49... Cavity,
E... Optical diffraction grating.

Claims (1)

【実用新案登録請求の範囲】 多数の光回折溝を有する光回折格子本体と、 この光回折格子本体の周囲にこれより厚く形成
されたフランジと、 を具備してなる光回折格子であつて、 前記光回折格子本体および前記フランジが透過
性合成樹脂によつて一体的に射出成形されてなる
ことを特徴とする光回折格子。
[Claims for Utility Model Registration] An optical diffraction grating comprising: an optical diffraction grating body having a large number of optical diffraction grooves; and a flange formed thicker around the optical diffraction grating body, An optical diffraction grating characterized in that the optical diffraction grating main body and the flange are integrally injection molded from a transparent synthetic resin.
JP1988073925U 1988-06-03 1988-06-03 Expired JPH0455282Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988073925U JPH0455282Y2 (en) 1988-06-03 1988-06-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988073925U JPH0455282Y2 (en) 1988-06-03 1988-06-03

Publications (2)

Publication Number Publication Date
JPH01177702U JPH01177702U (en) 1989-12-19
JPH0455282Y2 true JPH0455282Y2 (en) 1992-12-25

Family

ID=31299049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988073925U Expired JPH0455282Y2 (en) 1988-06-03 1988-06-03

Country Status (1)

Country Link
JP (1) JPH0455282Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261004A (en) * 2006-03-28 2007-10-11 Konica Minolta Opto Inc Mold for injection-molding diffraction optical element and method for producing diffraction optical element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002090518A (en) * 2000-09-20 2002-03-27 Olympus Optical Co Ltd Diffractive optical element and forming die for diffractive optical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136701A (en) * 1984-07-30 1986-02-21 Toshiba Corp Cylindrical lens
JPS62144101A (en) * 1985-12-19 1987-06-27 Toshiba Corp Plastic optical parts

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121602U (en) * 1983-02-05 1984-08-16 キヤノン株式会社 mold lens
JPS6168203U (en) * 1984-10-09 1986-05-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6136701A (en) * 1984-07-30 1986-02-21 Toshiba Corp Cylindrical lens
JPS62144101A (en) * 1985-12-19 1987-06-27 Toshiba Corp Plastic optical parts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261004A (en) * 2006-03-28 2007-10-11 Konica Minolta Opto Inc Mold for injection-molding diffraction optical element and method for producing diffraction optical element

Also Published As

Publication number Publication date
JPH01177702U (en) 1989-12-19

Similar Documents

Publication Publication Date Title
JPH0336013B2 (en)
JPH04287001A (en) Production of optical diffraction grating
JPH0455282Y2 (en)
US4161060A (en) Process for the production of a mould for moulding a spectacle frame front
JPH1186353A (en) Optical disk, metal mold for injection molding of optical disk and injection molding machine for optical disk production
JP3519860B2 (en) Method of manufacturing hologram plate
JPS6144650B2 (en)
JP4167422B2 (en) Mold apparatus for manufacturing disk-shaped substrate material and method for manufacturing disk-shaped substrate material
JPH09166199A (en) Injection molded gear
JPS63308743A (en) Optical disk
JP4099887B2 (en) Optical element manufacturing method and optical element manufacturing mold
JP3519861B2 (en) Method for manufacturing hologram element
JP2002074756A5 (en)
JPH03182311A (en) Manufacture of mold
JP2827820B2 (en) Injection molded products with spherical dimensions
JPH03138120A (en) Molding process for lens and molding die
JPH05192944A (en) Resin lens array and mold and method for producing the same
JPS6389314A (en) Manufacture of pancake hub
JPS62144101A (en) Plastic optical parts
JPH03159722A (en) Molding method of molded member with optical reflecting surface and its mold
JPH03199015A (en) Manufacture of molding die
JPH0367851B2 (en)
JPS6241852B2 (en)
JPS62197937A (en) Manufacture of optical disk substrate
JPH07314497A (en) Two-layer molding method