JPH0453850Y2 - - Google Patents

Info

Publication number
JPH0453850Y2
JPH0453850Y2 JP1986028159U JP2815986U JPH0453850Y2 JP H0453850 Y2 JPH0453850 Y2 JP H0453850Y2 JP 1986028159 U JP1986028159 U JP 1986028159U JP 2815986 U JP2815986 U JP 2815986U JP H0453850 Y2 JPH0453850 Y2 JP H0453850Y2
Authority
JP
Japan
Prior art keywords
end mill
cutting
axis
cutting blades
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986028159U
Other languages
Japanese (ja)
Other versions
JPS62141413U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986028159U priority Critical patent/JPH0453850Y2/ja
Publication of JPS62141413U publication Critical patent/JPS62141413U/ja
Application granted granted Critical
Publication of JPH0453850Y2 publication Critical patent/JPH0453850Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] この考案は、被削材に溝加工や段付き加工を施
す際に用いられるエンドミルに関する。
[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to an end mill used when performing groove processing or stepped processing on a workpiece.

[従来の技術] 一般に、被切削材に溝加工や段付き加工を施す
場合には、工具本体の外周にその軸線方向に沿つ
て複数条の切刃が形成された各種のエンドミルが
使用されている。
[Prior Art] Generally, when performing groove processing or stepped processing on a workpiece, various types of end mills are used, each of which has a plurality of cutting edges formed along the axial direction on the outer periphery of the tool body. There is.

第4図および第5図は、この種のエンドミルの
うち、特にエンドミル本体の外周に上記切刃が一
体に形成されたソリツドタイプと呼ばれる従来の
エンドミルを示すものである。
FIGS. 4 and 5 show, among this type of end mill, a conventional end mill called a solid type in which the cutting blade is integrally formed on the outer periphery of the end mill body.

このエンドミル1は、高張力鋼や超硬合金等か
らなる略円柱状のエンドミル本体2の外周に、複
数条(図では4条)の切刃3……が、それぞれ軸
線方向に沿つて略螺旋条を描くように一体に形成
されたものである。ここで、これら複数条をなす
切刃3……は、それぞれ第5図に示すように、上
記エンドミル本体2の円周方向に沿つてこの円周
を4等分する等間隔位置に形成されている。ま
た、このエンドミル本体2の先端面には、これら
切刃3……に連なりかつ各々この先端面の略中心
まで延びる正面切刃4……が形成されている。
This end mill 1 has a substantially cylindrical end mill body 2 made of high-strength steel, cemented carbide, etc., and a plurality of cutting blades 3 (four in the figure) each extending approximately spirally along the axial direction on the outer circumference of the end mill body 2. It is formed integrally in a striped manner. Here, these plurality of cutting blades 3 are formed at equal intervals along the circumferential direction of the end mill main body 2, dividing the circumference into four equal parts, as shown in FIG. There is. Furthermore, front cutting edges 4 are formed on the tip surface of the end mill main body 2, and are connected to the cutting edges 3 and extend approximately to the center of the tip surface.

そして、以上の構成からなる上記従来のエンド
ミル1は、軸線回りに回転されながらこの軸線方
向またはこの軸線と直交する方向に送られること
により、その切刃3……および正面切刃4……で
それぞれ被削材の側面および底面を切削してゆ
く。
The conventional end mill 1 having the above configuration is rotated around an axis and fed in the axial direction or in a direction perpendicular to the axis, so that the cutting edge 3... and the front cutting edge 4... The side and bottom surfaces of the workpiece are cut.

[考案が解決しようとする問題点] しかしながら、上記従来のエンドミル1にあつ
ては、切刃3……がエンドミル本体2の円周方向
に沿つて等間隔の位置に形成されているために、
切削時にこれら切刃3……が順次等しい時間間隔
で被加工面に衝撃を与えるとともに、さらにこの
衝撃の反力が一定周期の振動としてエンドミル本
体2に作用してしまう。そして、この一定周期の
振動に上記エンドミル本体2が共振し、これによ
りエンドミル1自体や上記被削材にびびりを発生
してしまうため、ひいては上記切刃3……の欠損
や被加工面の仕上げ面精度の低下を招くという問
題点があつた。
[Problems to be solved by the invention] However, in the conventional end mill 1 described above, since the cutting blades 3 are formed at equal intervals along the circumferential direction of the end mill body 2,
During cutting, these cutting blades 3 sequentially apply an impact to the workpiece surface at equal time intervals, and the reaction force of this impact acts on the end mill body 2 as a constant periodic vibration. The end mill main body 2 resonates with this constant period of vibration, which causes chatter in the end mill 1 itself and the workpiece material, resulting in damage to the cutting blade 3 and the finish of the workpiece surface. There was a problem that the surface accuracy deteriorated.

加えて、このエンドミル1や被削材のびびりに
より上記切刃3……の切削抵抗が増加してしまう
ため、この結果切削に要する機械動力の増加をも
招いてしまうという問題があつた。
In addition, the chatter of the end mill 1 and the workpiece increases the cutting resistance of the cutting blades 3, resulting in an increase in the mechanical power required for cutting.

この考案は、このような従来のエンドミルが有
する問題点を解決することをその目的とするもの
である。
The purpose of this invention is to solve the problems that conventional end mills have.

[問題点を解決するための手段] この考案のエンドミルは、エンドミル本体の外
周に先端部から基端部側に向けて延びる複数条の
切刃を、互いに平行に形成するとともに、これら
の切刃を上記エンドミル本体の円周を不等分に分
割する位置に、すなわちエンドミル本体の軸線と
垂直な平面において、少なくとも一の隣接する上
記各切刃と上記軸線とを結ぶ線のなす角度が、他
の隣接する上記各切刃と上記軸線とを結ぶ線のな
す角度と異なるように形成したものである。な
お、ここで切刃が平行であるとは、各切刃の周方
向の間隔がエンドミル本体の先端部から基端部に
かけて変化しないことであり、すなわちその展開
図において各切刃が平行となることをいう。
[Means for Solving the Problems] The end mill of this invention has a plurality of cutting edges extending parallel to each other from the distal end toward the proximal end on the outer periphery of the end mill body. At a position where the circumference of the end mill body is divided into unequal parts, that is, in a plane perpendicular to the axis of the end mill body, the angle formed by the line connecting at least one of the adjacent cutting blades and the axis is The angle is different from the angle formed by the line connecting each of the adjacent cutting edges and the axis. Note that the cutting blades being parallel here means that the circumferential spacing between the cutting blades does not change from the tip to the base of the end mill body, that is, the cutting blades are parallel in the developed view. Say something.

[作用] 上記構成のエンドミルにあつては、複数の切刃
をそれぞれエンドミル本体の円周を不等分に分割
する位置に形成したので、これら切刃が被加工面
に与える切削による衝撃の間隔が不規則になる。
したがつて、エンドミル本体に作用するこの衝撃
の反力も不規則になるためこのエンドミル本体に
共振を生じることがなく、よつてエンドミル自体
や上記被削材にびびりを発生することがない。ま
た、このエンドミルや被削材にびびりを生じない
結果、このびびりに起因する上記切刃の切削抵抗
の増加を招くこともない。なお、本考案において
上記切刃を平行としたのは、これが平行でないと
各切刃の間に形成される切屑排出溝に極端な広狭
が生じてしまうからである。特に、上記各切刃と
エンドミルの軸線とを結ぶ線の角度が他よりも大
きな切刃の間の切屑排出溝には、より多くの切屑
が排出されることとなるから、このような切屑排
出溝がエンドミルの基端側で狭くなつていると切
屑詰まりが発生するおそれがある。
[Function] In the end mill having the above configuration, the plurality of cutting blades are formed at positions that divide the circumference of the end mill body into unequal parts, so that the interval between the cutting impacts that these cutting blades give to the workpiece surface is reduced. becomes irregular.
Therefore, the reaction force of this impact acting on the end mill body also becomes irregular, so that resonance does not occur in the end mill body, and therefore, no vibration occurs in the end mill itself or the work material. Further, since no chatter is generated in the end mill or the workpiece, there is no increase in the cutting resistance of the cutting blade due to the chatter. The reason why the cutting blades are parallel in this invention is that if they were not parallel, the chip discharge grooves formed between the cutting blades would be extremely wide and narrow. In particular, more chips are discharged from the chip evacuation groove between the cutting blades where the angle of the line connecting each of the cutting edges and the axis of the end mill is larger than the others; If the groove is narrower at the base end of the end mill, there is a risk of chip clogging.

[実施例] 第1図は、この考案のエンドミルの一例を示す
もので、第4図および第5図に示したものと共通
する部分には同一符号を付してその説明を省略す
る。
[Example] Fig. 1 shows an example of an end mill of this invention, and parts common to those shown in Figs. 4 and 5 are given the same reference numerals and their explanations are omitted.

この例のエンドミル10においては、第1図に
示すエンドミル本体2の軸線Oと垂直な平面にお
いて、切刃が上記エンドミル本体2の円周方向に
沿つてそれぞれこの円周を不等分に分割する位置
に形成されている。すなわち、上記切刃を、それ
ぞれエンドミル本体2の円周方向に沿つて時計回
りに順次切刃11a,11b,11c,11dと
すると、切刃11a,11bと各々上記軸線Oと
を結ぶ線のなす角度および切刃11c,11dと
各々上記軸線Oとを結ぶ線のなす角度が共にα1
され、また上記切刃11b,11cと各々上記軸
線Oとを結ぶ線のなす角度および上記切刃11
d,11aと各々上記軸線Oとを結ぶ線のなす角
度が共に上記角度α1より大きい角度α2とされてい
る。なお、これらの切刃11a,11b,11
c,11dは互いに平行に形成されており、従つ
て各切刃は上記の角度関係を維持したまま、エン
ドミル本体2の先端部から基端部側に向けて延設
されている。
In the end mill 10 of this example, the cutting blade divides the circumference into equal parts along the circumferential direction of the end mill body 2 in a plane perpendicular to the axis O of the end mill body 2 shown in FIG. formed in position. That is, if the cutting blades are respectively 11a, 11b, 11c, and 11d in clockwise order along the circumferential direction of the end mill body 2, then the lines connecting the cutting blades 11a, 11b and the axis O, respectively, are Both the angle and the angle formed by the line connecting the cutting edges 11c, 11d and the axis O are both α 1 , and the angle formed by the line connecting the cutting edges 11b, 11c and the axis O, respectively, and the cutting edge 11
The angles formed by the lines connecting d and 11a with the axis O are both angles α 2 which are larger than the angle α 1 . Note that these cutting edges 11a, 11b, 11
c and 11d are formed parallel to each other, and therefore, each cutting edge extends from the distal end of the end mill body 2 toward the proximal end while maintaining the above-mentioned angular relationship.

ここで、上記角度α1,α2の大きさとしては、こ
れら角度α1と角度α2との差が5°〜20°の範囲内に
なるように設定することが望ましい。すなわち、
上記角度α2,α1の差が5°に満たないと各切刃間の
不等分量が小さすぎて充分な効果を得ることがで
きず、またこれらの差が20°を超えると各切刃に
作用する切削抵抗のアンバランスが大きくなり過
ぎて、特に大きな切削抵抗を受ける切刃の欠損を
招く恐れがあるからである。
Here, the angles α 1 and α 2 are desirably set so that the difference between the angle α 1 and the angle α 2 is within the range of 5° to 20°. That is,
If the difference between the angles α 2 and α 1 is less than 5°, the unequal amount between each cutting edge will be too small to obtain a sufficient effect, and if the difference exceeds 20°, each cutting edge will be too small. This is because the unbalance of the cutting resistance acting on the blade becomes too large, which may lead to damage to the cutting edge, which is particularly subjected to large cutting resistance.

しかして、このようなエンドミル10にあつて
は、切刃11a,11b,11c,11dをそれ
ぞれエンドミル本体2の円周を不等分に分割する
位置に形成したので、これら切刃11a,11
b,11c,11dが被加工面に与える切削時の
衝撃の間隔が不規則になる。したがつて、エンド
ミル本体2に作用するこの衝撃の反力も不規則に
なるためこのエンドミル本体2に共振を生じるこ
とがない。したがつて、エンドミル10自体や上
記被削材にびびりを発生することがないため切刃
の欠損を招く恐れがなく、加えて被加工面の仕上
げ面精度を向上させることができる。
Therefore, in the case of such an end mill 10, since the cutting edges 11a, 11b, 11c, and 11d are formed at positions that divide the circumference of the end mill body 2 into unequal parts, these cutting edges 11a, 11
The intervals between the impacts b, 11c, and 11d give to the surface to be machined during cutting become irregular. Therefore, the reaction force of this impact acting on the end mill body 2 also becomes irregular, so that resonance does not occur in the end mill body 2. Therefore, the end mill 10 itself and the workpiece material do not generate chatter, so there is no risk of chipping of the cutting edge, and in addition, the finished surface accuracy of the machined surface can be improved.

また、このエンドミル10自体や被削材にびび
りを生じないため、このびびりに起因する上記切
刃の切削抵抗の増加を招くこともなく、よつて切
削に要する機械動力の低減化をも図ることができ
る。
Furthermore, since no vibration occurs in the end mill 10 itself or the workpiece material, there is no increase in the cutting resistance of the cutting blade caused by this vibration, thereby reducing the mechanical power required for cutting. I can do it.

さらに、第1図において、その切刃長さが一番
長くて他の切刃より大きい切削負荷を受ける切刃
11bと、この切刃11bに先行する切刃11a
とのなす角度α1をより一層小さく設定すれば、上
記切刃11bに加わる切削負荷の相対的な低減化
を図ることができるため、この結果エンドミル1
0全体としての切削バランスを均一にすることも
できる。ところで、このような構成のエンドミル
においては、軸線Oと切刃11d,11aとを結
ぶ線および軸線Oと切刃11b,11cとを結ぶ
線のなす角度α2が、軸線Oと切刃11a,11
bとを結ぶ線および軸線Oと切刃11c,11d
とを結ぶ線がなす角度α2よりも大きく設定され
ており、従つて各切刃間のエンドミル周方向の間
隔も、切刃11d,11aおよび切刃11b,1
1cの間隔の方が、切刃11a,11bおよび切
刃11c,11dの間隔よりも大きくなる。この
ため、各切刃による切屑生成量も、切刃11a,
11cの方が切刃11b,11dよりも多くな
る。
Furthermore, in FIG. 1, there is a cutting edge 11b which has the longest cutting edge length and receives a larger cutting load than other cutting edges, and a cutting edge 11a preceding this cutting edge 11b.
If the angle α 1 between the end mill 1 and the
0 It is also possible to make the cutting balance as a whole uniform. By the way, in the end mill having such a configuration, the angle α2 formed by the line connecting the axis O and the cutting blades 11d and 11a and the line connecting the axis O and the cutting blades 11b and 11c is equal to the angle α2 between the axis O and the cutting blades 11a and 11c.
b and the axis O and the cutting blades 11c and 11d.
Therefore, the distance between the cutting blades in the circumferential direction of the end mill is also set to be larger than the angle α2 formed by the line connecting the cutting blades 11d, 11a and the cutting blades 11b, 1.
The distance 1c is larger than the distance between the cutting edges 11a, 11b and the cutting edges 11c, 11d. For this reason, the amount of chips produced by each cutting edge also varies depending on the cutting edge 11a,
The number of cutting edges 11c is greater than that of cutting edges 11b and 11d.

これに対し、上記構成のエンドミル10では各
切刃が平行に形成されているので、上記角度α2
の切刃11d間、11aおよび切刃11b,11
c間に形成される切屑排出溝は、上記角度α1の
切刃11a,11b間および切刃11c,11d
間に形成される切屑排出溝よりも大きく、かつこ
のままエンドミル10の先端部から基端部側に延
設されることとなる。すなわち、切刃の全長に亙
つて、切屑生成量の多い切刃11a,11cの切
屑排出溝は、切屑生成量の少ない切刃11b,1
1dの切屑排出溝よりも広く形成されることとな
り、これによつて切屑詰まり等の発生が防止され
て円滑な切屑排出を促すことが可能となる。
On the other hand, in the end mill 10 having the above configuration, each cutting edge is formed in parallel, so the angle α2 is
Between the cutting edges 11d and 11a and the cutting edges 11b and 11
The chip evacuation groove formed between c
It is larger than the chip evacuation groove formed in between, and extends from the tip end of the end mill 10 to the base end side. That is, over the entire length of the cutting edge, the chip evacuation grooves of the cutting blades 11a, 11c, which generate a large amount of chips, are different from those of the cutting blades 11b, 1, which generate a small amount of chips.
The groove is formed wider than the chip discharge groove 1d, which prevents chip clogging and the like from occurring and facilitates smooth chip discharge.

ちなみに、切刃を平行に形成していない場合に
は、エンドミル本体の基端側で狭くなる切屑排出
溝において、先端側で生成された多量の切屑が基
端側に移動した際に溝幅が不足して詰まりを生じ
るおそれが大きい。
By the way, if the cutting edges are not formed parallel, the chip evacuation groove narrows at the base end of the end mill body, and when a large amount of chips generated at the tip side moves toward the base end, the groove width will increase. There is a big risk that it will become insufficient and cause a blockage.

なお、上記実施例においては、軸線Oに対して
互いに対向する切刃間のなす角度α1,α1および角
度α2,α2を互いに等しい角度に設定したがこれに
限るものではなく、総ての切刃間のなす角度をそ
れらの最大値と最小値との差が5°〜20°の範囲内
となるような、互いに異なる角度に設定してもよ
い。この場合において、上述したように切刃長さ
が一番長い切刃とこれに先行する切刃とのなす角
度を小さく設定すれば全体の切削バランスの均一
化という一層優れた効果も得ることができる。
In the above embodiment, the angles α 1 , α 1 and the angles α 2 , α 2 between the cutting edges facing each other with respect to the axis O were set to be equal to each other, but this is not limiting, and the total The angles between the cutting edges may be set to different angles such that the difference between the maximum value and the minimum value is within the range of 5° to 20°. In this case, as mentioned above, by setting the angle between the longest cutting edge and the preceding cutting edge to be small, it is possible to obtain an even better effect of making the overall cutting balance more uniform. can.

また、上記実施例においては、所謂ソリツドタ
イプのエンドミル10についてのみ説明したがこ
れに限るものではなく、エンドミル本体2外周の
上記切刃11a,11b,11c,11dと同様
の位置に、それぞれ切刃チツプをろう付け等によ
り一体に固着させたものであつても同様の作用効
果を得ることができる。さらに、その切刃の数も
4条のものに限るものではなく、それ以上または
それ以下の複数の切刃を有するエンドミルであつ
てもよい。
Further, in the above embodiment, only the so-called solid type end mill 10 has been described, but the invention is not limited to this. Cutting blade tips are provided at the same positions as the cutting blades 11a, 11b, 11c, and 11d on the outer periphery of the end mill body 2. Similar effects can be obtained even if the parts are fixed together by brazing or the like. Furthermore, the number of cutting edges is not limited to four, and the end mill may have more or less than four cutting edges.

[実験例] この考案に係るエンドミルとして、超硬合金製
のソリツドタイプで、4条の切刃がそれぞれ第1
図におけるα1=81°およびα2=99°となる位置に形
成された外径が20φのものを、また従来のエンド
ミルとして同径の超硬合金製のソリツドタイプで
4条の切刃が互いに円周方向に沿つて等間隔位置
に形成されているものをそれぞれ用意した。
[Experiment example] The end mill according to this invention is a solid type made of cemented carbide, and each of the four cutting edges has a first
The one with an outer diameter of 20φ formed at the positions α 1 = 81° and α 2 = 99° in the figure is also used as a conventional end mill, which is a solid type made of cemented carbide with the same diameter and the four cutting edges are mutually connected. Those formed at equal intervals along the circumferential direction were prepared.

そして、これら2本のエンドミルにより、各々
以下に挙げる条件で被削材(材質:SCM440)の
片削り切削を行い、それぞれのエンドミルが受け
るX,Y,Z方向の各切削分力(単位:Kg)を計
測した。ここで、X分力は送り方向に沿う方向の
分力を、またY分力は被削材の側面と直交する方
向の分力を、さらにZ分力は被削材の底面と直交
する方向の分力をそれぞれ示すものである。
Then, each of these two end mills performs one-sided cutting of the workpiece (material: SCM440) under the conditions listed below, and each end mill receives each cutting force in the X, Y, and Z directions (unit: Kg). ) was measured. Here, the X component force is the component force in the direction along the feed direction, the Y component force is the component force in the direction perpendicular to the side surface of the workpiece, and the Z component force is the direction perpendicular to the bottom surface of the workpiece material. The components of force are shown respectively.

切削条件: 切削速度;30m/min(回転数:1194r.p.m) テーブル送り;U=200,400 1刃当り送り量;Sz=0.04,0.08 切込み深さ;10mm、切削幅;1,6mm 第2図はこの考案に係るエンドミルの、また第
3図は従来のエンドミルのそれぞれ実験結果を示
すものである。
Cutting conditions: Cutting speed: 30m/min (rotation speed: 1194r.pm) Table feed: U = 200, 400 Feed per tooth: Sz = 0.04, 0.08 Depth of cut: 10mm, cutting width: 1,6mm 2nd The figure shows the experimental results of the end mill according to this invention, and FIG. 3 shows the experimental results of the conventional end mill.

第2図および第3図から、従来のエンドミルに
おいては、いずれの方向の分力もその値がそれぞ
れ一定の周期で変化しており、かつそれぞれの振
幅(衝撃の強さ)が大きいのに比べて、この考案
に係るエンドミルにおいては全ての分力の値の変
化が不規則で、かつそれぞれの値および振幅もよ
り小さいものになつていることが判る。
From Figures 2 and 3, it can be seen that in conventional end mills, the values of component forces in all directions change at a constant cycle, and the amplitudes (strengths of impact) are large. It can be seen that in the end mill according to this invention, the changes in the values of all component forces are irregular, and the values and amplitudes of each component are also smaller.

[考案の効果] 以上説明したようにこの考案のエンドミルは、
エンドミル本体の外周に先端部から基端部側に向
けて延びる複数条の切刃を、上記エンドミル本体
の円周を不等分に分割する位置に形成したので、
エンドミル自体や上記被削材にびびりを発生する
ことがなく、よつて被加工面の仕上げ面精度を向
上させることができる。また、このエンドミルや
被削材にびびりを生じない結果、このびびりに起
因する上記切刃の切削抵抗の増加を招くこともな
く、このため切削に要する機械動力の低減化をも
図ることができる。さらに、各切刃を互いに平行
に形成することにより、切刃の全長に亙つて切屑
生成量に応じた切屑排出溝が形成されるので、円
滑な切屑排出を促すことが可能であるという利点
を得ることもできる。
[Effects of the invention] As explained above, the end mill of this invention has the following advantages:
A plurality of cutting edges extending from the distal end toward the proximal end are formed on the outer periphery of the end mill body at positions that divide the circumference of the end mill body into unequal parts.
There is no occurrence of chatter in the end mill itself or the work material, and thus the finished surface accuracy of the machined surface can be improved. Furthermore, since no chatter occurs in the end mill or the workpiece, there is no increase in the cutting resistance of the cutting blade due to this chatter, and therefore the mechanical power required for cutting can be reduced. . Furthermore, by forming each cutting edge parallel to each other, a chip evacuation groove corresponding to the amount of chips generated is formed along the entire length of the cutting blade, which has the advantage of facilitating smooth chip evacuation. You can also get it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案のエンドミルの一実施例を示
す正面図、第2図はこの考案に係るエンドミルに
よる切削試験時の切削分力を示す図、第3図は従
来のエンドミルによる切削試験時の切削分力を示
す図、第4図および第5図は従来のエンドミルを
示すもので、第4図は側面図、第5図は正面図で
ある。 2……エンドミル本体、10……エンドミル、
11,11a,11b,11c,11d……切
刃。
Figure 1 is a front view showing an embodiment of the end mill of this invention, Figure 2 is a diagram showing the cutting force during a cutting test using the end mill according to this invention, and Figure 3 is a diagram showing the cutting force during a cutting test using a conventional end mill. The diagrams illustrating the cutting force, FIGS. 4 and 5, show a conventional end mill, with FIG. 4 being a side view and FIG. 5 being a front view. 2... End mill body, 10... End mill,
11, 11a, 11b, 11c, 11d...cutting blades.

Claims (1)

【実用新案登録請求の範囲】 (1) 略円柱状をなすエンドミル本体の外周に、先
端部から基端部側に向けて複数条の切刃が形成
されてなるエンドミルにおいて、上記切刃を、
互いに平行となるように形成するとともに、上
記エンドミル本体の軸線と垂直な平面にあつ
て、少なくとも一の隣接する上記各切刃と上記
軸線とを結ぶ線のなす角度が、他の隣接する上
記各切刃と上記軸線とを結ぶ線のなす角度と異
なるように形成したことを特徴とするエンドミ
ル。 (2) 隣接する上記各切刃と上記軸線とを結ぶ線の
なす角度の最大値と最小値の差が5°〜20°の範
囲内であることを特徴とする実用新案登録請求
の範囲第1項記載のエンドミル。
[Claims for Utility Model Registration] (1) In an end mill in which a plurality of cutting blades are formed on the outer periphery of a substantially cylindrical end mill body from the tip end toward the base end, the cutting blades are:
They are formed so that they are parallel to each other, and in a plane perpendicular to the axis of the end mill body, an angle formed by a line connecting at least one of the adjacent cutting blades and the axis line is different from that of the other adjacent cutting blades. An end mill characterized in that the end mill is formed at an angle that is different from the angle formed by a line connecting the cutting blade and the above-mentioned axis. (2) Utility model registration claim No. 1, characterized in that the difference between the maximum and minimum angles formed by the lines connecting each of the adjacent cutting edges and the axis is within the range of 5° to 20°. The end mill according to item 1.
JP1986028159U 1986-02-27 1986-02-27 Expired JPH0453850Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986028159U JPH0453850Y2 (en) 1986-02-27 1986-02-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986028159U JPH0453850Y2 (en) 1986-02-27 1986-02-27

Publications (2)

Publication Number Publication Date
JPS62141413U JPS62141413U (en) 1987-09-07
JPH0453850Y2 true JPH0453850Y2 (en) 1992-12-17

Family

ID=30830864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986028159U Expired JPH0453850Y2 (en) 1986-02-27 1986-02-27

Country Status (1)

Country Link
JP (1) JPH0453850Y2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836161B2 (en) * 2004-11-24 2011-12-14 兼房株式会社 Rotary cutting tool
US7306408B2 (en) * 2006-01-04 2007-12-11 Sgs Tool Company Rotary cutting tool
IL174775A (en) 2006-04-04 2013-06-27 Hanita Metal Works Ltd Face milling cutter
IL177336A (en) * 2006-08-07 2013-05-30 Hanita Metal Works Ltd Chatter-resistant end mill
JP4809283B2 (en) 2007-04-23 2011-11-09 ユニオンツール株式会社 Rotary cutting tool
DE102008025961A1 (en) * 2008-05-30 2009-12-03 Kennametal Inc. End mills
JP5515327B2 (en) * 2009-03-03 2014-06-11 三菱マテリアル株式会社 End mill
JP5853586B2 (en) * 2011-10-26 2016-02-09 三菱マテリアル株式会社 End mill
DE102014103103A1 (en) * 2014-03-07 2015-09-10 Gühring KG End mills
US11865629B2 (en) 2021-11-04 2024-01-09 Kennametal Inc. Rotary cutting tool with high ramp angle capability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628018B2 (en) * 1980-03-24 1987-02-20 Sony Corp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347780Y2 (en) * 1985-07-02 1991-10-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS628018B2 (en) * 1980-03-24 1987-02-20 Sony Corp

Also Published As

Publication number Publication date
JPS62141413U (en) 1987-09-07

Similar Documents

Publication Publication Date Title
JPH0453850Y2 (en)
JPH08507724A (en) End mill
JPS6362323B2 (en)
JPH02256412A (en) End mill
JPWO2006046278A1 (en) End mill
US6261096B1 (en) Dental tool having triple toothing
JPS6389212A (en) End mill
JPH01127214A (en) Rough cutting end mill
JPH07299634A (en) End mill
JP3249601B2 (en) Rotary cutting tool with corrugated blade on cylindrical surface
JP2004160606A (en) Throw-away tip and throw-away type rotary cutting tool
JPS61197116A (en) Strong helical blade and strong helical tooth cutting tool
JPS6389214A (en) End mill
JPH0825087B2 (en) Throwaway type rolling tool
JPH0549408B2 (en)
JPH06335816A (en) Minimum diameter end mill
JP2004195563A (en) Edge replaceable rotary tool and insert therefor
JPH0131370Y2 (en)
JPS6393511A (en) Throwaway type rotary cutting tool
JPH0621609Y2 (en) End mill
CN216575740U (en) Multi-edge milling cutter
JPH02292109A (en) End mill
JP2001310211A (en) Tapered blade end mill
JPH0347780Y2 (en)
JPH0623374Y2 (en) Vine