JPH04358529A - Heat-resistant hydrophilic porous membrane and preparation thereof - Google Patents
Heat-resistant hydrophilic porous membrane and preparation thereofInfo
- Publication number
- JPH04358529A JPH04358529A JP19417791A JP19417791A JPH04358529A JP H04358529 A JPH04358529 A JP H04358529A JP 19417791 A JP19417791 A JP 19417791A JP 19417791 A JP19417791 A JP 19417791A JP H04358529 A JPH04358529 A JP H04358529A
- Authority
- JP
- Japan
- Prior art keywords
- porous membrane
- heat
- weight
- ethylene
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 124
- 239000000178 monomer Substances 0.000 claims abstract description 38
- 239000011148 porous material Substances 0.000 claims abstract description 38
- 229920006037 cross link polymer Polymers 0.000 claims abstract description 31
- 229920000098 polyolefin Polymers 0.000 claims abstract description 29
- 229920001577 copolymer Polymers 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 31
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 26
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 26
- 229920000573 polyethylene Polymers 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 6
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 27
- 238000011282 treatment Methods 0.000 abstract description 20
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 abstract description 16
- 239000005977 Ethylene Substances 0.000 abstract description 16
- 238000000746 purification Methods 0.000 abstract description 4
- 230000001954 sterilising effect Effects 0.000 abstract description 4
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 4
- 238000000855 fermentation Methods 0.000 abstract description 2
- 230000004151 fermentation Effects 0.000 abstract description 2
- 150000004676 glycans Chemical class 0.000 abstract description 2
- 229920001282 polysaccharide Polymers 0.000 abstract description 2
- 239000005017 polysaccharide Substances 0.000 abstract description 2
- 241000202567 Fatsia japonica Species 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 44
- 239000012510 hollow fiber Substances 0.000 description 23
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 21
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 230000000717 retained effect Effects 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 238000006116 polymerization reaction Methods 0.000 description 16
- -1 polyethylene Polymers 0.000 description 12
- 239000000126 substance Substances 0.000 description 11
- 239000004698 Polyethylene Substances 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- 238000007127 saponification reaction Methods 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000007598 dipping method Methods 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 8
- 230000035699 permeability Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007874 V-70 Substances 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 210000001724 microfibril Anatomy 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- IAXXETNIOYFMLW-GYSYKLTISA-N [(1r,3r,4r)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@@]2(C)[C@H](OC(=O)C(=C)C)C[C@@H]1C2(C)C IAXXETNIOYFMLW-GYSYKLTISA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 238000012719 thermal polymerization Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XXGPFLQHCPMRDW-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethanol 2-methylprop-2-enoic acid Chemical compound CC(=C)C(O)=O.CC(=C)C(O)=O.CC(=C)C(O)=O.OCCOCCOCCO XXGPFLQHCPMRDW-UHFFFAOYSA-N 0.000 description 1
- SZIFAVKTNFCBPC-UHFFFAOYSA-N 2-chloroethanol Chemical compound OCCCl SZIFAVKTNFCBPC-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- JUDXBRVLWDGRBC-UHFFFAOYSA-N [2-(hydroxymethyl)-3-(2-methylprop-2-enoyloxy)-2-(2-methylprop-2-enoyloxymethyl)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)(COC(=O)C(C)=C)COC(=O)C(C)=C JUDXBRVLWDGRBC-UHFFFAOYSA-N 0.000 description 1
- UKMBKKFLJMFCSA-UHFFFAOYSA-N [3-hydroxy-2-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(CO)OC(=O)C(C)=C UKMBKKFLJMFCSA-UHFFFAOYSA-N 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000008214 highly purified water Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- KZCOBXFFBQJQHH-UHFFFAOYSA-N octane-1-thiol Chemical compound CCCCCCCCS KZCOBXFFBQJQHH-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は親水性及び耐熱性に優れ
水系液体の精密濾過用等として好適なポリオレフィンを
素材とする多孔質膜及びその製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous membrane made of polyolefin that has excellent hydrophilicity and heat resistance and is suitable for precision filtration of aqueous liquids, and a method for producing the same.
【0002】0002
【従来の技術】近年産業の発達に伴い、浄水、血液処理
、空気浄化、食品工業等の種々の分野において、各種の
分離膜が使用されている。例えば、高純度の水あるいは
高清浄度の空気を得るための精密濾過膜として、ポリエ
チレン等のポリオレフィンからなる多孔質膜が、低価格
で耐薬品性に優れ、強伸度、柔軟性といった膜物性の点
でも優れていることから、特に多用されている。精密濾
過膜の適用範囲は増々増大し、例えば、原子力発電の復
水の浄化処理など、80〜95℃程度の高温下での使用
も強く望まれている。一方、食品工業、血液処理などに
おいて利用される場合などその用途によっては、精密濾
過膜は、膜自体が細菌、黴等の微生物により汚染されて
いることは許されず、膜に対して滅菌処理が施される。
その際の滅菌処理法としては、エチレンオキサイド、ホ
ルマリン、過酸化水素等の薬剤での処理、γ線のような
放射線の照射、水蒸気加熱といった方法が利用されてお
り、効果と簡便さの点で、通常121℃30分間程度の
条件が採用される水蒸気加熱法が最も有用である。BACKGROUND OF THE INVENTION In recent years, with the development of industry, various separation membranes have been used in various fields such as water purification, blood treatment, air purification, and the food industry. For example, porous membranes made of polyolefins such as polyethylene are used as precision filtration membranes to obtain highly purified water or highly clean air. They are inexpensive, have excellent chemical resistance, and have physical properties such as strength, elongation, and flexibility. It is especially frequently used because it is excellent in terms of. The scope of application of precision filtration membranes is increasing, and use at high temperatures of about 80 to 95° C. is strongly desired, for example, in purification of condensate in nuclear power generation. On the other hand, depending on the application, such as when used in the food industry or blood processing, microfiltration membranes cannot be allowed to be contaminated with microorganisms such as bacteria or mold, and the membrane must not be sterilized. administered. Sterilization methods used include treatment with chemicals such as ethylene oxide, formalin, and hydrogen peroxide, irradiation with radiation such as gamma rays, and steam heating, which are effective and simple. The steam heating method, which usually employs conditions of about 121° C. for 30 minutes, is most useful.
【0003】しかしながら、ポリエチレン等のポリオレ
フィンからなる多孔質膜は熱収縮が著しく、これらの多
孔質膜を高温で加熱処理したり、高温下で使用すると形
態が変化して水あるいは空気透過性が極端に低下するな
ど分離膜としての機能が低下する場合が多い。However, porous membranes made of polyolefins such as polyethylene have significant thermal shrinkage, and when these porous membranes are heat-treated at high temperatures or used at high temperatures, their morphology changes and water or air permeability becomes extremely low. In many cases, the function as a separation membrane deteriorates.
【0004】一方、ポリオレフィン多孔質膜は疎水性で
あるため、そのままでは水を透過させることはできない
ので、水系液体(水あるいは水を主体とする溶液)の処
理に利用する場合には、アルコール等の親水化剤によっ
て予め親水化処理してから利用する必要があり、しかも
、このアルコール等により親水化されたポリオレフィン
多孔質膜は、一旦乾燥させると親水性が消失するなどの
問題点を有する。On the other hand, since polyolefin porous membranes are hydrophobic, water cannot pass through them as they are, so when used for the treatment of aqueous liquids (water or water-based solutions), alcohol, etc. It is necessary to use the polyolefin porous membrane after making it hydrophilic using a hydrophilic agent, and the polyolefin porous membrane that has been made hydrophilic with alcohol etc. has problems such as losing its hydrophilicity once it is dried.
【0005】これらのポリオレフィンを素材とする多孔
質膜の問題点を解決しようとする試みとして、特開昭6
2−33878号公報には、ポリオレフィン中空糸膜の
表面に架橋構造を有する耐熱性高分子薄膜を形成させて
耐熱性を向上させる方法が提案されている。また、親水
性を付与する方法として、特開昭56−57836号公
報にはポリエチレン多孔質膜にスルホン基を導入して親
水性を付与する方法が、特開昭61−125408号公
報にはポリオレフィン多孔質中空糸膜の微小空孔内表面
にエチレン−ビニルアセテート共重合体を形成した後、
ケン化することにより親水性を付与する方法が、特開昭
61−271003号公報にはポリオレフィン多孔質膜
にエチレン−ビニルアルコール系共重合体を保持させて
親水性を付与する方法がそれぞれ提案されている。[0005] In an attempt to solve the problems of porous membranes made from these polyolefins, Japanese Patent Laid-Open No. 6
No. 2-33878 proposes a method for improving heat resistance by forming a heat-resistant polymer thin film having a crosslinked structure on the surface of a polyolefin hollow fiber membrane. Furthermore, as a method for imparting hydrophilicity, JP-A-56-57836 discloses a method of introducing sulfone groups into a polyethylene porous membrane to impart hydrophilicity, and JP-A-61-125408 discloses a method for imparting hydrophilicity to polyolefin porous membranes. After forming the ethylene-vinyl acetate copolymer on the inner surface of the micropores of the porous hollow fiber membrane,
A method of imparting hydrophilicity by saponification and a method of imparting hydrophilicity by retaining an ethylene-vinyl alcohol copolymer in a polyolefin porous membrane are proposed in JP-A-61-271003. ing.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、これら
の公報には親水性または耐熱性のいずれか一方を改良す
る技術しか開示されておらず、ポリオレフィン多孔質膜
に親水性と耐熱性の両方を同時に付与する技術は知られ
ていない。[Problems to be Solved by the Invention] However, these publications only disclose techniques for improving either hydrophilicity or heat resistance; The technique for applying it is unknown.
【0007】本発明の目的は、水系液体の処理に好適な
親水性と、水蒸気滅菌等の加熱処理や高温下での使用を
可能とする耐熱性が付与されたポリオレフィン多孔質膜
及びその製法を提供することにある。The object of the present invention is to provide a polyolefin porous membrane that has hydrophilicity suitable for treating aqueous liquids and heat resistance that enables heat treatment such as steam sterilization and use at high temperatures, and a method for producing the same. It is about providing.
【0008】[0008]
【課題を解決するための手段】本発明の耐熱親水化多孔
質膜は、ポリオレフィン多孔質膜と、該ポリオレフィン
多孔質膜の細孔表面に保持された耐熱性架橋重合体と、
該耐熱性架橋重合体上に保持されたエチレン−酢酸ビニ
ル共重合体のケン化物とを有してなることを特徴とする
。[Means for Solving the Problems] The heat-resistant hydrophilized porous membrane of the present invention comprises a polyolefin porous membrane, a heat-resistant crosslinked polymer held on the pore surface of the polyolefin porous membrane,
It is characterized by comprising a saponified product of ethylene-vinyl acetate copolymer held on the heat-resistant crosslinked polymer.
【0009】本発明で用いられる基材としてのポリオレ
フィン多孔質膜としては、ポリエチレン、ポリプロピレ
ン、エチレンまたはプロピレンを主成分とする共重合体
あるいはこれらのフッ素化物、ポリ−4−メチル−1−
ペンテン及びポリ−3−メチル−1−ブテンなどポリオ
レフィン系重合体及び共重合体からなるものが利用でき
る。The polyolefin porous membrane used as a base material in the present invention includes polyethylene, polypropylene, a copolymer mainly composed of ethylene or propylene, or a fluorinated product thereof, poly-4-methyl-1-
Polyolefin polymers and copolymers such as pentene and poly-3-methyl-1-butene can be used.
【0010】ポリオレフィン多孔質膜としては、中空糸
膜、平膜、管状膜等任意の形態のものを用いることがで
き、また用途に応じて種々の細孔径のものを使用するこ
とができるが、好ましい例として、膜厚がおよそ20〜
200μm程度、空孔率がおよそ20〜90%程度、ア
ルコール親水化法での水透過率が0.001〜10リッ
トル/m2 ・hr・mmHg程度、平均細孔径が0.
01〜5μm程度のものを挙げることができる。As the polyolefin porous membrane, any form such as a hollow fiber membrane, flat membrane, or tubular membrane can be used, and membranes with various pore diameters can be used depending on the purpose. As a preferable example, the film thickness is approximately 20~
Approximately 200 μm, porosity is approximately 20 to 90%, water permeability by alcohol hydrophilization method is approximately 0.001 to 10 liters/m2・hr・mmHg, and average pore diameter is 0.
Examples include those having a diameter of about 0.01 to 5 μm.
【0011】多孔質膜としては、溶融賦形後延伸する方
法、無機物もしはエステル等を混入して溶融賦形後混入
物を抽出する方法を始めとして種々の方法によって得ら
れる細孔構造のものを用いうるが、そのなかでも空孔率
が大きくて目詰まりによる性能低下が少ないという点か
ら溶融賦形後延伸する方法によって得られる多孔質膜が
好ましく用いられる。溶融賦形後延伸する方法による多
孔質膜とは、ミクロフィブリルと節部によって形成され
るスリット状の微小空間(空孔)が3次元的に相互に連
通した細孔構造を有する多孔質膜であり、例えば特公昭
56−52123号公報、特開昭57−42919号公
報等に記載された方法によって製造することができる。[0011] The porous membrane has a pore structure obtained by various methods, including a method of melt-forming and then stretching, and a method of mixing inorganic substances or esters and extracting contaminants after melt-forming. Among them, a porous membrane obtained by a method of melt-forming and then stretching is preferably used because it has a large porosity and is less susceptible to deterioration in performance due to clogging. A porous membrane produced by melt-forming and then stretching is a porous membrane that has a pore structure in which slit-like micro spaces (pores) formed by microfibrils and knots are three-dimensionally interconnected. For example, it can be produced by the method described in Japanese Patent Publication No. 56-52123, Japanese Patent Application Laid-Open No. 57-42919, etc.
【0012】また、多孔質膜の形態としては単位容積あ
たりの膜面積が大きいことから中空糸膜状のものが好ま
しく用いられる。Further, as the form of the porous membrane, a hollow fiber membrane is preferably used because the membrane area per unit volume is large.
【0013】細孔表面に保持される耐熱性架橋重合体の
量は架橋性モノマーの種類、多孔質膜の空孔率や細孔径
にも依存するが、多孔質膜の重量に対して、好ましくは
5〜50重量%程度、より好ましくは20〜50重量%
程度とされる。耐熱性架橋重合体の保持量が5重量%程
度より少ないと多孔質膜に充分な耐熱性を付与すること
ができず、また、50重量%程度を超えても多孔質膜の
耐熱性はそれ以上向上せず、むしろ細孔容積が減少して
流体の透過性能が低下する場合があるので好ましくない
。[0013] The amount of the heat-resistant crosslinked polymer retained on the pore surface depends on the type of crosslinking monomer, the porosity and pore diameter of the porous membrane, but it is preferably is about 5 to 50% by weight, more preferably 20 to 50% by weight.
It is considered to be a degree. If the amount of the heat-resistant crosslinked polymer retained is less than about 5% by weight, sufficient heat resistance cannot be imparted to the porous membrane, and even if it exceeds about 50% by weight, the heat resistance of the porous membrane will be reduced. This is not preferable because the pore volume may be reduced and the fluid permeation performance may be lowered without any improvement.
【0014】この耐熱性架橋重合体はポリオレフィン多
孔質膜の細孔表面の全てに保持されていることが好まし
いが、必ずしも細孔表面の全てに保持されていることが
必要なわけではなく、通常使用される膜間差圧によって
水の透過が可能な程度の細孔径を有し、かつ実質的に耐
熱性が向上されるように保持されていればよい。なお、
耐熱性架橋重合体は多孔質膜の細孔表面に被覆するよう
に保持されても良い。[0014] This heat-resistant crosslinked polymer is preferably retained on all of the pore surfaces of the porous polyolefin membrane, but it is not necessarily necessary that it is retained on all of the pore surfaces; It is sufficient that the pore size is such that water can pass therethrough depending on the transmembrane pressure difference used, and that the heat resistance is substantially improved. In addition,
The heat-resistant crosslinked polymer may be held so as to cover the surface of the pores of the porous membrane.
【0015】耐熱性架橋重合体としては、トリメチロー
ルプロパントリメタクリレート、ペンタエリスリトール
トリメタクリレート等のトリメタクリレート類;ペンタ
エリスリトールテトラメタクリレート等のテトラメタク
リレート類;エチレングリコールジメタクリレート、1
,3−ブチレングリコールジメタクリレート、トリエチ
レングリコールトリメタクリレート、グリセロールジメ
タクリレートなどのジメタクリレート類;あるいはジビ
ニルベンゼン等の架橋性モノマーから得られる架橋重合
体等が利用でき、架橋性モノマーの2種以上を組み合わ
せた架橋共重合体としてもよい。Examples of heat-resistant crosslinked polymers include trimethacrylates such as trimethylolpropane trimethacrylate and pentaerythritol trimethacrylate; tetramethacrylates such as pentaerythritol tetramethacrylate; ethylene glycol dimethacrylate;
, 3-butylene glycol dimethacrylate, triethylene glycol trimethacrylate, glycerol dimethacrylate; or crosslinked polymers obtained from crosslinkable monomers such as divinylbenzene. A combined crosslinked copolymer may also be used.
【0016】多孔質膜細孔表面に保持された耐熱性架橋
重合体の上に更に保持されるエチレン−酢酸ビニル共重
合体のケン化物としては、親水性付与効果と耐熱性架橋
重合体への密着性とを考慮して最適の組成のものが用い
られるが、通常はケン化率が60モル%程度以上でエチ
レン単位の含有量が20〜70モル%程度のものが利用
できる。なお、このケン化物は耐熱性架橋重合体が保持
されていない多孔質膜細孔表面に直接保持されても良い
。このケン化物の保持量は耐熱親水化多孔質膜に付与す
べき親水性や透水性能を考慮して適宜定められるが、耐
熱性架橋重合体を保持させる前の多孔質膜に対して1〜
20重量%程度であればよく、2〜15重量%程度であ
ることがより好ましい。[0016] The saponified product of ethylene-vinyl acetate copolymer, which is further retained on the heat-resistant cross-linked polymer retained on the pore surface of the porous membrane, has a hydrophilicity imparting effect and an effect on the heat-resistant cross-linked polymer. An optimal composition is used in consideration of adhesion, but usually one with a saponification rate of about 60 mol% or more and an ethylene unit content of about 20 to 70 mol% can be used. Note that this saponified product may be directly retained on the surface of the pores of the porous membrane where the heat-resistant crosslinked polymer is not retained. The retained amount of this saponified material is determined as appropriate in consideration of the hydrophilicity and water permeability that should be imparted to the heat-resistant hydrophilic porous membrane;
It may be about 20% by weight, and more preferably about 2 to 15% by weight.
【0017】なお、本発明において保持させてなるとは
、保存中や使用中に容易に脱離しない程度に耐熱性架橋
重合体や上記ケン化物が所定部位に強固に結合ないし密
着されていることをいい、これらが所定部位に化学結合
していてもよく、また、所定部位にアンカー効果によっ
て密着していてもよく、更に化学結合やアンカー効果に
よる保持が混在していてもよい。特に、多孔質膜として
前述の延伸法によって多孔質化されたものを用いると、
ミクロフィブリルを包むようにして重合体が形成され、
またその上にケン化物が密着して、これらを強固に保持
させることができるので、多孔質膜としては延伸法によ
って多孔質化されたものを用いることが好ましい。[0017] In the present invention, "retained" means that the heat-resistant crosslinked polymer or the above-mentioned saponified material is firmly bonded or adhered to a predetermined site to the extent that it does not easily detach during storage or use. However, these may be chemically bonded to a predetermined site, or may be closely attached to a predetermined site by an anchor effect, or may be held by a chemical bond or an anchor effect. In particular, if a porous membrane made porous by the above-mentioned stretching method is used,
A polymer is formed to wrap around the microfibrils,
Further, since the saponified material adheres thereon and can firmly hold them, it is preferable to use a porous membrane made porous by a stretching method.
【0018】次に、本発明の親水性と耐熱性が付与され
た多孔質膜の製造方法について説明するが、製造方法は
以下の方法に限定されるものではない。代表的な製法と
しては、架橋性モノマーをポリオレフィン多孔質膜の細
孔表面に保持させた状態で重合させ、ついで、エチレン
−酢酸ビニル共重合体のケン化物を更に保持させる方法
が挙げられる。Next, a method for manufacturing the porous membrane imparted with hydrophilicity and heat resistance according to the present invention will be described, but the manufacturing method is not limited to the following method. A typical manufacturing method includes a method in which a crosslinking monomer is polymerized while being retained on the pore surface of a polyolefin porous membrane, and then a saponified product of ethylene-vinyl acetate copolymer is further retained.
【0019】架橋性モノマーを多孔質膜の表面に保持さ
せる方法としては、例えば、モノマーを溶解させたモノ
マー溶液を調製し、多孔質膜をその溶液中に浸漬する、
あるいはモノマー溶液を多孔質膜に圧入することにより
該溶液を多孔質膜の細孔内に供給した後、多孔質膜から
溶媒を揮発除去させる方法が採用できる。モノマー溶液
には、必要に応じて重合開始剤、重合調整剤、安定剤等
が含有されても良い。溶媒で希釈した保持用溶液を用い
ることによって多孔質膜の細孔を塞ぐことなく多孔質膜
の全体にわたって架橋性モノマーをほぼ均一に付着させ
ることができる。なお、モノマー溶液の架橋性モノマー
の濃度や浸漬時間を変化させることにより架橋性モノマ
ーの付着量を調整できる。As a method for retaining the crosslinking monomer on the surface of the porous membrane, for example, a monomer solution in which the monomer is dissolved is prepared, and the porous membrane is immersed in the solution.
Alternatively, a method can be adopted in which the monomer solution is supplied into the pores of the porous membrane by pressurizing the monomer solution, and then the solvent is evaporated and removed from the porous membrane. The monomer solution may contain a polymerization initiator, a polymerization modifier, a stabilizer, etc. as necessary. By using a holding solution diluted with a solvent, the crosslinking monomer can be almost uniformly deposited over the entire porous membrane without blocking the pores of the porous membrane. Note that the amount of the crosslinkable monomer attached can be adjusted by changing the concentration of the crosslinkable monomer in the monomer solution and the immersion time.
【0020】モノマー溶液を調製する場合の溶媒として
は、架橋性モノマーよりも沸点が低く、かつ架橋性モノ
マーを溶解することが可能な有機溶剤が用いられるが、
重合開始剤などを用いる場合はこれらも溶解できる溶媒
を用いることが好ましい。このような有機溶剤としては
、メタノール、エタノール、プロパノール、イソプロパ
ノール等のアルコール類;アセトン、メチルエチルケト
ン、メチルイソブチルケトン等のケトン類;テトラヒド
ロフラン、ジオキサン等のエーテル類;酢酸エチル;ク
ロロホルム等を挙げることができる。有機溶媒の沸点は
特に限定されないが、重合工程前また重合中での溶媒除
去が容易であることを考慮するとおよそ100℃以下で
あることが好ましく、およそ80℃以下であることがよ
り好ましい。[0020] As a solvent for preparing the monomer solution, an organic solvent having a boiling point lower than that of the crosslinking monomer and capable of dissolving the crosslinking monomer is used.
When using a polymerization initiator, it is preferable to use a solvent that can also dissolve these. Examples of such organic solvents include alcohols such as methanol, ethanol, propanol, and isopropanol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ethers such as tetrahydrofuran and dioxane; ethyl acetate; and chloroform. . Although the boiling point of the organic solvent is not particularly limited, it is preferably about 100°C or less, more preferably about 80°C or less, considering that the solvent can be easily removed before and during the polymerization process.
【0021】モノマー溶液の組成は溶媒の種類や目標と
する架橋重合体の保持量などを考慮して適宜選択すれば
よく、架橋性モノマー100重量部に対して溶媒は50
〜10000重量部程度であればよく、200〜500
0重量部程度であることがより好ましい。モノマー溶液
を用いて多孔質膜に対して浸漬処理または圧入処理する
際の浸漬時間または圧入時間はおよそ0.5秒〜30分
間程度であり、多孔質膜に対する濡れ特性が良好なモノ
マー溶液を用いた場合ほど、より短時間で実施すること
ができる。浸漬処理や圧入処理が終了したところで、多
孔質膜から余分なモノマー溶液を除去した後、必要に応
じて多孔質膜からモノマー溶液の溶媒を蒸発除去してか
ら、重合工程を行なう。なお、溶媒を除去しつつ重合を
同時に実施してもよい。この重合工程において、多孔質
細孔表面の少なくとも一部に保持された架橋性モノマー
及び必要に応じた重合開始剤等の反応によって耐熱性架
橋架橋重合体がそこに形成、保持される。[0021] The composition of the monomer solution may be appropriately selected in consideration of the type of solvent and the target amount of crosslinked polymer retained.
~10,000 parts by weight may be sufficient, and 200 to 500 parts by weight.
More preferably, it is about 0 parts by weight. When dipping or press-fitting a porous membrane using a monomer solution, the dipping time or press-fitting time is about 0.5 seconds to 30 minutes, and a monomer solution with good wetting properties for the porous membrane is used. The more you can do it, the faster it can be done. When the dipping treatment and the press-in treatment are completed, the excess monomer solution is removed from the porous membrane, and if necessary, the solvent of the monomer solution is evaporated from the porous membrane, and then the polymerization step is performed. Note that polymerization may be carried out simultaneously while removing the solvent. In this polymerization step, a heat-resistant crosslinked crosslinked polymer is formed and held there by a reaction between a crosslinkable monomer held on at least a portion of the surface of the porous pores and an optional polymerization initiator.
【0022】架橋性モノマーの重合方法としては、熱重
合法、光重合法、放射線重合法等の各種の重合方法を採
用することができ、重合開始剤は公知のものを用いるこ
とができる。光重合の場合、光照射の光源としては紫外
線や可視光線を用いることができ、紫外線源としては、
低圧水銀灯、高圧水銀灯、キセノン灯、アーク灯等を用
いることができる。また、放射線重合は例えば電子線照
射装置を用いることによって実施することができる。熱
重合法の場合、重合温度は前記重合開始剤の分解温度以
上であり、また多孔質膜の膜構造を変化させることなく
、かつ膜基質を損傷しない程度以下の温度とすることが
望ましく、通常は30〜100℃程度の温度を採用する
ことができる。なお、これら重合の際、雰囲気内に酸素
が存在すると重合反応が著しく阻害されるので窒素雰囲
気等の不活性ガス雰囲気、あるいは真空等の実質的に酸
素が存在しない状態にて重合させることが好ましい。
なお、架橋重合体が形成された後は、必要に応じて適当
な洗浄溶媒を用い、浸漬法や圧入法によって多孔質膜の
細孔表面や外表面(中空糸膜や管状膜の場合は内壁面及
び外壁面)に存在する未反応モノマーや遊離したポリマ
ー等の不用成分を除去することが望ましい。Various polymerization methods such as thermal polymerization, photopolymerization, and radiation polymerization can be used to polymerize the crosslinkable monomer, and known polymerization initiators can be used. In the case of photopolymerization, ultraviolet rays or visible light can be used as the light source for light irradiation.
Low-pressure mercury lamps, high-pressure mercury lamps, xenon lamps, arc lamps, etc. can be used. Furthermore, radiation polymerization can be carried out using, for example, an electron beam irradiation device. In the case of a thermal polymerization method, the polymerization temperature is desirably higher than the decomposition temperature of the polymerization initiator and lower than the temperature that does not change the membrane structure of the porous membrane and damage the membrane substrate; A temperature of about 30 to 100°C can be adopted. In addition, during these polymerizations, the presence of oxygen in the atmosphere will significantly inhibit the polymerization reaction, so it is preferable to carry out the polymerization in an inert gas atmosphere such as a nitrogen atmosphere, or in a state in which oxygen is substantially absent, such as in a vacuum. . After the cross-linked polymer is formed, the pore surface and outer surface (in the case of hollow fiber membranes and tubular membranes, the inner surface It is desirable to remove unnecessary components such as unreacted monomers and liberated polymers present on the wall and outer wall surface.
【0023】耐熱性架橋重合体が保持された多孔質膜は
、次にエチレン−酢酸ビニル共重合体のケン化物の保持
工程に移される。ケン化物の形成に用いるエチレン−酢
酸ビニル共重合体としては、ランダム、ブロック、グラ
フト等種々のタイプのものが利用でき、該ケン化物のタ
イプもエチレン−酢酸ビニル共重合体のタイプに依存す
る。エチレン−酢酸ビニル共重合体は、基本的にエチレ
ンと酢酸ビニルから形成されるが、所望とする特性を損
なわない範囲内で他のモノマー成分を混在させてもよい
。The porous membrane holding the heat-resistant crosslinked polymer is then transferred to a step of holding a saponified product of ethylene-vinyl acetate copolymer. As the ethylene-vinyl acetate copolymer used to form the saponified product, various types such as random, block, and graft can be used, and the type of the saponified product also depends on the type of the ethylene-vinyl acetate copolymer. The ethylene-vinyl acetate copolymer is basically formed from ethylene and vinyl acetate, but other monomer components may be mixed within a range that does not impair the desired properties.
【0024】エチレン−酢酸ビニル共重合体におけるエ
チレン単位の含有量は、エチレン−酢酸ビニル共重合体
やそのケン化物の架橋重合体や多孔質膜細孔表面への良
好な密着性を得る上で重要であり、この密着性の点から
その含有量は好ましくは20モル%以上とされる。すな
わち、エチレン単位の含有量が20モル%未満であると
、エチレン−酢酸ビニル共重合体またはそのケン化物を
付着させた際に、付着物に良好な密着性が得られず、付
着物の剥離が起こり易くなるので好ましくない。一方、
エチレン単位の含有量が多くなりすぎると、最終的に得
られるケン化物による多孔質膜への良好な親水性付与効
果が得られないので好ましくない。従って、エチレン単
位の含有量は、好ましくは70モル%以下とされる。密
着性と親水性のより良好なバランスを考慮すれば、エチ
レン単位の含有量が25〜50モル%の範囲内にあるこ
とが特に好ましい。また、エチレン−酢酸ビニル共重合
体における酢酸ビニル単位の含有量は、最終的に得られ
るケン化物による良好な親水性付与効果を得る上で、好
ましくは20重量%以上とされるが、その上限はエチレ
ン単位の含有量が上記の範囲内となるように調節される
のが好ましい。The content of ethylene units in the ethylene-vinyl acetate copolymer is determined in order to obtain good adhesion to the crosslinked polymer of the ethylene-vinyl acetate copolymer or its saponified product and to the pore surface of the porous membrane. This is important, and from the viewpoint of adhesion, its content is preferably 20 mol% or more. That is, if the content of ethylene units is less than 20 mol%, when the ethylene-vinyl acetate copolymer or its saponified product is applied, good adhesion to the deposit cannot be obtained, and the deposit may peel off. This is not preferable because it is more likely to occur. on the other hand,
If the content of ethylene units is too large, it is not preferable because the saponified product ultimately obtained will not have a good effect of imparting hydrophilicity to the porous membrane. Therefore, the content of ethylene units is preferably 70 mol% or less. Considering a better balance between adhesion and hydrophilicity, it is particularly preferable that the content of ethylene units is in the range of 25 to 50 mol%. In addition, the content of vinyl acetate units in the ethylene-vinyl acetate copolymer is preferably 20% by weight or more in order to obtain a good hydrophilicity imparting effect by the saponified product finally obtained, but the upper limit thereof is is preferably adjusted so that the content of ethylene units is within the above range.
【0025】エチレン−酢酸ビニル共重合体のケン化は
、水酸化ナトリウム等のアルカリ水溶液中で必要時間加
熱処理する方法等公知の方法で行なうことができる。
このケン化処理によって、ビニルアセテート部分のアセ
チル基が水酸基に転化され、より良好な親水性が付与さ
れる。ケン化率は60モル%程度以上であれば良い。The ethylene-vinyl acetate copolymer can be saponified by a known method such as heat treatment in an aqueous alkaline solution such as sodium hydroxide for a necessary period of time. This saponification treatment converts the acetyl group of the vinyl acetate moiety into a hydroxyl group, thereby imparting better hydrophilicity. The saponification rate may be about 60 mol% or more.
【0026】ケン化物の保持は、ケン化物を直接保持さ
せる方法やエチレン−酢酸ビニル共重合体を保持させた
後にこれをケン化する方法などによって行なうことがで
きる。ケン化物を直接保持させるには、■ケン化物を含
有する保持用溶液を、浸漬、塗布等の方法により基材中
空糸膜の少なくとも細孔内に供給し、該溶液の溶媒を蒸
発除去する方法、及び■ケン化物を含有する保持用溶液
を、浸漬、塗布等の方法により基材中空糸膜の細孔内に
供給し、これを更に該ケン化物の凝固剤溶液に浸漬して
、これを 少なくとも細孔内表面上で急速凝固させ、
乾燥させる方法などによって行なうことができる。Retention of the saponified product can be carried out by directly retaining the saponified product or by retaining the ethylene-vinyl acetate copolymer and then saponifying it. In order to directly retain the saponified product, ① A method of supplying a retaining solution containing the saponified product into at least the pores of the base hollow fiber membrane by a method such as dipping or coating, and removing the solvent of the solution by evaporation. , and (2) supplying a retaining solution containing a saponified substance into the pores of the base hollow fiber membrane by dipping, coating, etc., and further immersing it in a coagulant solution of the saponified substance; rapidly solidifying at least on the inner surface of the pores;
This can be done by a method such as drying.
【0027】該保持用溶液は、ケン物をそれを溶解でき
る溶媒に溶解して調製することができる。該溶媒として
は、水混和性有機溶剤や、水混和性有機溶剤と水との混
合物などが利用できる。水混和性有機溶剤としては、メ
タノール、エタノール、n−プロパノール、イソプロパ
ノール、sec−ブタノール、t−ブタノール、シクロ
ヘキサノール等のアルコール類;エチレングリコール、
プロピレングリコール、グリセリン等の多価アルコール
類;テトラヒドロフラン、ジオキサン、ジメチルホルム
アミド、ジメチルスルホキシド、ジメチルアセトアミド
、ホルムアミド、エチレンクロルヒドリン等が挙げられ
、その1種または2種以上を組み合わせて用いることが
できる。これらのなかでは、エタノール及びジメチルス
ルホキシドがケン化物の溶解性もよく、低毒性であるこ
とから特に好ましい。The holding solution can be prepared by dissolving the sapon in a solvent that can dissolve it. As the solvent, a water-miscible organic solvent or a mixture of a water-miscible organic solvent and water can be used. Examples of water-miscible organic solvents include alcohols such as methanol, ethanol, n-propanol, isopropanol, sec-butanol, t-butanol, and cyclohexanol; ethylene glycol,
Polyhydric alcohols such as propylene glycol and glycerin; examples include tetrahydrofuran, dioxane, dimethylformamide, dimethyl sulfoxide, dimethylacetamide, formamide, ethylene chlorohydrin, etc., and one type or a combination of two or more thereof can be used. Among these, ethanol and dimethyl sulfoxide are particularly preferred because they have good solubility in saponified products and low toxicity.
【0028】なお、該溶媒としては、水混和性有機溶剤
と水の混合物が、下記の理由から特に好ましい。すなわ
ち、ケン化物は、非極性で疎水性を示すエチレン単位と
、極性で親水性の酢酸ビニル単位(ケン化によりそのア
セチル基が水酸基に転化されたものを含む)により構成
されており、その構成上、極性の強い溶剤系に溶解させ
た状態でこれを架橋重合体やポリオレフィンからなる細
孔表面等の非極性の基材面にコーティングした場合、形
成されるケン化物の薄膜層における該非極性面側の表面
に非極性のエチレン単位が局在し、これに対向する(基
材面と反対側)の表面に極性の酢酸ビニル単位が局在し
易くなると考えられる。この現象はケン化物の薄膜層と
架橋重合体や細孔表面を構成するポリプロピレンとの密
着性が向上し、かつこれらの上に保持されたケン化物の
薄膜層の表面の親水性が向上することから好ましい現象
である。そこで、上記の保持用溶液の溶媒として、水と
有機溶剤との混合物を利用することは、溶媒の極性をよ
り強くすることになり、この現象が促進されるので好ま
しい。混合する水の割合は、該ケン化物の溶解性を阻害
しない範囲内でより大きい方が好ましく、ケン化物の濃
度やそのエチレン部分の含有量、処理温度などによって
その割合は異なるが、例えば、5〜60重量%を好まし
い範囲として挙げることができる。[0028] As the solvent, a mixture of a water-miscible organic solvent and water is particularly preferred for the following reasons. In other words, saponified products are composed of non-polar and hydrophobic ethylene units and polar and hydrophilic vinyl acetate units (including those whose acetyl groups have been converted to hydroxyl groups through saponification); Above, when this solution is dissolved in a highly polar solvent system and coated on a non-polar base material surface such as a pore surface made of a cross-linked polymer or polyolefin, the non-polar surface in the thin film layer of saponified material that is formed. It is thought that non-polar ethylene units are localized on the side surface, and polar vinyl acetate units are likely to be localized on the opposite surface (on the opposite side to the base material surface). This phenomenon occurs because the adhesion between the thin layer of saponified material and the crosslinked polymer or polypropylene that makes up the pore surface is improved, and the hydrophilicity of the surface of the thin layer of saponified material held on top of these is improved. This is a favorable phenomenon. Therefore, it is preferable to use a mixture of water and an organic solvent as the solvent for the above-mentioned holding solution, since this makes the polarity of the solvent stronger and promotes this phenomenon. The ratio of water to be mixed is preferably as large as possible within a range that does not inhibit the solubility of the saponified product, and the ratio varies depending on the concentration of the saponified product, the content of its ethylene moiety, the treatment temperature, etc., but for example, A preferable range is 60% by weight.
【0029】上記保持用溶液におけるケン化物の濃度は
、所望とする親水化効果を得るのに必要な程度とされ、
基材としてのポリオレフィン多孔質膜の物性などを考慮
して選択され、例えば、0.1〜5.0重量%の範囲で
用いることが好ましい。該保持用溶液への多孔質膜の浸
漬や塗布等による処理は、一回の処理で完結しても良い
が、ケン化物の比較的低濃度の保持用溶液を用いて数回
に分けて行なっても良い。なお、ケン化物濃度が、5.
0重量%を超えると、ケン化物の付着量が多くなりすぎ
て、基材としての多孔質膜の径を狭めて、液体の透過性
能を減じる場合があるので好ましくない。ケン化物の保
持量は耐熱親水化多孔質膜に付与すべき親水性や透水性
能を考慮して適宜定められるが、耐熱性架橋重合体を保
持させる前の多孔質膜に対して1〜20重量%程度であ
ればよく、2〜15重量%程度であることがより好まし
い。[0029] The concentration of the saponified substance in the above-mentioned holding solution is set to a level necessary to obtain the desired hydrophilic effect,
It is selected in consideration of the physical properties of the polyolefin porous membrane as a base material, and is preferably used in a range of 0.1 to 5.0% by weight, for example. The treatment by dipping or coating the porous membrane in the retention solution may be completed in one treatment, but it may be carried out in several steps using a retention solution with a relatively low concentration of saponified substances. It's okay. Note that the saponified product concentration is 5.
If it exceeds 0% by weight, the amount of saponified substances deposited becomes too large, which may narrow the diameter of the porous membrane as a base material and reduce liquid permeation performance, which is not preferable. The amount of saponified material retained is determined as appropriate by considering the hydrophilicity and water permeability that should be imparted to the heat-resistant hydrophilized porous membrane, but it is 1 to 20% by weight relative to the porous membrane before retaining the heat-resistant crosslinked polymer. %, and more preferably about 2 to 15% by weight.
【0030】また、該保持用溶液の温度は、特に限定さ
れないが、一般に高温の方がケン化物の溶解性がよく、
溶液の粘度も低下するので好ましく、例えば室温から1
00℃までの範囲が好ましい。浸漬処理の場合の浸漬時
間は、数秒〜数十分の範囲が好ましい。基材としてのポ
リオレフィン多孔質膜の細孔内等に保持された保持用溶
液からの溶媒の除去は、真空乾燥、熱風乾燥等によって
行なうことができる。乾燥の程度は、基材が熱により変
形を受けない温度であればよく、100℃以下が好まし
い。[0030]Although the temperature of the holding solution is not particularly limited, generally the higher the temperature, the better the solubility of the saponified material is.
It is preferable because the viscosity of the solution also decreases, for example, from room temperature to 1
A range up to 00°C is preferred. In the case of dipping treatment, the dipping time is preferably in the range of several seconds to several tens of minutes. The solvent can be removed from the holding solution held in the pores of the porous polyolefin membrane as a base material by vacuum drying, hot air drying, or the like. The degree of drying may be at a temperature at which the base material is not deformed by heat, and is preferably 100° C. or lower.
【0031】一方、エチレン−酢酸ビニル共重合体を多
孔質膜に保持させた状態でのケン化は、例えば下記の方
法によっておこなうことができる。On the other hand, saponification of the ethylene-vinyl acetate copolymer held in a porous membrane can be carried out, for example, by the following method.
【0032】まず、細孔表面に架橋重合体が保持された
多孔質膜の細孔内に、上述のケン化物を直接保持させる
場合に挙げた方法■、■と同様の方法等によって、エチ
レン−酢酸ビニル共重合体を保持させる。エチレン−酢
酸ビニル共重合体のエチレン単位及び酢酸ビニル単位の
含有量は、好ましくは先に述べた範囲内とされる。エチ
レン−酢酸ビニル共重合体の保持用溶液の溶媒としては
、先に挙げたケン化物の保持用溶液調製用のものを用い
ることができる。保持用溶液でのエチレン−酢酸ビニル
共重合体の濃度は、例えば1.0〜5.0重量%である
ことが好ましい。エチレン−酢酸ビニル共重合体の保持
のための浸漬、塗布等の処理も、一回で完結させても良
いし、比較的低濃度の保持用液体を用いて数回に分けて
行なっても良い。一回で完結させる場合は、1.0重量
%未満ではケン化処理後に充分な親水性を得ることがで
きないので好ましくない。また、5.0重量%を超える
と、基材としてのポリオレフィン多孔質膜の細孔の径を
狭めて、液体の透過性能を減じる場合が多いので好まし
くない。エチレン−酢酸ビニル共重合体の保持量は、最
終的に得られるケン化物の保持量が先に挙げた範囲とな
るように調節すると良い。First, ethylene- Retain vinyl acetate copolymer. The content of ethylene units and vinyl acetate units in the ethylene-vinyl acetate copolymer is preferably within the range described above. As the solvent for the solution for holding the ethylene-vinyl acetate copolymer, those for preparing the solution for holding the saponified product mentioned above can be used. The concentration of the ethylene-vinyl acetate copolymer in the holding solution is preferably 1.0 to 5.0% by weight, for example. Treatments such as dipping and coating for retaining the ethylene-vinyl acetate copolymer may be completed in one go, or may be carried out in several stages using a retaining liquid of relatively low concentration. . If the amount is less than 1.0% by weight, sufficient hydrophilicity cannot be obtained after the saponification treatment, so it is not preferable to complete the treatment at once. Moreover, if it exceeds 5.0% by weight, it is not preferable because it often narrows the diameter of the pores of the polyolefin porous membrane as a base material and reduces the liquid permeation performance. The amount of the ethylene-vinyl acetate copolymer retained is preferably adjusted so that the amount of the saponified product ultimately obtained falls within the range mentioned above.
【0033】このようにしてエチレン−酢酸ビニル共重
合体を保持した多孔質膜にケン化処理を行なうことによ
って、本発明の耐熱親水化多孔質膜を得ることができる
。このケン化処理は、例えば多孔質膜を水酸化ナトリウ
ム水溶液等のアルカリ水溶液中で必要な時間加熱処理す
ることによって行なうことができる。ケン化処理が終了
したところで、洗浄、脱液、乾燥工程を行ない、本発明
の耐熱親水化多孔質膜が得られる。乾燥温度と時間は多
孔質膜の細孔構造を変化させない条件が採用される。By saponifying the porous membrane holding the ethylene-vinyl acetate copolymer in this manner, the heat-resistant hydrophilic porous membrane of the present invention can be obtained. This saponification treatment can be carried out, for example, by heating the porous membrane in an alkaline aqueous solution such as an aqueous sodium hydroxide solution for a necessary period of time. After the saponification treatment is completed, washing, deliquification, and drying steps are performed to obtain the heat-resistant hydrophilic porous membrane of the present invention. The drying temperature and time are set so as not to change the pore structure of the porous membrane.
【0034】以上、各工程について別々に説明してきた
が、本発明においてはこれらの工程を連続的におこなう
ことができる。Although each step has been explained separately above, in the present invention these steps can be performed continuously.
【0035】[0035]
【実施例】以下、実施例により本発明を具体的に説明す
る。なお、実施例においては多孔質膜としていずれも溶
融賦形後延伸して得られるミクロフィブリルと節部とで
形成されるスリット状の空間(空孔)が3次元的に連通
した多孔質膜を用いた。[Examples] The present invention will be specifically explained below with reference to Examples. In addition, in the examples, porous membranes in which slit-like spaces (pores) formed by microfibrils and knots that are obtained by melt-forming and stretching are three-dimensionally connected are used as porous membranes. Using.
【0036】実施例1
内径270μm、膜厚79μm、空孔率63%、バブル
ポイント4.4kg/cm2 、水透過率1.5リット
ル/m2 ・hr・mmHgのポリエチレン製多孔質中
空糸膜を糸速1m/分でモノマー溶液中に供給して、約
20秒間浸漬した。モノマー溶液の組成はアクリルエス
テルTMP(商品名、三菱レイヨン(株)社製、トリメ
チロールプロパントリメタクリレート)15重量部、重
合開始剤としてのPdx−16(商品名、化薬アクゾ(
株)社製)0.15重量部及びアセトン8.5重量部と
した 。次いで、この中空糸膜を80℃の窒素ガス雰
囲気中に6分間滞在させてアセトンを除去しつつモノマ
ーを重合させた。重合工程の後は25℃のエタノール/
水=50/50(重量比)中に1分間、次いで、60℃
の水中に5分間浸漬することにより中空糸膜を洗浄し、
更に80℃の空気雰囲気中で4分間乾燥処理した。Example 1 A polyethylene porous hollow fiber membrane with an inner diameter of 270 μm, a membrane thickness of 79 μm, a porosity of 63%, a bubble point of 4.4 kg/cm2, and a water permeability of 1.5 liters/m2/hr/mmHg was threaded. It was fed into the monomer solution at a speed of 1 m/min and immersed for about 20 seconds. The composition of the monomer solution was 15 parts by weight of acrylic ester TMP (trade name, manufactured by Mitsubishi Rayon Co., Ltd., trimethylolpropane trimethacrylate), Pdx-16 (trade name, Kayaku Akzo (trade name)) as a polymerization initiator.
Co., Ltd.) and 8.5 parts by weight of acetone. Next, this hollow fiber membrane was kept in a nitrogen gas atmosphere at 80° C. for 6 minutes to remove acetone and polymerize the monomer. After the polymerization process, ethanol/
1 minute in water = 50/50 (weight ratio), then 60°C
Wash the hollow fiber membrane by immersing it in water for 5 minutes,
Further, it was dried for 4 minutes in an air atmosphere at 80°C.
【0037】このようにして得られた耐熱性架橋重合体
を細孔表面に保持させた中空糸膜を糸速1m/分にて、
エチレン−酢酸ビニル共重合体のケン化物であるソアノ
ールA4412(商品名、日本合成化学工業株式会社製
、ケン化率98%以上、エチレン含量44モル%)1.
3重量部、エタノール75重量部及び水25重量部から
なるコーティング溶液中に浸漬時間が20秒となるよう
に供給し、ついで60℃の雰囲気中に引き上げて4分間
滞在させた。[0037] The hollow fiber membrane in which the heat-resistant crosslinked polymer thus obtained was held on the pore surface was heated at a thread speed of 1 m/min.
Soarnol A4412 (trade name, manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., saponification rate of 98% or more, ethylene content 44 mol%), which is a saponified product of ethylene-vinyl acetate copolymer.1.
3 parts by weight, 75 parts by weight of ethanol, and 25 parts by weight of water so that the immersion time was 20 seconds, and then the sample was taken up into an atmosphere at 60° C. and left there for 4 minutes.
【0038】得られた中空糸膜は表1の性能を示した。
No.54ぬれ指数試験標準液に中空糸膜を浸漬して着
色状態を肉眼で観察したところ、全体がほぼ均一に青色
に染まっていた。The obtained hollow fiber membrane exhibited the performance shown in Table 1. No. When the hollow fiber membrane was immersed in the 54 wet index test standard solution and the coloring state was observed with the naked eye, the entire membrane was almost uniformly stained blue.
【0039】実施例2
アクリルエステルTMP(20重量部)、Pdx−16
(0.2重量部)及びアセトン(80重量部)からなる
モノマー溶液を用いて実施例1と同様に重合した。得ら
れた耐熱性架橋重合体を細孔表面に保持させた中空糸膜
をエチレン−酢酸ビニル共重合体(エチレン含量44モ
ル%)3重量部をトルエン97重量部に溶解して得た2
5℃の溶液中に30秒間浸した後真空乾燥機により50
℃で30時間乾燥して溶剤の除去を行った。次に、これ
を水酸化ナトリウム10gを1リットルの水に溶解した
アルカリ水溶液中に浸漬し、60℃で1時間ケン化を行
った後、水洗、乾燥して表1の性能を有する耐熱親水化
多孔質膜を得た。Example 2 Acrylic ester TMP (20 parts by weight), Pdx-16
Polymerization was carried out in the same manner as in Example 1 using a monomer solution consisting of (0.2 parts by weight) and acetone (80 parts by weight). The hollow fiber membrane in which the obtained heat-resistant crosslinked polymer was retained on the pore surface was prepared by dissolving 3 parts by weight of ethylene-vinyl acetate copolymer (ethylene content: 44 mol%) in 97 parts by weight of toluene.
After immersing in a solution at 5℃ for 30 seconds, it was dried in a vacuum dryer for 50℃.
The solvent was removed by drying at °C for 30 hours. Next, this was immersed in an alkaline aqueous solution in which 10 g of sodium hydroxide was dissolved in 1 liter of water, saponified at 60°C for 1 hour, washed with water, and dried to make it heat-resistant and hydrophilic with the performance shown in Table 1. A porous membrane was obtained.
【0040】実施例3
ソアノールA4412(1重量部)、エタノール(75
重量部)及び水(25重量部)からなるコーティング溶
液を用いる以外は実施例1と同様にして表1の性能を有
する耐熱親水化多孔質膜を得た。Example 3 Soarnol A4412 (1 part by weight), ethanol (75 parts by weight)
A heat-resistant, hydrophilized porous membrane having the performance shown in Table 1 was obtained in the same manner as in Example 1, except that a coating solution consisting of 25 parts by weight) and water (25 parts by weight) was used.
【0041】実施例4
実施例1で用いたのと同様のポリエチレン製多孔質中空
糸膜を糸速2m/分で下記組成のモノマー溶液中に供給
して、約15秒間浸漬した。モノマー溶液の組成は下記
のとおりである。
アクリルエステルTMP
15 重
量部 重合開始剤V−70(商品名、和光純薬株式会
社製) 0.15重量部 アセトン
85 重量部次い
で、この中空糸膜を45℃の窒素ガス雰囲気中に1分間
滞在させてアセトンを中空糸膜から除去し、更に80℃
窒素ガス雰囲気中に2分間滞在させてモノマーを重合さ
せた。重合工程の後は25℃のアセトン中に4分間浸漬
し、その状態で超音波洗浄を行ない、更に70℃の空気
雰囲気中で4分間乾燥処理した。Example 4 A polyethylene porous hollow fiber membrane similar to that used in Example 1 was supplied into a monomer solution having the following composition at a yarn speed of 2 m/min and immersed for about 15 seconds. The composition of the monomer solution is as follows. Acrylic ester TMP
15 parts by weight Polymerization initiator V-70 (trade name, manufactured by Wako Pure Chemical Industries, Ltd.) 0.15 parts by weight Acetone
85 parts by weight Next, this hollow fiber membrane was kept in a nitrogen gas atmosphere at 45°C for 1 minute to remove acetone from the hollow fiber membrane, and then heated at 80°C.
The monomer was polymerized by remaining in the nitrogen gas atmosphere for 2 minutes. After the polymerization step, it was immersed in acetone at 25°C for 4 minutes, subjected to ultrasonic cleaning in that state, and then dried in an air atmosphere at 70°C for 4 minutes.
【0042】このようにして得られた耐熱性架橋重合体
を細孔表面に保持させた中空糸膜を糸速2m/分で、ソ
アノールA4412(1.3重量)部、エタノール(7
5重量部)及び水(25重量部)からなるコーティング
溶液中に浸漬時間が15秒となるように供給し、ついで
60℃の雰囲気中に引き上げて4分間滞在させ、表1に
示す性能の中空糸膜を得た。The hollow fiber membrane with the thus obtained heat-resistant crosslinked polymer retained on the pore surface was heated at a fiber speed of 2 m/min with Soarnol A4412 (1.3 parts by weight) and ethanol (7 parts by weight).
5 parts by weight) and water (25 parts by weight) for an immersion time of 15 seconds, and then lifted into an atmosphere at 60°C and left there for 4 minutes. A thread membrane was obtained.
【0043】実施例5
アクリエステルED(商品名、三菱レイヨン(株)社製
、エチレングリコールジメタクリレート)(1.5重量
部)、V−70(O.15重量部)及びアセトン(85
重量部)のモノマー溶液を用いる以外は実施例4と同様
にして表1の性能を有する耐熱親水化多孔質膜を得た。Example 5 Acryester ED (trade name, manufactured by Mitsubishi Rayon Co., Ltd., ethylene glycol dimethacrylate) (1.5 parts by weight), V-70 (0.15 parts by weight) and acetone (85 parts by weight)
A heat-resistant, hydrophilized porous membrane having the performance shown in Table 1 was obtained in the same manner as in Example 4 except that a monomer solution of (parts by weight) was used.
【0044】実施例6
実施例4において、内径280μm、膜厚70μm、空
孔率71%、バブルポイント2.2kg/cm2 、水
透過率2.6リットル/m2・hr・mmHgのポリエ
チレン製多孔質中空糸膜(商品名;EHF−410T、
三菱レイヨン(株)社製)を用い、コーティング溶液に
ソアノールA4412の代わりにソアノールD2908
(商品名、日本合成化学工業(株)社製、エチレン−酢
酸ビニル共重合体のケン化物)、を用いる以外は実施例
4と同様にして表1の性能を有する耐熱親水化多孔質膜
を得た。Example 6 In Example 4, a polyethylene porous material with an inner diameter of 280 μm, a membrane thickness of 70 μm, a porosity of 71%, a bubble point of 2.2 kg/cm 2 , and a water permeability of 2.6 liters/m 2 ·hr · mmHg was used. Hollow fiber membrane (product name: EHF-410T,
Mitsubishi Rayon Co., Ltd.) was used, and Soarnol D2908 was used instead of Soarnol A4412 in the coating solution.
(trade name, manufactured by Nippon Gosei Kagaku Kogyo Co., Ltd., saponified product of ethylene-vinyl acetate copolymer) was prepared in the same manner as in Example 4, except that a heat-resistant hydrophilized porous membrane having the performance shown in Table 1 was used. Obtained.
【0045】実施例7
内径270μm、膜厚55μm、空孔率72%、バブル
ポイント2.2kg/cm2 、水透過率4.0リット
ル/m2 ・hr・mmHgのポリエチレン製多孔質中
空糸膜(商品名;EHF−270T、三菱レイヨン(株
)社製)を用い、下記組成のモノマー溶液を用いる以外
は実施例4と同様にして表1の性能を有する耐熱親水化
多孔質膜を得た。
モノマー溶液組成
アクリエステルTMP 7.5
重量部アクリエステルED 7
.5 重量部重合開始剤V−70
0.15重量部アセトン
85 重量部実施例8
アクリエステルTMP(15重量部)、重合開始剤V−
70(0.15重量部)、重合度調整剤n−オクチルメ
ルカプタン(和光純薬株式会社製)(0.075重量部
)及びアセトン(85重量部)からなるモノマー溶液を
用いる以外は実施例4と同様にして表1の性能を有する
耐熱親水化多孔質膜を得た。Example 7 Polyethylene porous hollow fiber membrane (product) with an inner diameter of 270 μm, a membrane thickness of 55 μm, a porosity of 72%, a bubble point of 2.2 kg/cm2, and a water permeability of 4.0 liters/m2/hr/mmHg. A heat-resistant hydrophilized porous membrane having the performance shown in Table 1 was obtained in the same manner as in Example 4, except that a monomer solution having the following composition was used. Monomer solution composition Acryester TMP 7.5
Weight part Acryester ED 7
.. 5 parts by weight Polymerization initiator V-70
0.15 parts by weight acetone
85 parts by weight Example 8 Acryester TMP (15 parts by weight), polymerization initiator V-
Example 4 except that a monomer solution consisting of 70 (0.15 parts by weight), a polymerization degree regulator n-octyl mercaptan (manufactured by Wako Pure Chemical Industries, Ltd.) (0.075 parts by weight), and acetone (85 parts by weight) was used. A heat-resistant hydrophilized porous membrane having the performance shown in Table 1 was obtained in the same manner as in the above.
【0046】比較例1
実施例1で用いたポリエチレン製多孔質中空糸膜そのの
もの(未処理状態)の性能を試験したところ表1に示す
結果を得た。
比較例2
実施例1において、コーティング処理を行なう前の架橋
重合体が保持された状態の多孔質中空糸膜の性能を試験
したところ表1に示す結果を得た。
比較例3
実施例1で用いたのと同様のポリエチレン製多孔質膜を
、糸速1m/分で、ソアノールA4412(1.3重量
部)、エタノール(75重量部)及び水(25重量部)
からなるコーティング溶液中に浸漬時間が20秒となる
ように供給し、ついで60℃の雰囲気中に引き上げ4分
間滞在させた。得られた中空糸膜(架橋重合体の保持が
省略されたもの)は表1の性能を示した。Comparative Example 1 The performance of the polyethylene porous hollow fiber membrane itself (untreated) used in Example 1 was tested, and the results shown in Table 1 were obtained. Comparative Example 2 In Example 1, the performance of the porous hollow fiber membrane in which the crosslinked polymer was retained before coating was tested, and the results shown in Table 1 were obtained. Comparative Example 3 A polyethylene porous membrane similar to that used in Example 1 was coated with Soarnol A4412 (1.3 parts by weight), ethanol (75 parts by weight), and water (25 parts by weight) at a yarn speed of 1 m/min.
The specimen was supplied into a coating solution consisting of the following for an immersion time of 20 seconds, and then taken up into an atmosphere at 60°C and left there for 4 minutes. The obtained hollow fiber membrane (in which retention of the crosslinked polymer was omitted) exhibited the performance shown in Table 1.
【0047】[0047]
【表1】[Table 1]
【0048】[0048]
【発明の効果】本発明の多孔質膜は基材としてのポリオ
レフィン多孔質膜の細孔表面に耐熱性架橋重合体及びエ
チレン−酢酸ビニル共重合体のケン化物を保持さ勢多も
のであるので、親水性と耐熱性を有している。このため
、本発明によりポリオレフィンを素材とする多孔質膜の
医療、食品工業、醗酵工業等の水蒸気滅菌などの加熱処
理が必要な用途や、多糖類精製、発電所の復水処理等の
高温水処理などの高温下での使用が要求される用途への
適用が可能となった。[Effects of the Invention] The porous membrane of the present invention retains a heat-resistant crosslinked polymer and a saponified product of ethylene-vinyl acetate copolymer on the pore surface of the polyolefin porous membrane as a base material. It has hydrophilicity and heat resistance. For this reason, the present invention allows porous membranes made of polyolefin to be used in applications that require heat treatment such as steam sterilization in the medical, food, and fermentation industries, as well as in high-temperature water applications such as polysaccharide purification and condensate treatment in power plants. This makes it possible to apply it to applications that require use at high temperatures, such as processing.
Claims (3)
レフィン多孔質膜の細孔表面に保持された耐熱性架橋重
合体と、該耐熱性架橋重合体上に保持されたエチレン−
酢酸ビニル共重合体のケン化物とを有してなることを特
徴とする耐熱親水化多孔質膜。1. A polyolefin porous membrane, a heat-resistant crosslinked polymer held on the pore surface of the polyolefin porous membrane, and an ethylene-polymer held on the heat-resistant crosslinked polymer.
A heat-resistant hydrophilic porous membrane comprising a saponified vinyl acetate copolymer.
ロパントリメタクリレートの架橋重合体である請求項1
に記載の耐熱親水化多孔質膜。[Claim 2] Claim 1, wherein the heat-resistant crosslinked polymer is a crosslinked polymer of trimethylolpropane trimethacrylate.
The heat-resistant hydrophilized porous membrane described in .
質膜の細孔表面上において架橋重合させ、ついで、その
上にエチレン−酢酸ビニル共重合体のケン化物を保持さ
せることを特徴とする請求項1に記載の耐熱親水化多孔
質膜の製法。3. The method according to claim 1, wherein a crosslinkable monomer is crosslinked and polymerized on the pore surface of the polyolefin porous membrane, and then a saponified product of ethylene-vinyl acetate copolymer is held thereon. The method for producing the heat-resistant hydrophilic porous membrane described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19417791A JPH04358529A (en) | 1990-09-28 | 1991-08-02 | Heat-resistant hydrophilic porous membrane and preparation thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2-261846 | 1990-09-28 | ||
JP26184690 | 1990-09-28 | ||
JP19417791A JPH04358529A (en) | 1990-09-28 | 1991-08-02 | Heat-resistant hydrophilic porous membrane and preparation thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04358529A true JPH04358529A (en) | 1992-12-11 |
Family
ID=26508352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19417791A Pending JPH04358529A (en) | 1990-09-28 | 1991-08-02 | Heat-resistant hydrophilic porous membrane and preparation thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04358529A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004332123A (en) * | 2003-04-30 | 2004-11-25 | Kawasumi Lab Inc | Hydrophilization-treated substrate and method for producing the same |
JP2013146682A (en) * | 2012-01-19 | 2013-08-01 | Mitsubishi Rayon Co Ltd | Polyolefin-based hollow fiber membrane |
-
1991
- 1991-08-02 JP JP19417791A patent/JPH04358529A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004332123A (en) * | 2003-04-30 | 2004-11-25 | Kawasumi Lab Inc | Hydrophilization-treated substrate and method for producing the same |
JP4712285B2 (en) * | 2003-04-30 | 2011-06-29 | 川澄化学工業株式会社 | Blood filtration filter and method for producing the same |
JP2013146682A (en) * | 2012-01-19 | 2013-08-01 | Mitsubishi Rayon Co Ltd | Polyolefin-based hollow fiber membrane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0498414B1 (en) | Porous hollow fiber membrane of polypropylene and production thereof | |
US5294338A (en) | Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes | |
US5209849A (en) | Hydrophilic microporous polyolefin membrane | |
JPS61161103A (en) | Hydrophilic porous membrane and its preparation | |
EP0229019A2 (en) | Hydrophilized porous membrane and production process thereof | |
JPH038421A (en) | Hydrophilic porous membrane and production thereof | |
JP3168036B2 (en) | Large-pore porous polyethylene hollow fiber membrane, method for producing the same, and hydrophilic porous polyethylene hollow fiber membrane | |
JPH05115760A (en) | Antibacterial hydrophilic porous membrane and production thereof | |
EP0566754B1 (en) | Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof | |
JPH04358529A (en) | Heat-resistant hydrophilic porous membrane and preparation thereof | |
JPS63190602A (en) | Hydrophilic porous membrane and its manufacture | |
JP3130996B2 (en) | Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane | |
JPH0259030A (en) | Heat-resistant hydrophilicity imparted porous membrane and preparation thereof | |
JPH0768141A (en) | Hollow fiber membrane and humidifying method using the same membrane | |
EP0342239B1 (en) | Porous membrane and process for its production | |
JPS63260938A (en) | Porous membrane having heat resistance imparted thereto and its production | |
JPS62163703A (en) | Hydrophilic porous membrane and its production | |
JPH03193125A (en) | Heat-resistant porous membrane and manufacture thereof | |
JPS6041503A (en) | Polyether sulfone microporous membrane and its manufacture | |
JP2759339B2 (en) | Manufacturing method of hydrophilized porous membrane | |
JPH0365225A (en) | Hydrophilic, porous membrane and its manufacturing method | |
JPS62277106A (en) | Composite ultrafiltration membrane | |
JPH022861A (en) | Porous membrane and production thereof | |
JPH03178429A (en) | Hydrophilic porous film and manufacture thereof | |
JPH0369673A (en) | Heat-resistant hydrophilic porous polyolefin hollow fiber |