JPH04211217A - Optical deflector - Google Patents

Optical deflector

Info

Publication number
JPH04211217A
JPH04211217A JP4403991A JP4403991A JPH04211217A JP H04211217 A JPH04211217 A JP H04211217A JP 4403991 A JP4403991 A JP 4403991A JP 4403991 A JP4403991 A JP 4403991A JP H04211217 A JPH04211217 A JP H04211217A
Authority
JP
Japan
Prior art keywords
vibrator
electrode
vibrators
optical deflector
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4403991A
Other languages
Japanese (ja)
Inventor
Wataru Nakagawa
亘 中川
Michihiko Tsuruoka
鶴岡 亨彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4403991A priority Critical patent/JPH04211217A/en
Publication of JPH04211217A publication Critical patent/JPH04211217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To realize wide ranging two-dimensional optical scanning by constituting an optical polarizer simply at low cost. CONSTITUTION:The first vibrator 20 which has a reflecting mirror 1 and can rotate with span band parts 2a and 2b setting as its axis and the second vibrator 21 which can rotate with span band parts 4a and 4b setting as its axis are superposed on a board 6 so that respective rotation axes can cross at right angles to each other, and voltage is impressed respectively between electrodes 10a and 10b of the first vibrator 20 and an electrode 15 of the second vibrator 21 and between the electrode 15 of the second vibrator 21 and electrodes 11a and 11b on the board 6. Thereby, two-dimensional optical scanning by the use of electrostatic force can be realized by small electric power consumption.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子写真式複写機,レ
ーザプリンタの画像形成装置または磁気記憶装置のトラ
ッキングサーボ等、光学機器の光走査に適用して好適な
光偏向子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical deflector suitable for use in optical scanning of optical equipment such as electrophotographic copying machines, image forming devices of laser printers, or tracking servos of magnetic storage devices.

【0002】0002

【従来の技術】従来、例えばスパンバンドに反射ミラー
を取り付けて一体に形成し、ミラーを静電気力で駆動す
るガルバノミラーが知られている(必要ならば、例えば
IBMJ.“R&D”VOL.24,P.631,19
80年を参照されたい)。図11にこのような従来装置
を示す。同図において、61はシリコンプレートからス
パンバンド62a,62bと反射ミラー63とを一体に
形成した振動子、64はガラス製の基板である。反射ミ
ラー63はその中心でこの基板64の突起65と接して
いるが、その左右は窪み66により一定のギャップが確
保されている。67a,67bは基板64に設けられた
電極で、一方の電極とミラー63との間に適宜な手段に
て外部から電圧を印加することにより、ミラー63が静
電引力で吸引されて傾くことから、ミラー63に当たっ
た光は図11(ロ)に矢印で示すように走査されること
になる。つまり、ミラー63が左右に各φずつ傾くと、
光は全体で2φだけ振れることになる。
2. Description of the Related Art Conventionally, a galvanometer mirror is known in which a reflecting mirror is attached to a span band and integrally formed, and the mirror is driven by electrostatic force (if necessary, for example, IBM J. "R&D" VOL. 24, P.631,19
(See 1980). FIG. 11 shows such a conventional device. In the figure, 61 is a vibrator formed integrally with span bands 62a, 62b and a reflecting mirror 63 from a silicon plate, and 64 is a glass substrate. The reflecting mirror 63 is in contact with the protrusion 65 of the substrate 64 at its center, but a certain gap is ensured by recesses 66 on the left and right sides thereof. 67a and 67b are electrodes provided on the substrate 64, and by applying a voltage from the outside between one electrode and the mirror 63 by an appropriate means, the mirror 63 is attracted by electrostatic attraction and tilted. , the light hitting the mirror 63 is scanned as shown by the arrow in FIG. 11(b). In other words, when the mirror 63 tilts left and right by each φ,
The light will swing by 2φ in total.

【0003】この装置は、電磁的に駆動するものに比べ
て永久磁石等の外部磁界を必要とせず、ミラーに対向さ
せた一対の駆動用電極があれば良いので、装置外形を小
さくできる利点がある。しかし、ミラーに対し一対のス
パンバンドを配置しスパンバンド軸を中心に回転運動を
行なうので直線(一方向,一次元)走査しかできず、二
次元走査を可能とするにはそのための送り機構が別途必
要になると云う難点がある。これに対し、反射ミラーの
四方を圧電バイモルフで支持し二次元の走査、つまり面
上の任意の点を走査し得る光偏向子がある。図12にこ
の種の装置の1例を示す。なお、その詳細が必要ならば
、1989年10月27日,電気学会産業計測制御会発
表の“マイクロマシーニングとマイクロメカニクス”P
.71に記載のものを参照されたい。
Compared to electromagnetically driven devices, this device does not require an external magnetic field such as a permanent magnet, and only requires a pair of driving electrodes facing the mirror, so it has the advantage that the device can be made smaller in size. be. However, since a pair of span bands are placed against the mirror and rotated around the span band axis, only linear (one-directional, one-dimensional) scanning is possible, and in order to make two-dimensional scanning possible, a feed mechanism is required. The problem is that it is required separately. On the other hand, there is an optical deflector that supports a reflecting mirror on all sides with piezoelectric bimorphs and can perform two-dimensional scanning, that is, scanning any point on the surface. FIG. 12 shows an example of this type of device. If you need details, please refer to "Micromachining and Micromechanics" published by the Institute of Electrical Engineers of Japan's Industrial Measurement and Control Conference on October 27, 1989.
.. See 71.

【0004】図13はその作用を説明するための断面図
である。すなわち、圧電バイモルフ72は中心の金属板
73を両面から同じ形状の圧電素子74にて挟む構造と
なっている。この圧電素子74の表面には分割電極75
a,75bと全面電極75cが設けられ、図の矢印の向
きに分極されている。また、2枚の圧電素子の分極方向
は図の矢印の如く、互いに逆向きになっている。金属板
および電極に同図(ロ)の如く電圧Vを加えると、圧電
バイモルフは同図(イ)に破線で示すように変形し、反
射ミラー71に傾きが生じる。この装置は、圧電バイモ
ルフを直交する2軸状に構成しているので、1つのアク
チュエータでビームを二次元に振らすことができ、従来
の如く直線走査に送り機構を付加するものに対し、その
構造を大きく簡略化,小形化および低コスト化し得る特
徴を有している。
FIG. 13 is a cross-sectional view for explaining its function. That is, the piezoelectric bimorph 72 has a structure in which a central metal plate 73 is sandwiched between piezoelectric elements 74 having the same shape on both sides. A divided electrode 75 is provided on the surface of this piezoelectric element 74.
a, 75b and a full-surface electrode 75c are provided, and are polarized in the direction of the arrow in the figure. Further, the polarization directions of the two piezoelectric elements are opposite to each other as shown by the arrows in the figure. When a voltage V is applied to the metal plate and the electrodes as shown in FIG. 5B, the piezoelectric bimorph is deformed as shown by the broken line in FIG. Since this device has a piezoelectric bimorph arranged in two orthogonal axes, it is possible to swing the beam two-dimensionally with one actuator. It has the characteristics of greatly simplifying the structure, reducing the size, and reducing the cost.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うに2軸走査が可能な光偏向子にも以下の如き問題があ
る。第1の問題点は、2軸のバイモルフで同一ミラーを
駆動するので、相互干渉が生じる点にある。すなわち、
一方の軸を駆動しミラーの傾きを大きくしようとすると
、他方の軸のバイモルフにねじりが生じてその傾きを抑
制する力となり、所期通りの振れ角を得ることができな
いと云う点である。第2の問題点は、反射ミラーの初期
ねじれに伴う偏向角のオフセットが生じて振れ角が影響
を受けたり、偏向角を設定する際に誤差が大きくなる点
にある。すなわち、各部品の歪や残留応力および組立時
の歪によって反射ミラーは水平とはならず、このため従
来は反射ミラーの傾きを機械的に調整するようにしてい
るのであるが、全体の大きさが小さくなるとその精度を
得ることが困難となる。また、振幅については反射ミラ
ーを駆動する電圧のみを制御するオープンループ制御と
なっているため、周囲温度変化による圧電定数変化に伴
う駆動力変化により振れ角が影響を受け、誤差が大きく
なると云う点である。
However, such an optical deflector capable of biaxial scanning also has the following problems. The first problem is that since the same mirror is driven by two-axis bimorphs, mutual interference occurs. That is,
If an attempt is made to increase the tilt of the mirror by driving one axis, twisting occurs in the bimorph on the other axis, which acts as a force that suppresses the tilt, making it impossible to obtain the desired deflection angle. The second problem is that an offset in the deflection angle occurs due to the initial twist of the reflecting mirror, which affects the deflection angle and increases errors when setting the deflection angle. In other words, the reflection mirror is not horizontal due to distortions and residual stress in each part and distortion during assembly.For this reason, the inclination of the reflection mirror has traditionally been adjusted mechanically, but the overall size As the value becomes smaller, it becomes difficult to obtain that precision. In addition, since the amplitude is open-loop control that only controls the voltage that drives the reflection mirror, the deflection angle is affected by changes in the driving force due to changes in the piezoelectric constant due to changes in the ambient temperature, increasing the error. It is.

【0006】[0006]

【課題を解決するための手段】上記第1の課題を解決す
るために、可動部と一対のスパンバンドで構成された振
動子を2つ用い、第1の振動子にはスパンバンドを挟ん
で2つの第1電極を設け、第2の振動子には全面に第2
の電極を設けて第2の振動子の可動部上に第1および第
2電極が適当な間隔を保って対向し、かつ2組のスパン
バンドの軸が直交するように設置する。そして、第1の
振動子が載った第2の振動子を、各スパンバンドの軸に
対して対称となる2つの第3電極を持つ基板に、電極同
士が対向し適当な間隔を保つように固定する。なお、反
射ミラーは第1振動子の可動部上に設置する。また、上
記第2の課題を解決するために、前記第1振動子および
基板に設けた2つの電極をさらに2分割して4つずつ設
け、中心軸に対して対称に駆動用電極と、静電容量の検
出電極およびこれらの出力値の演算手段、さらにその演
算結果に基づき駆動用電極に電圧を与える電圧印加手段
を設ける。
[Means for Solving the Problems] In order to solve the first problem, two vibrators each consisting of a movable part and a pair of span bands are used, and the first vibrator has a span band in between. Two first electrodes are provided, and a second electrode is provided on the entire surface of the second vibrator.
The first and second electrodes are installed on the movable part of the second vibrator so that the first and second electrodes face each other with an appropriate distance therebetween, and the axes of the two sets of span bands are orthogonal to each other. Then, the second vibrator on which the first vibrator is mounted is placed on a substrate having two third electrodes that are symmetrical with respect to the axis of each span band, so that the electrodes face each other and maintain an appropriate spacing. Fix it. Note that the reflection mirror is installed on the movable part of the first vibrator. In addition, in order to solve the second problem, the two electrodes provided on the first vibrator and the substrate are further divided into two, four each are provided, and the drive electrode and the static Capacitance detection electrodes, means for calculating their output values, and voltage applying means for applying a voltage to the drive electrodes based on the results of the calculations are provided.

【0007】[0007]

【作用】第1振動子の1つの電極と第2振動子の電極と
の間に電圧を加えると、第1振動子のスパンバンドを中
心に回転モーメントが生じ、反射ミラーが回転する。ま
た、第2振動子の電極と基板上の1つの電極間に電圧を
加えると、第2振動子のスパンバンドを中心に回転モー
メントが生じ、反射ミラーの固定部が回転する。第1お
よび第2振動子のスパンバンドは直交しているので、反
射ミラーは各軸を中心に回転でき、二次元の光走査が可
能となる。この走査方法では2軸を完全に独立させてい
るので相互に干渉することがなく、かつ各可動部とそれ
に対向させた電極との間に生じる静電気力で駆動するの
で、ミラーを保持する部材の長さは小さくて良く、外形
寸法を小さくすることができる。また、第1振動子およ
び第2振動子の回転中心に対して左右対称に設けた2対
の第1,第3電極の静電容量は、第1電極と第2電極お
よび第2電極と第3電極の間隔で決まり、振動子が傾け
ば一方の容量は増大し他方のそれは減少する。したがっ
て、この2つの静電容量を検出し、その比が“1”とな
るよう、軸に対し対称に配置した駆動用電極の左右の電
圧配分を制御(調整)すれば前記間隔は左右等しくなり
、振動子は水平に維持される。同様にして、任意の角度
だけ振らす場合も静電容量の比を設定し、第1,第3駆
動用電極に加える電圧を制御すれば良い。この制御は第
1振動子,第2振動子とも全く独立に行なえるので、平
面上の任意の点への光走査が可能となる。
[Operation] When a voltage is applied between one electrode of the first vibrator and the electrode of the second vibrator, a rotational moment is generated around the span band of the first vibrator, and the reflecting mirror rotates. Further, when a voltage is applied between the electrode of the second vibrator and one electrode on the substrate, a rotational moment is generated around the span band of the second vibrator, and the fixed portion of the reflecting mirror rotates. Since the span bands of the first and second vibrators are perpendicular to each other, the reflecting mirror can be rotated around each axis, allowing two-dimensional optical scanning. In this scanning method, the two axes are completely independent, so they do not interfere with each other, and since the scanning method is driven by electrostatic force generated between each movable part and the electrode facing it, the member that holds the mirror The length may be small, and the external dimensions can be reduced. Furthermore, the capacitances of the two pairs of first and third electrodes, which are provided symmetrically with respect to the rotation centers of the first and second vibrators, are It is determined by the spacing between the three electrodes, and when the vibrator is tilted, the capacitance of one increases and that of the other decreases. Therefore, by detecting these two capacitances and controlling (adjusting) the voltage distribution on the left and right sides of the driving electrodes arranged symmetrically with respect to the axis so that the ratio becomes "1", the above-mentioned intervals will be equal on the left and right sides. , the oscillator is kept horizontal. Similarly, when swinging by an arbitrary angle, the capacitance ratio can be set and the voltage applied to the first and third driving electrodes can be controlled. Since this control can be performed completely independently of the first and second vibrators, it is possible to perform optical scanning to any point on a plane.

【0008】[0008]

【実施例】図1は本発明の実施例を示す構造図、図2は
第1振動子の裏面を示す概要図、図3は図1の断面を示
す断面図である。図1において、20は第1振動子で、
第1の可動部3とこれを保持する一対のスパンバンド2
a,2bとスパンバンドを固定する枠体12とからなり
、例えばSiO2 ,ガラス,樹脂等の絶縁物で一体に
形成されている。第1可動部3の裏面には図2のように
、スパンバンドの軸を挟んで対称に2つに分割された電
極10a,10bが接合されており、各々の電極をスパ
ンバンドを通して枠体に引き出し、ボンディングにより
リード線を図3(イ)のように接続している。なお、第
1可動部の電極表面には光を反射させるためのミラー1
を設置する。
Embodiment FIG. 1 is a structural diagram showing an embodiment of the present invention, FIG. 2 is a schematic diagram showing the back side of a first vibrator, and FIG. 3 is a sectional view showing the cross section of FIG. In FIG. 1, 20 is a first vibrator;
First movable part 3 and a pair of span bands 2 that hold it
a, 2b and a frame 12 for fixing the span band, and is integrally formed of an insulating material such as SiO2, glass, or resin. As shown in FIG. 2, electrodes 10a and 10b, which are divided into two parts symmetrically across the axis of the span band, are joined to the back surface of the first movable part 3, and each electrode is connected to the frame body through the span band. The lead wires are connected by pulling out and bonding as shown in Figure 3 (A). Note that a mirror 1 for reflecting light is provided on the electrode surface of the first movable part.
Set up.

【0009】第2振動子21も第1振動子20と同じよ
うに、第2可動部4とスパンバンド4a,4bおよび枠
体13で構成され、第2可動部4には凹部14が形成さ
れ、その裏面には振動子全面に第2電極15が接合して
ある。また、第1振動子20は第2可動部4に対し第1
スパンバンドと第2スパンバンドが直交し、かつ凹部1
4の突起4cが第1可動部3の回転中心で接するように
接合されていて、第1可動部3が第1スパンバンド2a
,2bを中心に回転するときの支点の役目を果たしてい
る。さらに、絶縁材の基板6の上には2つに分割された
第3電極11a,11bが接合され、その上にガラス,
セラミックまたは樹脂をコーティングして絶縁層16を
、またその上には凹部となるような適当な高さを持った
スペーサ17が接合されている(図3(ロ)参照)。第
1振動子が載せられた第2振動子は、基板6のスペーサ
17上にスペーサ凹部9の突起が第2可動部の回転中心
で接するように接合されていて、第2可動部が第2スパ
ンバンドを中心に回転する際の支点となっている。なお
、2つに分割された第3電極は第2スパンバンドに対し
て左右対称に配置されており、第1可動部および第2可
動部の振れ角はそれぞれ凹部9と14の高さによって決
まるようになっている。また、第2電極はグランドに接
地され、0電位になっている。
Like the first vibrator 20, the second vibrator 21 is composed of a second movable part 4, span bands 4a, 4b, and a frame 13, and a recess 14 is formed in the second movable part 4. , a second electrode 15 is bonded to the entire surface of the vibrator on the back surface thereof. Moreover, the first vibrator 20 is
The span band and the second span band are perpendicular to each other, and the recess 1
The protrusions 4c of 4 are joined to the first movable part 3 so as to be in contact with each other at the center of rotation, and the first movable part 3 is connected to the first span band 2a.
, 2b serves as a fulcrum when rotating around the center. Further, a third electrode 11a, 11b which is divided into two parts is bonded on the substrate 6 made of an insulating material, and a glass plate is placed on top of the third electrode 11a, 11b.
An insulating layer 16 is coated with ceramic or resin, and a spacer 17 having an appropriate height to form a recess is bonded thereon (see FIG. 3(b)). The second vibrator on which the first vibrator is mounted is joined to the spacer 17 of the substrate 6 so that the protrusion of the spacer recess 9 contacts the rotation center of the second movable part, and the second movable part is connected to the second movable part. It serves as a fulcrum when rotating around the span band. Note that the third electrode divided into two is arranged symmetrically with respect to the second span band, and the deflection angles of the first movable part and the second movable part are determined by the heights of the recesses 9 and 14, respectively. It looks like this. Further, the second electrode is grounded and has a zero potential.

【0010】ここで、その動作について説明する。まず
、2つの電極を持つ第1電極において、電極10aの電
位が電極10bの電位よりも高いと、第2電極との間に
作用する静電引力でモーメントを受け、第1スパンバン
ド2a,2bは捩じられ、図3(イ)の矢印方向に回転
する。同様に、第3電極において、電極11aの電位が
電極11bの電位よりも高いと、第2電極との間に作用
する静電引力でモーメントを受け、第2スパンバンド4
a,4bは捩じられ、図3(ロ)の矢印方向に回転する
。したがって、第1,第3電極が持つ各々2つの電極に
印加する電圧に応じて、反射ミラーは第1および第2ス
パンバンドを中心に回転し、これによって二次元平面の
光走査が可能となる。
[0010] Here, its operation will be explained. First, in a first electrode having two electrodes, when the potential of the electrode 10a is higher than the potential of the electrode 10b, a moment is applied due to the electrostatic attraction acting between the first span band 2a and the first span band 2b. is twisted and rotates in the direction of the arrow in Fig. 3(a). Similarly, in the third electrode, when the potential of the electrode 11a is higher than the potential of the electrode 11b, the second span band 4 receives a moment due to the electrostatic attraction acting between it and the second electrode.
a and 4b are twisted and rotated in the direction of the arrow in FIG. 3(b). Therefore, the reflecting mirror rotates around the first and second span bands in accordance with the voltage applied to each of the two electrodes of the first and third electrodes, thereby enabling optical scanning of a two-dimensional plane. .

【0011】図4は圧電バイモルフを用いた実施例を示
す構造図である。同図において、39は第1振動子で、
金属板33に圧電素子32,34を貼り合わせて構成さ
れている。31は第2振動子で圧電素子35,37と金
属板36から構成されている。振動子39と31とは直
交し、かつ適当な間隔を保つよう凹部を有する可動部3
8を介して固定されており、第2振動子の両端を固定し
て使用する。第1および第2振動子の各圧電素子は、図
13(イ)の場合と同じように電極が設置され分極され
ているので、図4のように電圧Vxを印加すると矢印θ
x方向に、また電圧Vyを印加すると矢印θy方向にそ
れぞれ回転する。したがって、反射ミラー30はx軸,
y軸に対し全く独立に回転し、二次元の光走査ができる
ことになる。
FIG. 4 is a structural diagram showing an embodiment using a piezoelectric bimorph. In the same figure, 39 is the first vibrator,
It is constructed by bonding piezoelectric elements 32 and 34 to a metal plate 33. A second vibrator 31 is composed of piezoelectric elements 35 and 37 and a metal plate 36. The vibrators 39 and 31 are perpendicular to each other, and the movable part 3 has a concave portion to maintain an appropriate interval.
8, and the second vibrator is used with both ends fixed. Each piezoelectric element of the first and second vibrators is provided with electrodes and polarized in the same way as in the case of FIG. 13(A), so when voltage Vx is applied as shown in FIG.
It rotates in the x direction and in the arrow θy direction when voltage Vy is applied. Therefore, the reflecting mirror 30 has x-axis,
It rotates completely independently about the y-axis, allowing two-dimensional optical scanning.

【0012】 図5に本発明の別の実施例を示す。 上述した如き小型,軽量のねじり振動子20を、永久磁
石41a,41bによる外部磁界内に設置したリガメン
ト42a,42bおよびコイル43からなるガルバノミ
ラー40に固定する。この場合、ねじり振動子20の回
転軸をガルバノミラー40のリガメント42a,42b
による軸と直角に設置する。ガルバノミラー40はここ
では、図1の第2振動子に相当する。なお、ねじり振動
子20としては図1に示すスパンバンドの代わりに、S
字形のビームを用いたものを使用することもでき、図5
はこの例を示している。このような構成において、Y軸
方向の走査はねじり振動子20に設けられた2つの電極
に電圧を印加することにより電界を発生させ、その静電
気力で可動板(反射ミラー)を回転運動させることによ
り行なう。また、X軸方向の走査はコイル43に電流を
流すことにより、この電流に比例する磁界と直角方向の
力を発生させ、ガルバノミラー40を回転運動させるこ
とにより行なう。こうして、磁界と電界を各軸方向の走
査(駆動)に用いることにより、各軸の走査に当たって
図12または図13に示すような干渉がなく、互いに全
く独立に駆動できるので、小型かつ低コストで制御性が
良く、しかも広範囲の走査が可能な二次元光偏向子を得
ることが可能となる。なお、第1,第2の振動子の構成
を逆にする、つまり第1振動子をガルバノミラー型とし
、第2振動子を静電気駆動型とすることができるのは勿
論である。
FIG. 5 shows another embodiment of the invention. The small and lightweight torsional vibrator 20 as described above is fixed to a galvanometer mirror 40 consisting of ligaments 42a, 42b and a coil 43 placed within an external magnetic field by permanent magnets 41a, 41b. In this case, the rotation axis of the torsional oscillator 20 is
installed perpendicular to the axis. The galvanometer mirror 40 corresponds to the second vibrator in FIG. 1 here. In addition, as the torsional vibrator 20, instead of the span band shown in FIG.
It is also possible to use one using a letter-shaped beam, as shown in Figure 5.
shows this example. In such a configuration, scanning in the Y-axis direction is performed by applying voltage to two electrodes provided on the torsional vibrator 20 to generate an electric field, and rotating the movable plate (reflection mirror) using the electrostatic force. This is done by Scanning in the X-axis direction is performed by passing a current through the coil 43 to generate a force in a direction perpendicular to the magnetic field proportional to the current, and rotating the galvano mirror 40. In this way, by using a magnetic field and an electric field for scanning (driving) in each axis direction, there is no interference as shown in Fig. 12 or 13 when scanning each axis, and the driving can be done completely independently of each other, making it compact and low cost. It becomes possible to obtain a two-dimensional optical deflector that has good controllability and can scan over a wide range. It is of course possible to reverse the configurations of the first and second vibrators, that is, to make the first vibrator a galvano-mirror type and to make the second vibrator an electrostatic drive type.

【0013】 図6に図5の変形例を示す。 これは、ねじり振動子20および外部磁界中に設置され
るコイル43とリガメント42a,42bをガラス等の
絶縁基板45に直接設置したものである。このガラス基
板45は成形性の良い絶縁基板であれば如何なるもので
も良い。なお、44a,44bは電極を示す。こうする
ことにより、組立が簡単かつ低コストで、しかもリガメ
ント回りの慣性モーメントを低くすることができるので
、ねじり共振周波数が高く、応答性の良い二次元光偏向
子を得ることが可能となる。
FIG. 6 shows a modification of FIG. 5. This has a torsional vibrator 20, a coil 43 placed in an external magnetic field, and ligaments 42a, 42b placed directly on an insulating substrate 45 made of glass or the like. This glass substrate 45 may be any insulating substrate with good moldability. Note that 44a and 44b indicate electrodes. By doing so, assembly is simple and cost-effective, and the moment of inertia around the ligament can be lowered, making it possible to obtain a two-dimensional optical deflector with a high torsional resonance frequency and good responsiveness.

【0014】 図7に図5の別の変形例を示す。 これは、図4に示す第1振動子39と第2振動子31の
うち第1振動子はそままで、第2振動子を図6と同様に
リガメント42a,42bとコイル43をガラス等の基
板45に直接設置して構成したもので、第1振動子39
には電圧を印加して駆動し、第2振動子は磁界により駆
動するものである。なお、この場合も第1,第2の振動
子の構成を互いに逆にすることができる。
FIG. 7 shows another modification of FIG. 5. This is because the first vibrator of the first vibrator 39 and the second vibrator 31 shown in FIG. 45, the first vibrator 39
is driven by applying a voltage, and the second vibrator is driven by a magnetic field. Note that also in this case, the configurations of the first and second vibrators can be reversed.

【0015】次に、振れ角を調整する場合の実施例につ
いて説明する。図8に光偏向子の構造図を、図9にその
第1振動子の電極構成図を、図10に調整,制御回路を
含む全体構成図をそれぞれ示す。この場合、左右対称に
配置された第1,第3電極をさらに分割し、左右対称に
駆動用電極と検出用電極とを設けることが必要になる。 すなわち、図9のように第1振動子20上の第1スパン
バンド2a,2bに対し、左右対称に駆動用第1電極1
0a,10bと検出用第1電極10c,10dが接合さ
れ、図8のように基板6には第2振動子のスパンバンド
4a,4bに対し、左右対称に駆動用第3電極11a,
11bと検出用第3電極11c,11dが接合される。 なお、その他の構成は図1と全く同様である。56,5
7,58,59は図10(イ),(ロ)に示すように、
前記第1電極10c,10dと第2電極15との間、お
よび第2電極15と第3電極11c,11dとの間の静
電容量検出器で、容量値に応じた電圧を出力する。52
,53はこの左右の各出力の比を演算する演算器、54
,55はこの演算結果にもとづいて駆動用第1電極10
a,10bと駆動用第3電極11a,11bに電圧を加
える電圧印加部であり、51X,51Yは上記演算器5
2,53に反射ミラーの振れ角設定信号を与えるための
設定器であり、外部機器より設定される。
Next, an embodiment in which the deflection angle is adjusted will be described. FIG. 8 shows the structure of the optical deflector, FIG. 9 shows the electrode structure of the first vibrator, and FIG. 10 shows the overall structure including the adjustment and control circuits. In this case, it is necessary to further divide the symmetrically arranged first and third electrodes to provide drive electrodes and detection electrodes symmetrically. That is, as shown in FIG. 9, the first driving electrode 1 is symmetrically arranged with respect to the first span bands 2a and 2b on the first vibrator 20.
0a, 10b and the first detection electrodes 10c, 10d are joined, and as shown in FIG.
11b and the third detection electrodes 11c and 11d are joined. Note that the other configurations are completely the same as in FIG. 1. 56,5
7, 58, and 59 are as shown in FIG. 10 (a) and (b),
A capacitance detector between the first electrodes 10c, 10d and the second electrode 15 and between the second electrode 15 and the third electrodes 11c, 11d outputs a voltage according to the capacitance value. 52
, 53 is an arithmetic unit that calculates the ratio of the left and right outputs, 54
, 55 is the first driving electrode 10 based on this calculation result.
a, 10b and the third drive electrodes 11a, 11b, and 51X, 51Y are the arithmetic unit 5.
This is a setting device for giving a deflection angle setting signal for the reflecting mirror to 2 and 53, and is set by an external device.

【0016】その作用について説明する。いま、検出用
第1電極10c,10dと第2電極15との間隔が等し
い時は、その静電容量も等しく検出器56,57の検出
値に差は生じない。ここで、第1可動部が図10(イ)
に破線で示すように傾くと、第1電極10dの間隔が狭
くなるので静電容量は大きくなり、検出器56,57の
検出値に差が生じるので、その比が1に等しくなるよう
駆動用第1電極10bの電圧を下げ、電極10aの電圧
を上げるよう調整(制御)する。このことは振れ角を制
御する場合も同様で、外部から振れ角に応じた静電容量
の差に応じた制御信号を与えれば、検出器56,57の
電圧出力比、つまり振幅が制御されることになる。全く
同様に第2振動子についても制御できるので、二次元平
面の任意の点について光走査が可能となる。
[0016] Its operation will be explained. Now, when the distances between the first detection electrodes 10c, 10d and the second electrode 15 are equal, their capacitances are also equal, and there is no difference in the detection values of the detectors 56, 57. Here, the first movable part is shown in FIG.
When tilted as shown by the broken line, the distance between the first electrodes 10d becomes narrower, and the capacitance increases, causing a difference in the detection values of the detectors 56 and 57. The voltage of the first electrode 10b is adjusted (controlled) to be lowered and the voltage of the electrode 10a is increased. This is the same when controlling the deflection angle; if a control signal is applied from the outside according to the difference in capacitance according to the deflection angle, the voltage output ratio of the detectors 56 and 57, that is, the amplitude can be controlled. It turns out. Since the second vibrator can be controlled in exactly the same way, optical scanning can be performed at any point on the two-dimensional plane.

【0017】[0017]

【発明の効果】本発明によれば、可動部を駆動手段によ
り回転振動させる振動子を2つ用い、2つの振動子の回
転中心が互いに直交するように一方の振動子全体を他方
の可動部に固定するように構成したので、2軸を中心に
それぞれ独立した振れ角が得られ、小形にできるだけで
なく製造コストも低く抑えられるという利点がある。ま
た、圧電素子で構成したり静電気力または電磁力にて駆
動することにより、消費電力を少なくすることができる
。さらに、2軸の可動部の角度を回転中心の左右の静電
容量の比として検出して振れ角を制御すれば、製作時に
発生する反射ミラーの初期傾きを機械的に調整すること
なく補正することがコストも増大させず比較的簡単にで
き、したがって精度良く振れ角を制御することが可能と
なる。
According to the present invention, two vibrators whose movable parts are rotatably vibrated by a driving means are used, and the whole of one vibrator is moved to the other movable part so that the centers of rotation of the two vibrators are orthogonal to each other. Since it is configured so that it is fixed to , it is possible to obtain independent deflection angles around two axes, which has the advantage that it can not only be made smaller but also that manufacturing costs can be kept low. Moreover, power consumption can be reduced by configuring it with a piezoelectric element or driving it with electrostatic force or electromagnetic force. Furthermore, if the deflection angle is controlled by detecting the angle of the two-axis movable part as the ratio of the capacitance on the left and right sides of the rotation center, the initial tilt of the reflecting mirror that occurs during manufacturing can be corrected without mechanical adjustment. This can be done relatively easily without increasing costs, and it is therefore possible to control the deflection angle with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例を示す組立構成図である。FIG. 1 is an assembled configuration diagram showing an embodiment of the present invention.

【図2】第1振動子の電極構造を示す構成図である。FIG. 2 is a configuration diagram showing an electrode structure of a first vibrator.

【図3】図1の動作を説明するための断面図である。FIG. 3 is a sectional view for explaining the operation of FIG. 1;

【図4】本発明の他の実施例を示す斜視図である。FIG. 4 is a perspective view showing another embodiment of the present invention.

【図5】本発明のさらに他の実施例を示す斜視図である
FIG. 5 is a perspective view showing still another embodiment of the present invention.

【図6】図5の変形例を示す斜視図である。FIG. 6 is a perspective view showing a modification of FIG. 5;

【図7】図5の別の変形例を示す斜視図である。7 is a perspective view showing another modification of FIG. 5. FIG.

【図8】本発明の別の実施例を示す組立構成図である。FIG. 8 is an assembled configuration diagram showing another embodiment of the present invention.

【図9】図8の第1振動子の電極構造を示す構成図であ
る。
9 is a configuration diagram showing the electrode structure of the first vibrator shown in FIG. 8. FIG.

【図10】図8に示すものに調整,制御回路を付加した
全体構成図である。
FIG. 10 is an overall configuration diagram in which an adjustment and control circuit is added to the one shown in FIG. 8;

【図11】一次元走査が可能な光偏向子の従来例を示す
構成図である。
FIG. 11 is a configuration diagram showing a conventional example of an optical deflector capable of one-dimensional scanning.

【図12】二次元走査が可能な光偏向子の従来例を示す
構成図である。
FIG. 12 is a configuration diagram showing a conventional example of an optical deflector capable of two-dimensional scanning.

【図13】図12の断面図である。FIG. 13 is a cross-sectional view of FIG. 12;

【符号の説明】[Explanation of symbols]

1  反射ミラー 3  可動部 4  可動部 6  基板 9  凹部 2a  スパンバンド 2b  スパンバンド 4a  スパンバンド 4b  スパンバンド 4c  突起 12  枠体 13  枠体 14  凹部 15  電極 16  絶縁層 17  スペーサ 20  第1振動子 21  第2振動子 30  反射ミラー 31  第2振動子 32  圧電素子 33  金属板 34  圧電素子 35  圧電素子 36  金属板 37  圧電素子 38  可動部 39  第1振動子 40  ガルバノミラー 43  コイル 45  基板 52  演算器 53  演算器 54  電圧印加部 55  電圧印加部 56  検出器 57  検出器 58  検出器 59  検出器 10a  電極 10b  電極 10c  電極 10d  電極 11a  電極 11b  電極 11c  電極 11d  電極 41a  永久磁石 41b  永久磁石 42a  リガメント 42b  リガメント 44a  電極 44b  電極 51X  設定器 51Y  設定器 1 Reflection mirror 3 Movable part 4 Movable part 6 Board 9 Recessed part 2a Spun band 2b Spun band 4a Spun band 4b Spun band 4c Protrusion 12 Frame body 13 Frame body 14 Recess 15 Electrode 16 Insulating layer 17 Spacer 20 First oscillator 21 Second oscillator 30 Reflection mirror 31 Second oscillator 32 Piezoelectric element 33 Metal plate 34 Piezoelectric element 35 Piezoelectric element 36 Metal plate 37 Piezoelectric element 38 Movable part 39 First oscillator 40 Galvano mirror 43 Coil 45 Board 52 Arithmetic unit 53 Arithmetic unit 54 Voltage application section 55 Voltage application section 56 Detector 57 Detector 58 Detector 59 Detector 10a Electrode 10b Electrode 10c electrode 10d Electrode 11a Electrode 11b Electrode 11c Electrode 11d Electrode 41a Permanent magnet 41b Permanent magnet 42a Ligament 42b Ligament 44a Electrode 44b Electrode 51X Setting device 51Y Setting device

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  1軸を中心に回転する可動板とこれを
駆動する駆動部とを有する第1,第2振動子に対し、第
1振動子の可動板には反射ミラーを設置し、第2振動子
の可動板には第1振動子を、両振動子の回転軸が互いに
直交するように固定したことを特徴とする光偏向子。
Claim 1: First and second vibrators each have a movable plate that rotates about one axis and a drive unit that drives the movable plate, and a reflective mirror is installed on the movable plate of the first vibrator, An optical deflector characterized in that a first vibrator is fixed to a movable plate of two vibrators such that the rotation axes of both vibrators are orthogonal to each other.
【請求項2】  前記第1,第2振動子の可動板を静電
気力にて駆動することを特徴とする請求項1に記載の光
偏向子。
2. The optical deflector according to claim 1, wherein the movable plates of the first and second vibrators are driven by electrostatic force.
【請求項3】  前記第1,第2振動子の可動板を圧電
素子により構成し電圧を印加して駆動することを特徴と
する請求項1に記載の光偏向子。
3. The optical deflector according to claim 1, wherein the movable plates of the first and second vibrators are constituted by piezoelectric elements and are driven by applying a voltage.
【請求項4】  前記第1,第2振動子の可動板のいず
れか一方を静電気力にて駆動し、他方を電磁力にて駆動
することを特徴とする請求項1に記載の光偏向子。
4. The optical deflector according to claim 1, wherein one of the movable plates of the first and second vibrators is driven by electrostatic force, and the other is driven by electromagnetic force. .
【請求項5】  前記第1,第2振動子の可動板のいず
れか一方を圧電素子として電圧を印加して駆動し、他方
を電磁力にて駆動することを特徴とする請求項1に記載
の光偏向子。
5. The movable plate according to claim 1, wherein one of the movable plates of the first and second vibrators is a piezoelectric element and is driven by applying a voltage, and the other is driven by electromagnetic force. optical deflector.
【請求項6】  前記第1,第2振動子の可動板に対し
、その各回転軸に対称に設置されて静電容量を検出する
検出手段と、その各静電容量値の比を演算する演算手段
と、演算結果に応じた駆動電圧を印加する電圧印加手段
とを設け、2つの回転軸に対し可動板の振れ角を検出し
その調整を可能にしてなることを特徴とする請求項1に
記載の光偏向子。
6. Detecting means for detecting capacitance, which is installed symmetrically about the respective rotational axes of the movable plates of the first and second vibrators, and calculating a ratio of the respective capacitance values. Claim 1 characterized in that the movable plate is provided with a calculation means and a voltage application means for applying a drive voltage according to the calculation result, so that the deflection angle of the movable plate with respect to the two rotation axes can be detected and adjusted. The optical deflector described in .
JP4403991A 1990-02-19 1991-02-18 Optical deflector Pending JPH04211217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4403991A JPH04211217A (en) 1990-02-19 1991-02-18 Optical deflector

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3634290 1990-02-19
JP2-36342 1990-02-19
JP4403991A JPH04211217A (en) 1990-02-19 1991-02-18 Optical deflector

Publications (1)

Publication Number Publication Date
JPH04211217A true JPH04211217A (en) 1992-08-03

Family

ID=26375388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4403991A Pending JPH04211217A (en) 1990-02-19 1991-02-18 Optical deflector

Country Status (1)

Country Link
JP (1) JPH04211217A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06180428A (en) * 1992-12-15 1994-06-28 Matsushita Electric Ind Co Ltd Electrostatic force driven small-sized optical scanner
EP0689349A1 (en) 1994-06-20 1995-12-27 Sharp Kabushiki Kaisha Imaging apparatus with mechanism for enhancing resolution
US5486944A (en) * 1989-10-30 1996-01-23 Symbol Technologies, Inc. Scanner module for symbol scanning system
US5579148A (en) * 1993-11-29 1996-11-26 Nippondenso Co., Ltd. Two-dimensional optical scanner
WO1996039643A1 (en) * 1995-06-05 1996-12-12 Nihon Shingo Kabushiki Kaisha Electromagnetic actuator
EP0866345A1 (en) * 1996-06-07 1998-09-23 Nihon Shingo Kabushiki Kaisha Variable-axis photodetector
JP2002182136A (en) * 2000-12-18 2002-06-26 Olympus Optical Co Ltd Mirror oscillating body for optical deflector
JP2003181800A (en) * 2001-12-19 2003-07-02 Hitachi Ltd Piezoelectric micro-actuator and micro-mirror equipped with the same
KR100449143B1 (en) * 2001-07-11 2004-09-18 캐논 가부시끼가이샤 Light deflector, method of manufacturing light deflector, optical device using light deflector, and torsion oscillating member
KR100813257B1 (en) * 2006-07-04 2008-03-13 삼성전자주식회사 Scanning apparatus and method
JP2008116669A (en) * 2006-11-02 2008-05-22 Seiko Epson Corp Optical device, manufacturing method of optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
JP2008190883A (en) * 2007-02-01 2008-08-21 Nikon Corp Measuring device
JP2009075309A (en) * 2007-09-20 2009-04-09 Fujifilm Corp Optical scanning element and driving method for the same, and optical scanning probe employing optical scanning element
WO2009119568A1 (en) * 2008-03-25 2009-10-01 日本ビクター株式会社 Two-dimensional optical beam deflector and image display device using the same
JP2013099843A (en) * 1998-09-02 2013-05-23 Xros Inc Micromachined member coupled with torsional flexure hinge and relatively rotating

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486944A (en) * 1989-10-30 1996-01-23 Symbol Technologies, Inc. Scanner module for symbol scanning system
JPH06180428A (en) * 1992-12-15 1994-06-28 Matsushita Electric Ind Co Ltd Electrostatic force driven small-sized optical scanner
US5579148A (en) * 1993-11-29 1996-11-26 Nippondenso Co., Ltd. Two-dimensional optical scanner
EP0689349A1 (en) 1994-06-20 1995-12-27 Sharp Kabushiki Kaisha Imaging apparatus with mechanism for enhancing resolution
US5637861A (en) * 1994-06-20 1997-06-10 Sharp Kabushiki Kaisha Imaging apparatus having improved resolution due to control of an inclination angle of a refracting plate in more than one direction
WO1996039643A1 (en) * 1995-06-05 1996-12-12 Nihon Shingo Kabushiki Kaisha Electromagnetic actuator
US6232861B1 (en) 1995-06-05 2001-05-15 Nihon Shingo Kabushiki Kaisha Electromagnetic actuator
US6404313B2 (en) 1995-06-05 2002-06-11 Nihon Shingo Kabushiki Kaisha Electromagnetic actuator
EP0866345A1 (en) * 1996-06-07 1998-09-23 Nihon Shingo Kabushiki Kaisha Variable-axis photodetector
EP0866345A4 (en) * 1996-06-07 2000-08-30 Nihon Shingo Kabushiki Kaisha Variable-axis photodetector
JP2013099843A (en) * 1998-09-02 2013-05-23 Xros Inc Micromachined member coupled with torsional flexure hinge and relatively rotating
JP2014176964A (en) * 1998-09-02 2014-09-25 Xros Inc Microfabrication member connected by torsion flexure hinge and rotated relatively
JP2002182136A (en) * 2000-12-18 2002-06-26 Olympus Optical Co Ltd Mirror oscillating body for optical deflector
KR100449143B1 (en) * 2001-07-11 2004-09-18 캐논 가부시끼가이샤 Light deflector, method of manufacturing light deflector, optical device using light deflector, and torsion oscillating member
JP2003181800A (en) * 2001-12-19 2003-07-02 Hitachi Ltd Piezoelectric micro-actuator and micro-mirror equipped with the same
KR100813257B1 (en) * 2006-07-04 2008-03-13 삼성전자주식회사 Scanning apparatus and method
JP2008116669A (en) * 2006-11-02 2008-05-22 Seiko Epson Corp Optical device, manufacturing method of optical device, wavelength variable filter, wavelength variable filter module and optical spectrum analyzer
JP4561728B2 (en) * 2006-11-02 2010-10-13 セイコーエプソン株式会社 Optical device, optical device manufacturing method, tunable filter, tunable filter module, and optical spectrum analyzer
JP2008190883A (en) * 2007-02-01 2008-08-21 Nikon Corp Measuring device
JP2009075309A (en) * 2007-09-20 2009-04-09 Fujifilm Corp Optical scanning element and driving method for the same, and optical scanning probe employing optical scanning element
US8294968B2 (en) 2007-09-20 2012-10-23 Fujifilm Corporation Optical scanning element, driving method for same, and optical scanning probe employing optical scanning element
WO2009119568A1 (en) * 2008-03-25 2009-10-01 日本ビクター株式会社 Two-dimensional optical beam deflector and image display device using the same

Similar Documents

Publication Publication Date Title
CA2084946C (en) Resonant mirror and method of manufacture
US5202785A (en) Method and device for steering light
JP2924200B2 (en) Torsional vibrator and its application element
JP3011144B2 (en) Optical scanner and its driving method
US5392151A (en) Method and apparatus for steering light
JP2657769B2 (en) Planar type galvanometer mirror having displacement detection function and method of manufacturing the same
US6044705A (en) Micromachined members coupled for relative rotation by torsion bars
JP4776779B2 (en) Microfabricated members that are connected by torsional flexure and rotate relatively
JP3003429B2 (en) Torsional vibrator and optical deflector
US7161275B2 (en) Actuator
JPH04211217A (en) Optical deflector
US7684102B2 (en) Oscillator device and image forming apparatus using the same
JP3129219B2 (en) Optical scanner
JPH11242180A (en) Optical scanner
WO2021192161A1 (en) Optical scanning device, control method for optical scanning device, and distance measuring device
JP2001075042A (en) Optical deflector
US20230139572A1 (en) Optical scanning device and method of driving micromirror device
JPH04343318A (en) Torsional vibrator
JP2001264676A (en) Optical scanner
JP2023039222A (en) Micro-mirror device and optical scanning device
EP0548831B1 (en) Resonant mirror and method of manufacture
JP2001272626A (en) Optical scanner
JPH11218709A (en) Optical scanning device
US20230350193A1 (en) Optical scanning device and method of driving micromirror device
JP2005250076A (en) Optical deflector