JPH0417171B2 - - Google Patents

Info

Publication number
JPH0417171B2
JPH0417171B2 JP59127592A JP12759284A JPH0417171B2 JP H0417171 B2 JPH0417171 B2 JP H0417171B2 JP 59127592 A JP59127592 A JP 59127592A JP 12759284 A JP12759284 A JP 12759284A JP H0417171 B2 JPH0417171 B2 JP H0417171B2
Authority
JP
Japan
Prior art keywords
fluoropropanal
rhodium
catalysts
present
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59127592A
Other languages
Japanese (ja)
Other versions
JPS617228A (en
Inventor
Takamasa Fuchigami
Yasuyuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP59127592A priority Critical patent/JPS617228A/en
Publication of JPS617228A publication Critical patent/JPS617228A/en
Publication of JPH0417171B2 publication Critical patent/JPH0417171B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は式 H3C−CHF−CHO …() で表される2−フルオロプロパナールを製造する
方法に関する。更に詳しくは、本発明は周期表第
族金属触媒の存在下、式 で表されるモノフルオロエチレンをヒドロホルミ
ル化することにより2−フルオロプロパナールを
製造する方法に関する。 本発明により得られる2−フルオロプロパナー
ルは種々の化合物の合成原料として用いることが
できる。例えば、酸化することにより得られる2
−フルオロプロピオン酸は除草剤として有用であ
ることが知られている(特開昭55−40609号参
照)。 従来、2−フルオロプロパナールを製造する方
法としては、2−ブロモプロピオン酸エチルを
KFでナロゲン交換し、塩基の存在下にギ酸エチ
ルと反応させ、さらに濃硫酸中で加熱することに
より得る方法が知られているが〔E.Elkik.Bull.
Soc.Chim.Fr.,2254(1944)〕、工程数を多く全収
率も4%と極めて低いものであり、工業的には採
用しがたいものである。 本発明者らは、2−フルオロプロパナールの工
業的製造方法を見出すべく鋭意検討した結果、入
手容易な触媒を用い、高収率で2−フルオロプロ
パナールを製造できることを見出し本発明を完成
した。 本発明の原料であるモノフルオロエチレンは、
アセチレンとHFの反応をはじめ多くの方法によ
り製造することができ、容易に入手可能な化合物
である。 本発明は第族金属触媒の存在下に行うことが
必要である。これらの触媒としては例えば、塩化
コバルト、酢酸コバルト、ジコバルトオクタカル
ボニル、ヒドリドテトラカルボニルコバルト等の
コバルト系触媒、塩化ロジウム、酢酸ロジウム、
テトラロジウムドデカカルボニル、ヘキサロジウ
ムヘキサデカカルボニル、ヒドリドテトラカルボ
ニルロジウム、ヒドリドカルボニルトリス(トリ
フエニルホスフイン)ロジウム、クロロカルボニ
ルビス(トリフエニルホスフイン)ロジウム、ク
ロロジカルボニルロジウム二量体、クロロトリス
(トリフエニルホスフイン)ロジウム等のロジウ
ム系触媒、ジクロロビス(トリフエニルホスフイ
ン)白金、塩化第一白金カリウム等の白金系触媒
及びこれらの白金系触媒に塩化第一スズを添加し
た触媒、塩化ルテニウム、ルテニウムドデカカル
ボニル等のルテニウム系触媒等を例示することが
できる。 また、これらの触媒に対してニトリル、アミ
ン、ホスフイン、アルシン等を添加し用いても何
ら差支えない。さらに、これらの触媒は活性炭、
シリカ、アルミナ、有機重合体等に担持させて使
用することもできる。これらの触媒のうち、活性
が高いことからコバルト及びロジウム系触媒の使
用が好ましい。触媒の使用量はモノフルオロエチ
レンに対して通常10-1〜10-6モルの範囲で用いる
ことができる。 本発明のヒドロホルミル化に於ける一酸化炭素
及び水素は通常常圧乃至300気圧の圧力をもつて
系内に導入し反応を行うことができる。 本発明の実施にあたつては溶媒中でおこなうこ
とが好ましく、例えばベンゼン、トルエン、キシ
レン等の芳香族系溶媒、テトラヒドロフラン、ジ
オキサン等のエーテル系溶媒、メタノール、エタ
ノール等のアルコール系溶媒、トリエチルアミ
ン、ピリジン等のアミン系溶媒、酢酸、酢酸エチ
ル等のカルボン酸及びそのエステル等を使用する
ことができる。 反応は用いる触媒によつても異なるが、室温乃
至300℃の範囲で円滑に進行する。 以下、実施例により本発明を更に詳細に説明す
る。 実施例 1 CH2=CHF+CO+H2→CH3CHFCHO 50mlのオートクレーブにヘキサロジウムヘキサ
デカカルボニル(3.6mg、3.3×10-3mmol)及び
トルエン(5ml)を入れ脱気した。フルオロエチ
レン(460mg、10mmol)を導入した後、一酸化
炭素分圧35気圧及び水素分圧35気圧下80℃で7時
間加熱撹拌した。冷却後常圧にもどし内容物をガ
スクロマトグラフイーで分析したところ2−フル
オロプロパナールが95%の収率で生成していた。 沸点:56−57℃/760mmHg1 H NMR(CDCl3:TMS):δ1.46(d,d,J=
24.0、7.2Hz、3H)、4.9(d,q,J=49.5,7.2
Hz,1H),9.80(d,J=6.9Hz,1H).19 F NMR(CDCl3=CFCl3):δ−190.8(m,
1F). 実施例 2〜7 CH2=CHF+CO+H2→CH2CHFCHO 実施例1と同様な操作で反応を行つた結果を表
1に示す。
The present invention relates to a method for producing 2-fluoropropanal represented by the formula H3C -CHF-CHO...(). More specifically, the present invention provides that in the presence of a group metal catalyst of the periodic table, The present invention relates to a method for producing 2-fluoropropanal by hydroformylating monofluoroethylene represented by: 2-Fluoropropanal obtained by the present invention can be used as a raw material for the synthesis of various compounds. For example, 2 obtained by oxidizing
- Fluoropropionic acid is known to be useful as a herbicide (see JP-A-55-40609). Conventionally, the method for producing 2-fluoropropanal is to use ethyl 2-bromopropionate.
A known method is to exchange nalogen with KF, react with ethyl formate in the presence of a base, and further heat in concentrated sulfuric acid [E. Elkik. Bull.
Soc. Chim. Fr., 2254 (1944)], the number of steps is large, and the overall yield is extremely low at 4%, making it difficult to adopt industrially. The present inventors conducted intensive studies to find an industrial method for producing 2-fluoropropanal, and as a result, discovered that 2-fluoropropanal can be produced in high yield using an easily available catalyst, and completed the present invention. . Monofluoroethylene, which is the raw material of the present invention, is
It is an easily available compound that can be produced by many methods including the reaction of acetylene and HF. The present invention requires that it be carried out in the presence of a Group metal catalyst. Examples of these catalysts include cobalt-based catalysts such as cobalt chloride, cobalt acetate, dicobalt octacarbonyl, and hydridotetracarbonyl cobalt, rhodium chloride, rhodium acetate,
Tetrarhodium dodecacarbonyl, hexalodium hexadecacarbonyl, hydridotetracarbonyl rhodium, hydridocarbonyltris(triphenylphosphine)rhodium, chlorocarbonylbis(triphenylphosphine)rhodium, chlorodicarbonylrhodium dimer, chlorotris(triphenyl) rhodium (phosphine) rhodium, dichlorobis(triphenylphosphine) platinum, platinum catalysts such as platinum potassium chloride, catalysts prepared by adding stannous chloride to these platinum catalysts, ruthenium chloride, ruthenium dodeca Examples include ruthenium-based catalysts such as carbonyl. Furthermore, there is no problem in adding nitrile, amine, phosphine, arsine, etc. to these catalysts. Furthermore, these catalysts are activated carbon,
It can also be used supported on silica, alumina, organic polymers, etc. Among these catalysts, cobalt and rhodium catalysts are preferably used because of their high activity. The amount of catalyst to be used can be generally in the range of 10 -1 to 10 -6 mol based on monofluoroethylene. Carbon monoxide and hydrogen in the hydroformylation of the present invention can be generally introduced into the system at a pressure of normal pressure to 300 atmospheres to carry out the reaction. The present invention is preferably carried out in a solvent, such as aromatic solvents such as benzene, toluene and xylene, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as methanol and ethanol, triethylamine, etc. Amine solvents such as pyridine, carboxylic acids such as acetic acid and ethyl acetate, and esters thereof can be used. Although the reaction varies depending on the catalyst used, it proceeds smoothly at a temperature ranging from room temperature to 300°C. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 CH2 =CHF+CO+ H2CH3CHFCHO Hexalodium hexadecacarbonyl (3.6 mg, 3.3×10 -3 mmol) and toluene (5 ml) were placed in a 50 ml autoclave and degassed. After introducing fluoroethylene (460 mg, 10 mmol), the mixture was heated and stirred at 80° C. for 7 hours under a carbon monoxide partial pressure of 35 atm and a hydrogen partial pressure of 35 atm. After cooling, the pressure was returned to normal and the contents were analyzed by gas chromatography, and it was found that 2-fluoropropanal had been produced in a yield of 95%. Boiling point: 56-57℃/760mmHg 1 H NMR (CDCl 3 :TMS): δ1.46 (d, d, J=
24.0, 7.2Hz, 3H), 4.9 (d, q, J = 49.5, 7.2
Hz, 1H), 9.80 (d, J = 6.9Hz, 1H). 19F NMR ( CDCl3 = CFCl3 ): δ-190.8(m,
1F). Examples 2 to 7 CH 2 =CHF+CO+H 2 →CH 2 CHFCHO Table 1 shows the results of a reaction conducted in the same manner as in Example 1.

【表】 参考例 CH3CHFCHO→CH3CHFCOOH 2−フルオロプロパナール(852mg、
11.2mmol)の2N硫酸水溶液(11.2ml)に過マン
ガン酸カリウム(1.27g、8.1mmol)を少量ずつ
加え1時間40分撹拌後、3.8N硫酸(6.9ml)を加
え、次いで亜硫酸水素ナトリウムを反応溶液が無
色になるまで加えた。反応液をエーテルで抽出し
硫酸ナトリウムで乾燥後、減圧下溶媒を留去し、
残留物をガスクロマトグラフイーで分析したとこ
ろ2−フルオロプロピオン酸が収率59%で生成し
いることがわかつた。
[Table] Reference example CH 3 CHFCHO → CH 3 CHFCOOH 2-Fluoropropanal (852 mg,
Potassium permanganate (1.27 g, 8.1 mmol) was added little by little to a 2N aqueous sulfuric acid solution (11.2 ml) of 11.2 mmol). After stirring for 1 hour and 40 minutes, 3.8 N sulfuric acid (6.9 ml) was added, and then sodium bisulfite was added. The solution was added until it became colorless. The reaction solution was extracted with ether, dried over sodium sulfate, and the solvent was distilled off under reduced pressure.
Analysis of the residue by gas chromatography revealed that 2-fluoropropionic acid was produced in a yield of 59%.

Claims (1)

【特許請求の範囲】 1 周期表第族金属触媒の存在下、式 で表されるモノフルオロエチレンをヒドロホルミ
ル化することを特徴とする、式 H3C−CHF−CHO で表される2−フルオロプロパナールの製造方
法。 2 第族金属がコバルト又はロジウムである、
特許請求の範囲第1項に記載の方法。
[Claims] 1. In the presence of a group metal catalyst of the periodic table, the formula A method for producing 2-fluoropropanal represented by the formula H 3 C-CHF-CHO, which comprises hydroformylating monofluoroethylene represented by the formula H 3 C-CHF-CHO. 2 Group metal is cobalt or rhodium;
A method according to claim 1.
JP59127592A 1984-06-22 1984-06-22 Preparation of 2-fluoropropanal Granted JPS617228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127592A JPS617228A (en) 1984-06-22 1984-06-22 Preparation of 2-fluoropropanal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127592A JPS617228A (en) 1984-06-22 1984-06-22 Preparation of 2-fluoropropanal

Publications (2)

Publication Number Publication Date
JPS617228A JPS617228A (en) 1986-01-13
JPH0417171B2 true JPH0417171B2 (en) 1992-03-25

Family

ID=14963890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127592A Granted JPS617228A (en) 1984-06-22 1984-06-22 Preparation of 2-fluoropropanal

Country Status (1)

Country Link
JP (1) JPS617228A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5195888A (en) * 1991-08-19 1993-03-23 Praxair Technology, Inc. Multi-layer fluid curtains for furnace openings
WO2016016446A1 (en) * 2014-07-31 2016-02-04 Sandoz Ag Process for preparing 2-fluoropropionaldehyde

Also Published As

Publication number Publication date
JPS617228A (en) 1986-01-13

Similar Documents

Publication Publication Date Title
Takaya et al. Rhodium-catalyzed asymmetric 1, 4-addition of 2-alkenyl-1, 3, 2-benzodioxaboroles to α, β-unsaturated ketones
JPS5935378B2 (en) Method for producing lactic acid
FR2658187A1 (en) NOVEL ALPHA-HYDROXYL ACIDS, PREPARATION METHOD AND USE THEREOF
JPH0417171B2 (en)
TWI351314B (en) Homogeneous process for the hydrogenation of dicar
JPS62116536A (en) Production of glycol aldehyde
JPS63417B2 (en)
JPS635382B2 (en)
JP2533506B2 (en) Process for producing fluorine-containing carboxylic acid ester
US4855487A (en) Process for preparing fluorine-containing carboxylic acid ester
JP3923133B2 (en) Method for producing α, β-unsaturated aldehyde
JP4464274B2 (en) Process for producing alkylidene-substituted 1,4-dione derivatives
JP2508155B2 (en) Process for producing 4-biphenylacetic acid
JP3756537B2 (en) Dimethyldecandial and process for producing the same
JPH0892150A (en) Production of 5(e), 8(z), 11(z)-tetradecatrien-2-one
JPH05502447A (en) Oxidation method of 2-hydroxy-ethylphosphonic acid dialkyl ester
JP3254746B2 (en) Terminal acetylene compound and method for producing the same
JPS61293950A (en) Manufacture of carboxylic acid and ester
JP2796151B2 (en) Process for producing prenyl ketones and 3,3-dimethyl-4-prenyl-1-alkene-4-ols used for the production
JP2505633B2 (en) 2-Formyl butyric acid methyl ester manufacturing method
JP2001507000A (en) Method for producing carbonyl compound
JPS6358812B2 (en)
JPH1171329A (en) Production of alpha, beta-unsaturated aldehyde and intermediate useful for the production
JP2615845B2 (en) Method for producing phosphinyl aldehyde derivative
JPH11152280A (en) Preparation of 3-methyl-4-hydroxy-2-butenolide