JPH04116363A - Cryogenic apparatus - Google Patents

Cryogenic apparatus

Info

Publication number
JPH04116363A
JPH04116363A JP23869190A JP23869190A JPH04116363A JP H04116363 A JPH04116363 A JP H04116363A JP 23869190 A JP23869190 A JP 23869190A JP 23869190 A JP23869190 A JP 23869190A JP H04116363 A JPH04116363 A JP H04116363A
Authority
JP
Japan
Prior art keywords
pressure
gas
helium
container
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23869190A
Other languages
Japanese (ja)
Inventor
Takeru Ota
太田 長
Kazuki Moritsu
森津 一樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP23869190A priority Critical patent/JPH04116363A/en
Priority to GB9118973A priority patent/GB2247942B/en
Priority to US07/755,240 priority patent/US5150578A/en
Priority to DE4129522A priority patent/DE4129522C2/en
Publication of JPH04116363A publication Critical patent/JPH04116363A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to keep a virtually constant and positive internal pressure in a vessel which contains liquefied gas by installing a pressure sensor which detects gas pressure and a heater which heats the contents in the vessel and controlling the performance of the heater based on a signal transmitted from the pressure sensor. CONSTITUTION:When the pressure of helium gas 3 contained in a vessel 2 is turned negative due to excess cooling of a refrigerating machine, the negative pressure is detected by a pressure sensor 11 where a pressure control device 13 allows power to be supplied to an electric heater 12 and increases the temperature in the helium vessel 2 so that liquid helium 1 may be evaporated. When the pressure of helium gas 3 returns to the positive pressure, the supply of power is halted. Therefore, even if excessively cooled by the refrigerating machine 6, the pressure of helium gas can be virtually constant and positive as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば磁気共鳴診断装置の超電導マグネッ
トの冷却などに用いられる極低温装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cryogenic device used, for example, for cooling a superconducting magnet in a magnetic resonance diagnostic apparatus.

〔従来の技術〕[Conventional technology]

第6図は従来の極低温装置を示す断面図てあり、図にお
いて、(1)は液化ガスである液体ヘリウム、(2)は
液体ヘリウム(1)と図示しない超電導マクネットを収
容した液体ヘリウム容器、(3)は液体ヘリウム容器(
2)内のヘリウムガスで、液体ヘリウム(1)が気化し
て液面上に溜ったものである。(4〕は液体ヘリウム容
器(2)を包囲するように設けられた熱シールド、(5
)は熱シールド(4)を包囲し、内部を真空状態に保つ
真空容器、(6)は熱シールド(4)を冷却するととも
に、液体ヘリウム容器(2)内のヘリウムガス(3)を
再凝縮させる冷凍機、(7)は真空容器(5)を貫通し
て熱シールド((1)と液体l\ツリウム器(2)につ
ながった冷凍機ユニット、(8)は冷凍機ユニットを動
作させる圧縮機ユニットであり、冷凍機ユニツ1へ(刀
と圧1ili機ユニツ1− (8)で冷凍機(6)を構
成している。
Figure 6 is a cross-sectional view showing a conventional cryogenic device. In the figure, (1) is liquid helium, which is a liquefied gas, and (2) is liquid helium containing liquid helium (1) and a superconducting macronet (not shown). container, (3) is a liquid helium container (
The helium gas in 2) is liquid helium (1) that evaporates and accumulates on the liquid surface. (4) is a heat shield provided to surround the liquid helium container (2);
) is a vacuum container that surrounds the heat shield (4) and keeps the inside in a vacuum state, and (6) is a vacuum container that cools the heat shield (4) and recondenses the helium gas (3) in the liquid helium container (2). (7) is the refrigerator unit that penetrates the vacuum container (5) and is connected to the heat shield (1) and the liquid l\\Thulium machine (2). (8) is the compressor unit that operates the refrigerator unit. The refrigerator unit (8) constitutes a refrigerator unit (6).

次に動作について説明する。液体ヘリウム(])により
超電導マグネットが冷却される。熱シールド(/l)に
より、液体ヘリウム容器(■へ外部から入る熱を少なく
し、更に真空容器(5)で包囲して真空断熱しているが
、それでもある程度の熱侵入かあり、そのため液体ヘリ
ウム(1)が気化してヘリウムガス(3)となる。そこ
で、冷凍機(6)によりヘリウムガス(3)を再凝縮さ
せて、液体ヘリウム(1)の鼠が減少するのを防+h 
Lでいる。
Next, the operation will be explained. The superconducting magnet is cooled by liquid helium (). The heat shield (/l) reduces the heat entering the liquid helium container (■) from the outside, and it is further surrounded by a vacuum container (5) for vacuum insulation, but there is still some heat intrusion, so the liquid helium container (■) (1) is vaporized and becomes helium gas (3).Therefore, the helium gas (3) is recondensed by the refrigerator (6) to prevent the amount of liquid helium (1) from decreasing.
I'm L.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の極低温装置は以上のように構成されているので、
冷凍機によって冷却し過ぎることがあり、その場合は液
化ガスを収容した容器内が負圧になって、そのため外部
へ引き出されている配管から容器内へ空気を吸い込み、
また、上記容器の内圧変化により容器が変形して、例え
ば容器内に超電導マグネットが収容されている場合はこ
れが変形して磁場強度、磁場均一度が変化するなどの問
題点があった。
Conventional cryogenic equipment is configured as described above, so
Sometimes the refrigerator cools the gas too much, creating negative pressure inside the container containing the liquefied gas, which causes air to be sucked into the container from the pipes leading outside.
Further, there is a problem in that the container deforms due to changes in the internal pressure of the container, and for example, if a superconducting magnet is housed in the container, the deformation causes changes in magnetic field strength and magnetic field uniformity.

この発明は上記のような問題点を解消するためになされ
たもので、液化ガスを収容した容器の内圧をほぼ一定の
正圧にすることができる極低温装置を得ることを目的と
する。
This invention was made to solve the above-mentioned problems, and aims to provide a cryogenic device that can maintain the internal pressure of a container containing liquefied gas at a substantially constant positive pressure.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る極低温装置は、容器内のガスの圧力を検
出する圧力センサと、容器内を加熱するヒータとを設け
、圧カセンザの信ぢによりヒータの動作を制御するよう
にしたものである。また、容器内のガスの圧力を検出す
る圧力センサを設け、圧力センサの信号により冷凍機の
運転を制御するようにしたものである。
The cryogenic device according to the present invention is equipped with a pressure sensor that detects the pressure of gas inside the container and a heater that heats the inside of the container, and the operation of the heater is controlled by the pressure sensor. . Further, a pressure sensor is provided to detect the pressure of gas within the container, and the operation of the refrigerator is controlled based on a signal from the pressure sensor.

〔作用〕[Effect]

この発明における極低温装置は、容器内のガスの圧力が
低下ずれはヒータを動作させたり、冷凍機を停止または
低速回転にしたりてきるので、容器内の温度を−Fけて
その内圧を正圧てほぼ・定の圧力に保つことができる。
In the cryogenic device of this invention, if the pressure of the gas inside the container drops, the heater is activated or the refrigerator is stopped or rotated at low speed. The pressure can be maintained at almost constant pressure.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による極低温装置を示す断
面図であり、図において、(1)・〜(8)は第6図の
従来例と同様であるので説明を省略する。
FIG. 1 is a cross-sectional view showing a cryogenic apparatus according to an embodiment of the present invention. In the figure, (1) to (8) are the same as the conventional example shown in FIG. 6, and therefore their explanation will be omitted.

(11)はヘリウムガス(3)の圧力を検出する圧力セ
ンサ、<12)は液体ヘリウム容器(2)内を加熱して
液体ヘリウム(2)を蒸発させる電気ヒータ、(13)
は圧力センサ(11)からの信号を受けて電気ヒータ(
12)への通電を制御する圧力制御装置である。
(11) is a pressure sensor that detects the pressure of helium gas (3); <12) is an electric heater that heats the inside of the liquid helium container (2) to evaporate the liquid helium (2); (13)
receives the signal from the pressure sensor (11) and turns on the electric heater (
12) is a pressure control device that controls energization to.

次に動作について説明する。冷凍機(6)による冷却し
過ぎのためにヘリウムガス(3)の圧力が負圧になれば
圧力センサ(11)がそれを検出し、圧力制御装置(1
3)により電気ヒータ(12)に通電して液体ヘリウム
容器(2)内の温度を上げ、そのため液体ヘリウム(1
)が蒸発する。ヘリウムガス(3)の圧力が正圧に戻れ
ば通電を止める。
Next, the operation will be explained. If the pressure of the helium gas (3) becomes negative due to excessive cooling by the refrigerator (6), the pressure sensor (11) detects this and the pressure control device (1
3) energizes the electric heater (12) to raise the temperature inside the liquid helium container (2), so that the liquid helium (1
) evaporates. When the pressure of helium gas (3) returns to positive pressure, the electricity is turned off.

従って、冷凍機(6)により過度に冷却されても、ヘリ
ウムガス(3)の圧力はほぼ一定の正圧になる。
Therefore, even if the helium gas (3) is excessively cooled by the refrigerator (6), the pressure of the helium gas (3) remains approximately constant positive pressure.

第2図はこの発明の他の実施例による極低温装置を示す
断面図で、圧力制御装置(13)により圧縮機ユニット
(8)の運転を制御するようになっている。
FIG. 2 is a sectional view showing a cryogenic apparatus according to another embodiment of the present invention, in which the operation of a compressor unit (8) is controlled by a pressure control device (13).

すなわち、ヘリウムガス(3)の圧力が負圧になれは圧
力センサ(11)がそれを検出して、圧力制御装置(I
3)により圧llii機ユニット(8)の運転を止める
。これにより液体ヘリウム容器(21、熱シールド(4
)の温度が上がり、液体ヘリウl\(1)か蒸発する。
That is, if the pressure of helium gas (3) becomes negative, the pressure sensor (11) detects it and the pressure control device (I
3) stops the operation of the compressor unit (8). This results in a liquid helium container (21) and a heat shield (4).
) rises in temperature, and liquid helium (1) evaporates.

へりラムガス(3)の圧力か正圧に戻れは圧縮機ユニッ
1〜(8)を運転する。
To return the pressure of the helium gas (3) to positive pressure, operate the compressor units 1 to (8).

この実施例では圧縮機ユニッl〜(8)の運転を停止1
−するようにしたが、第3図に示すように冷凍機ユニッ
ト(7)の運転を停止するようにしてもよい、。
In this embodiment, the operation of compressor units 1 to (8) is stopped 1.
- However, as shown in FIG. 3, the operation of the refrigerator unit (7) may be stopped.

第4図はこの発明の更に他の実施例による極低温装置を
示す断面図で、(14)はインバータであり、圧力制御
装置(13)によりインバータ(14)を介して圧縮機
ユニッI〜(8)の運転を制御するようにしたもので゛
ある。すなわち、ヘリウムガス(3)の圧力が負圧にな
れは、圧力制御装置(13)によりインバータ(14)
を制御し、圧縮機ユニッl〜(8)の回転を下げて冷凍
機(6)の能力を低下させ、液体ヘリウム容器(2)、
熱シールF (41の温度を上昇させる。そして、液体
ヘリウl\(1)が蒸発してヘリウムガス(3)の圧力
が正圧になれば、圧縮機ユニツl−(8)の回転を元の
状態まで上げる。
FIG. 4 is a sectional view showing a cryogenic apparatus according to still another embodiment of the present invention, in which (14) is an inverter, and the pressure control device (13) connects the compressor units I to (1) through the inverter (14). 8) is designed to control the operation. In other words, when the pressure of helium gas (3) becomes negative, the pressure control device (13) controls the inverter (14).
, the rotation of the compressor units l to (8) is lowered to reduce the capacity of the refrigerator (6), and the liquid helium container (2),
The temperature of the heat seal F (41) is increased. Then, when the liquid helium (1) evaporates and the pressure of the helium gas (3) becomes positive, the rotation of the compressor unit (8) is restored. Raise it to the state of

この実施例ではインバータ(14)を介して圧縮機ユニ
ッl−(8jを低速回転させるようにしたが、第5図に
示すようにインバータ(14)により冷凍機ユニット(
′71を低速回転させるようにしてもよい。
In this embodiment, the compressor unit l-(8j) is rotated at low speed via the inverter (14), but as shown in FIG.
'71 may be rotated at a low speed.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれは、液化ガスを収容した容
器内のガスの圧力を検出する圧力センサの信号により、
ヒータや冷凍機の運転を制御するように構成したので、
冷凍機による過度の冷却のためにガスの圧力か低下した
ときに、ヒータの発熱や冷凍機の運転停止、能力抑制に
よりガスの圧力を上昇させることができ、従って、容器
の内圧をほぼ一定の正圧にすることができる。
As described above, according to the present invention, the signal from the pressure sensor that detects the pressure of the gas in the container containing the liquefied gas is used to
Since it was configured to control the operation of the heater and refrigerator,
When the pressure of the gas decreases due to excessive cooling by the refrigerator, the gas pressure can be increased by generating heat from the heater, stopping the operation of the refrigerator, or suppressing its capacity. Positive pressure can be applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による極低温装置を示す断
面図、第2図〜第5図はこの発明のそれぞれ異なる他の
実施例による極低温装置を示ず断面図、第6図は従来の
極低温装置を示す断面図である。 図において、(1)は液体ヘリウム、(21番j′a、
体ヘリウム容器、(3)はヘリウムガス、(6)は冷凍
機、(11)は圧力センサ、(12)は電気ヒータ、(
13)は圧力制御装置である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing a cryogenic apparatus according to one embodiment of the present invention, FIGS. 2 to 5 are cross-sectional views showing cryogenic apparatuses according to other different embodiments of the present invention, and FIG. FIG. 1 is a cross-sectional view showing a conventional cryogenic device. In the figure, (1) is liquid helium, (No. 21 j'a,
body helium container, (3) is helium gas, (6) is a refrigerator, (11) is a pressure sensor, (12) is an electric heater, (
13) is a pressure control device. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)液化ガスを収容した容器と、上記液化ガスが気化
して生じたガスを再凝縮する冷凍機とを備えたものにお
いて、上記ガスの圧力を検出する圧力センサと、上記容
器内を加熱するヒータとを設け、上記圧力センサの信号
により上記ヒータの動作を制御するようにしたことを特
徴とする極低温装置。
(1) A device equipped with a container containing liquefied gas and a refrigerator that recondenses the gas produced by vaporizing the liquefied gas, which includes a pressure sensor that detects the pressure of the gas and heats the inside of the container. A cryogenic apparatus characterized in that a heater is provided, and the operation of the heater is controlled by a signal from the pressure sensor.
(2)液化ガスを収容した容器と、上記液化ガスが気化
して生じたガスを再凝縮する冷凍機とを備えたものにお
いて、上記ガスの圧力を検出する圧力センサを設け、こ
の圧力センサの信号により上記冷凍機の運転を制御する
ようにしたことを特徴とする極低温装置。
(2) A device equipped with a container containing liquefied gas and a refrigerator that recondenses the gas produced by vaporizing the liquefied gas, which is equipped with a pressure sensor that detects the pressure of the gas; A cryogenic device characterized in that the operation of the refrigerator is controlled by a signal.
JP23869190A 1990-09-05 1990-09-05 Cryogenic apparatus Pending JPH04116363A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23869190A JPH04116363A (en) 1990-09-05 1990-09-05 Cryogenic apparatus
GB9118973A GB2247942B (en) 1990-09-05 1991-09-04 Cryostat
US07/755,240 US5150578A (en) 1990-09-05 1991-09-05 Cryostat
DE4129522A DE4129522C2 (en) 1990-09-05 1991-09-05 Control device for controlling the gas pressure in a cryostat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23869190A JPH04116363A (en) 1990-09-05 1990-09-05 Cryogenic apparatus

Publications (1)

Publication Number Publication Date
JPH04116363A true JPH04116363A (en) 1992-04-16

Family

ID=17033867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23869190A Pending JPH04116363A (en) 1990-09-05 1990-09-05 Cryogenic apparatus

Country Status (1)

Country Link
JP (1) JPH04116363A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267273A (en) * 2008-04-29 2009-11-12 Mitsubishi Electric Corp Superconducting electromagnet
JP2010185641A (en) * 2009-02-13 2010-08-26 Kobe Steel Ltd Pressurized superfluid helium cryostat and control method
JP2013245907A (en) * 2012-05-29 2013-12-09 Furukawa Electric Co Ltd:The Cooling container
CN105340095A (en) * 2013-06-25 2016-02-17 日本超导体技术公司 Cryostat
US9857765B2 (en) 2006-12-22 2018-01-02 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614206A (en) * 1984-06-18 1986-01-10 Toshiba Corp Ultralow temperature apparatus
JPH01111183A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Liquefied-gas storage vessel
JPH01159576A (en) * 1987-12-16 1989-06-22 Hitachi Ltd Cryostat

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614206A (en) * 1984-06-18 1986-01-10 Toshiba Corp Ultralow temperature apparatus
JPH01111183A (en) * 1987-10-23 1989-04-27 Hitachi Ltd Liquefied-gas storage vessel
JPH01159576A (en) * 1987-12-16 1989-06-22 Hitachi Ltd Cryostat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9857765B2 (en) 2006-12-22 2018-01-02 Canon Kabushiki Kaisha Process cartridge, electrophotographic image forming apparatus, and electrophotographic photosensitive drum unit
JP2009267273A (en) * 2008-04-29 2009-11-12 Mitsubishi Electric Corp Superconducting electromagnet
JP2010185641A (en) * 2009-02-13 2010-08-26 Kobe Steel Ltd Pressurized superfluid helium cryostat and control method
JP2013245907A (en) * 2012-05-29 2013-12-09 Furukawa Electric Co Ltd:The Cooling container
CN105340095A (en) * 2013-06-25 2016-02-17 日本超导体技术公司 Cryostat
EP3016156A4 (en) * 2013-06-25 2017-03-01 Japan Superconductor Technology, Inc. Cryostat
CN105340095B (en) * 2013-06-25 2017-12-29 日本超导体技术公司 Cryostat
US10330259B2 (en) 2013-06-25 2019-06-25 Japan Superconductor Technology, Inc. Cryostat including gas phase volume-varying unit

Similar Documents

Publication Publication Date Title
US20190212049A1 (en) Apparatus and method for super-cooled operation of a cryostat with low quantities of coolant
US5150578A (en) Cryostat
JPH0523509B2 (en)
US5293750A (en) Control system for liquefied gas container
JPH04116363A (en) Cryogenic apparatus
TWI819488B (en) superconducting magnet device
JPS63217181A (en) Reliquefier
JPH0633854B2 (en) Evaporation prevention device
JPH04180203A (en) Very low temperature apparatus
JPH01159576A (en) Cryostat
JPH04106373A (en) Cryogenic device
JPH06157027A (en) Apparatus for recovery and liquefaction of gaseous ammonia
JPH0815397A (en) Apparatus using liquid helium
JPH01111183A (en) Liquefied-gas storage vessel
JP2760858B2 (en) Cryostat for superconducting device
JPH05335636A (en) Superconducting magnet device
JPH11193979A (en) Low temperature liquefied gas cooler
JP2593466B2 (en) Cryogenic equipment
JPS59117281A (en) Cooling apparatus
JPH07101758B2 (en) Cryostat with refrigerator
JPH0441276Y2 (en)
JPH03114279A (en) Cryogenic cooling machine
KR100207319B1 (en) A vacuum cooling apparatus
JPH09106909A (en) Conductive cooling superconducting magnet
JPS63297983A (en) Cryogenic cold reserving device