JPH038492B2 - - Google Patents
Info
- Publication number
- JPH038492B2 JPH038492B2 JP2126283A JP2126283A JPH038492B2 JP H038492 B2 JPH038492 B2 JP H038492B2 JP 2126283 A JP2126283 A JP 2126283A JP 2126283 A JP2126283 A JP 2126283A JP H038492 B2 JPH038492 B2 JP H038492B2
- Authority
- JP
- Japan
- Prior art keywords
- load
- load cell
- weighing machine
- flat part
- load cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005303 weighing Methods 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 3
- 239000013013 elastic material Substances 0.000 claims 1
- 238000005452 bending Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01G—WEIGHING
- G01G3/00—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
- G01G3/12—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
- G01G3/14—Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
- G01G3/1402—Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Force In General (AREA)
Description
【発明の詳細な説明】
この発明は複数のロードセルを使用した計重機
に関し、比較的薄型に形成可能なものに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a weighing machine using a plurality of load cells, which can be made relatively thin.
従来、載台をロードセルで支持する構成の計重
機で一つのロードセルを用いたものがあるが、載
台の大きさに制約を受けるので、用途が限定さ
れ、しかも計重機の高さもあまり低くはできな
い。そこで載台の大きさを大きくするために第1
図に示すような構成のものが提案された。同図に
おいて、1は基盤、2は載台、3,4はロードセ
ルである。この構成は一見ロードセル3,4を横
に並べるだけで簡単に製作可能であるように思わ
れるが、2つのロードセルが互いに水平力等の力
の干渉を起して精度が悪くなつたり、ロードセル
3,4の破損が起こるなどの問題のあることがわ
かつている。しかもパラレルグラム型ロードセル
のロバーバル部の積値をある程度の値にとるので
計重機の高さ寸法が大きくなつてしまう。これと
は別に、荷重に比例して載台の大きさを充分な大
きさの寸法とするために第2図及び第3図に示す
ように、基台5の四隅に夫々ロードセル8を設置
して載台6を支持する構成のものが作られてい
る。同図において、7はワイヤーロープである。
この構成のものは可撓性のあるワイヤーロープ7
で載台6を支持することにより、載台6と4個の
ロードセル8との間に生じる相対的な歪による、
すなわち取付誤差や載台の歪によるロードセル相
互の力の干渉を除去するようにしている。従つ
て、この構成のものも高さ寸法が大となる傾向が
あり、構造が複雑であり、調整に熟練を要し、製
作費が高価になり、小荷重の例えば3〜5Kg用等
の小容量の計重機には不向きである問題がある。 Conventionally, there is a weighing machine that uses a single load cell in a structure where the platform is supported by a load cell, but since it is limited by the size of the platform, its applications are limited, and the height of the weighing machine must not be too low. Can not. Therefore, in order to increase the size of the mounting table, the first
The configuration shown in the figure was proposed. In the figure, 1 is a base, 2 is a mounting table, and 3 and 4 are load cells. At first glance, it seems that this configuration can be easily manufactured by simply arranging the load cells 3 and 4 side by side, but the two load cells may interfere with each other due to horizontal force, resulting in poor accuracy, or the load cells 3 and 4 , 4 is known to cause problems such as damage. Moreover, since the product value of the roberval part of the parallel gram type load cell is set to a certain value, the height of the weighing machine becomes large. Separately, load cells 8 are installed at each of the four corners of the base 5, as shown in Figures 2 and 3, in order to make the size of the platform sufficiently large in proportion to the load. A structure that supports the mounting table 6 is manufactured. In the figure, 7 is a wire rope.
This configuration is a flexible wire rope 7
Due to the relative strain that occurs between the platform 6 and the four load cells 8 by supporting the platform 6,
In other words, the interference of forces between the load cells due to mounting errors or distortion of the mounting table is removed. Therefore, products with this configuration also tend to be large in height, have a complicated structure, require skill for adjustment, are expensive to manufacture, and are suitable for use with small loads such as 3 to 5 kg. There is a problem that makes it unsuitable for capacity weighing machines.
この発明は、高さ寸法を従来のものよりも小さ
くできて、簡素な構成で、高精度計量が可能な計
重機を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide a weighing machine that can have a smaller height than conventional weighing machines, has a simple configuration, and can perform highly accurate weighing.
以下この発明を図示の1実施例に基いて説明す
る。第4図乃至第5図において、20は基台、2
1,22,23,24はロードセル、25は載台
である。 The present invention will be explained below based on one embodiment shown in the drawings. In FIGS. 4 and 5, 20 is a base;
1, 22, 23, and 24 are load cells, and 25 is a mounting table.
基台20は、図示のように、略載台25の大き
さに対応する長方形のもので上面の四隅にロード
セルの固定側を結合する結合座30,31,3
2,33をわずかに高く段をなす形で設けられ、
全周縁部がさらに少し立上つており、全体として
浅い箱状をなしている。 As shown in the figure, the base 20 is a rectangular one approximately corresponding to the size of the mounting base 25, and has coupling seats 30, 31, 3 at the four corners of the upper surface for coupling the fixed side of the load cell.
2, 33 are set up in slightly higher steps,
The entire periphery rises a little further, forming a shallow box-like shape as a whole.
ロードセル21,22,23,24は、この実
施例ではロードセル21,22と、同23,24
とを各々所定厚さ寸法の長方形板状のブロツク材
料から削り出す形で形成し、固定部21aと22
a及び23aと24aが各々連続しており、その
固定部の各々が基台20の対応する結合座30,
31,32,33に対してねじ34により結合さ
れている。各々のロードセルは同じ形状の曲げ型
のもので、幅寸法よりも上下方向の厚さ寸法が小
さい梁状の応力検出部21b,22b,23b,
24bを夫々有し、その上下両面に歪計35を貼
着してある。各ロードセルの応力検出部21b,
22b,23b,24bと負荷部21e,22
e,23e,24eとの間には夫々第1偏平部2
1c,22c,23c,24c及び第2偏平部2
1d,22d,23d,24dを形成されてい
る。この第1偏平部及び第2偏平部はフレキシヤ
ーであり、各ロードセルにおいて同じ形状のもの
である。一つのロードセル21について説明する
と、固定部21aと負荷部21eとの間を四角形
断面の梁状部に形成しておいてこれを部分的に切
除する形で順次間隔をおいて応力検出部21b、
第1偏平部21c、第2偏平部24dを形成して
あり、第1偏平部21cは上記梁状部の伸延方向
に沿う鉛直なものであり、第2偏平部21dは第
1偏平部21cに直角かつ鉛直なものである。
各々のロードセルの負荷部21e,22e,23
e,24eは、固定部と同様に負荷部21eと2
2e、同23eと24eが各々連続しており、各
負荷部には載台25との結合用ねじ孔36を夫々
穿設してある。 In this embodiment, the load cells 21, 22, 23, 24 are
The fixing parts 21a and 22 are each formed by cutting out a rectangular plate-shaped block material having a predetermined thickness.
a, 23a, and 24a are each continuous, and each of the fixed parts is connected to the corresponding joint seat 30 of the base 20,
31, 32, and 33 by screws 34. Each load cell is of a bending type with the same shape, and has beam-shaped stress detection parts 21b, 22b, 23b, whose vertical thickness is smaller than its width.
24b, and strain gauges 35 are attached to both upper and lower surfaces thereof. Stress detection section 21b of each load cell,
22b, 23b, 24b and load parts 21e, 22
e, 23e, and 24e, there are first flat parts 2, respectively.
1c, 22c, 23c, 24c and second flat part 2
1d, 22d, 23d, and 24d are formed. The first flat part and the second flat part are flexible and have the same shape in each load cell. To explain one load cell 21, a beam-like part with a square cross section is formed between the fixed part 21a and the load part 21e, and this is partially cut out so that stress detecting parts 21b,
A first flat part 21c and a second flat part 24d are formed, the first flat part 21c is vertical along the extension direction of the beam-like part, and the second flat part 21d is connected to the first flat part 21c. It is perpendicular and vertical.
Load parts 21e, 22e, 23 of each load cell
e, 24e are the load parts 21e and 2 as well as the fixed part.
2e, 23e and 24e are continuous, and a screw hole 36 for coupling with the mounting table 25 is provided in each load portion.
載台25は、深さの浅い容器状のものを上下を
逆にして上記ロードセルの各々及び基台20を小
間隙を隔てて覆うような形のもので、その下面の
上記各ねじ孔36に対応する位置に下向きの凸部
37を形成され、その凸部37の下面が各ロード
セルの負荷部21e,22e,23e,24eに
当接した状態でねじ38により結合されている。 The platform 25 is a shallow container-shaped object that is turned upside down and covers each of the load cells and the base 20 with a small gap between them. A downward convex portion 37 is formed at a corresponding position, and the lower surface of the convex portion 37 is connected to the load portions 21e, 22e, 23e, and 24e of each load cell by screws 38 in a state of contact.
この計重機において、ロードセル21と22、
同23と24は夫々一つのブロツク材を加工して
一体に連続して形成されているので、基台20及
び載台25に組付けられる前の状態ではロードセ
ル21と22、同23と24が相互に干渉するよ
うな内力を殆ど発生しないようにでき上つてい
る。また、このロードセルを組付けて完成した計
重機においては、その組付けによつて、基台2
0、載台25の一方又は双方に歪を生じ、その歪
によつて発生する水平方向の力が各ロードセル2
1,22,23,24に作用するが、第6図に示
すような加工と組立によつて発生したX−X′軸
方向の力は第1偏平部21c,22c,23c,
24cの存在によりその部分のX−X′軸方向力
による曲げ抵抗が極度に小さいことから撓曲して
各々の応力検出部21b,22b,23b,24
bには干渉する力を伝えず、また加工と組立によ
つて発生したY−Y′軸方向の力は第2偏平部2
1d,22d,23d,24dの存在によりその
部分のY−Y′軸方向による曲げ抵抗が極度に小
さいことから撓曲して各々の応力検出部21b,
22b,23b,24bには干渉する力を伝えな
い。そして、重量測定において、載台25に載せ
られた被計量物による荷重は載台25の凸部37
を介してロードセルの負荷部21e,22e,2
3e,24eに負荷されるが、その時に発生する
基台20、載台25の一方又は双方の歪による水
平方向の干渉作用力は第1偏平部及び第2偏平部
の存在により上記と同様にして除かれて各ロード
セルの応力検出部21b,22b,23b,24
bに伝達されないので、各応力検出部21b,2
2b,23b,24bには図示のZ−Z′軸方向
(鉛直方向)の荷重のみが作用することになり、
安定した測定値が得られる。もちろんZ−Z′軸方
向の荷重に対して、第1偏平部21c,22c,
23c,24cは荷重方向に十分な厚みを有して
おり、第2偏平部21d,22d,23d,24
dは引張荷重を受けるようになつているから、荷
重を確実に応力検出部21b,22b,23b,
24bに夫々伝達する。 In this weighing machine, load cells 21 and 22,
Since the load cells 23 and 24 are formed integrally and continuously by processing one block material, respectively, the load cells 21 and 22 and the load cells 23 and 24 are in the state before being assembled to the base 20 and the mounting table 25. It is constructed in such a way that almost no internal forces that would interfere with each other are generated. In addition, in a weighing machine completed by assembling this load cell, the base 2
0, strain is generated on one or both of the mounting tables 25, and the horizontal force generated by the strain is applied to each load cell 2.
1, 22, 23, 24, but the force in the X-X' axis direction generated by processing and assembly as shown in FIG.
24c, the bending resistance due to the force in the X-X' axis direction is extremely small, so the stress detection parts 21b, 22b, 23b, 24 are bent.
No interfering force is transmitted to the second flat part 2, and the force in the Y-Y' axis direction generated by machining and assembly is transferred to the second flat part 2.
1d, 22d, 23d, and 24d, the bending resistance in the Y-Y' axis direction of that portion is extremely small, so that the stress detection portions 21b and 24d are bent.
No interfering force is transmitted to 22b, 23b, and 24b. In weight measurement, the load due to the object to be weighed placed on the platform 25 is transferred to the convex portion 37 of the platform 25.
Load parts 21e, 22e, 2 of the load cell via
3e and 24e, but the horizontal interference force due to distortion of one or both of the base 20 and the platform 25 that occurs at that time is the same as above due to the presence of the first flat part and the second flat part. The stress detection parts 21b, 22b, 23b, 24 of each load cell are
Since the stress is not transmitted to each stress detection section 21b, 2
Only the load in the Z-Z' axis direction (vertical direction) as shown in the figure acts on 2b, 23b, and 24b.
Stable measurement values can be obtained. Of course, against the load in the Z-Z' axis direction, the first flat parts 21c, 22c,
23c, 24c have sufficient thickness in the load direction, and the second flat parts 21d, 22d, 23d, 24
d is adapted to receive a tensile load, so the load can be reliably applied to the stress detection parts 21b, 22b, 23b,
24b, respectively.
また、このロードセルの構造では、ロードセル
の非直線性を改善することができるから、より高
精度の重量測定ができるようになる。この点につ
いて一つのロードセル21について簡単に説明す
ると、第7図に示すように着力点40と弾性中立
軸41を合致させると、荷重の増大に従つて大き
くなる変位x及びδ1を生じる。歪計の接着位置か
らのモーメントを考えると、モーメントアーム長
がlであつたものがl−δ1に変るので、モーメン
ト値Mと荷重Wとの関係は第9図に点線で示すよ
うな上に凸な曲線E1となる。従つてロードセル
の出力特性も曲線E1と略同様となる。また、第
8図に示すように着力点40を弾性中立軸41よ
りも上に寸法eだけ離れて位置させた構成にする
と、モーメントアーム長lが荷重作用時にl+δ2
となり、モーメント値Mと荷重Wとの関係は第9
図に2点鎖線で示すような上に凹な曲線E2とな
る。この場合のロードセルの出力特性は曲線E2
と略同様となる。このことから、荷重の着力点4
0と弾性中立軸41とのオフセツト寸法eを適当
に選択することにより、各ロードセルを第9図に
実線で示す理想特性直線Eに近いものとすること
ができるのである。上記寸法eを適切に定めた上
記実施例の構成の計重機では、計重機としての非
直線性が1/10000の特性のものが得られた。 Furthermore, with this structure of the load cell, the nonlinearity of the load cell can be improved, so that weight measurement can be performed with higher precision. To briefly explain this point regarding one load cell 21, as shown in FIG. 7, when the force application point 40 and the elastic neutral axis 41 are aligned, displacements x and δ 1 are generated which increase as the load increases. Considering the moment from the bonding position of the strain gauge, the moment arm length changes from l to l - δ 1 , so the relationship between moment value M and load W is as shown by the dotted line in Figure 9. becomes a convex curve E1 . Therefore, the output characteristics of the load cell are also approximately the same as the curve E1 . Furthermore, if the force application point 40 is located above the elastic neutral axis 41 and separated by a distance e as shown in FIG. 8, then the moment arm length l becomes l + δ 2 when a load is applied.
Therefore, the relationship between the moment value M and the load W is the 9th
This results in an upwardly concave curve E 2 as shown by the two-dot chain line in the figure. The output characteristic of the load cell in this case is curve E 2
It is almost the same as. From this, the point of force application of the load 4
By appropriately selecting the offset dimension e between the elastic neutral axis 41 and the elastic neutral axis 41, each load cell can be made close to the ideal characteristic straight line E shown by the solid line in FIG. In the weighing machine having the configuration of the above embodiment in which the above-mentioned dimension e was appropriately determined, a nonlinearity of 1/10000 was obtained as a weighing machine.
上述した計重機は、第1及び第2偏平部を比較
的コンパクトに形成でき、特に厚さ寸法をロード
セルの高さ寸法よりも大きくしないでもよく、計
重機としては従来よりも大幅に高さ寸法を低いも
のとすることができる。具体的には本試作におい
て、基台の下面から載台上面までの全高が25mmの
ものとすることができた。また、高精度化され、
コンパクトな構造でありながら、載台を前後及び
左右に大きくしてもロードセルの応力検出部に対
して不用な曲げや撓りの作用しないようにする、
すなわち剛性を特に大きくするような負担がかか
らないので、大きな載台の計重機を自由に設計す
ることができる。 In the weighing machine described above, the first and second flat parts can be formed relatively compactly, and in particular, the thickness dimension does not need to be larger than the height dimension of the load cell, and as a weighing machine, the height dimension is significantly smaller than that of conventional weighing machines. can be made lower. Specifically, in this prototype, the total height from the bottom of the base to the top of the platform was 25 mm. In addition, the precision has been improved,
Although it has a compact structure, it prevents unnecessary bending or deflection from acting on the stress detection part of the load cell even if the mounting table is enlarged in the front and back and left and right directions.
In other words, since no load is placed on the weighing machine to particularly increase its rigidity, it is possible to freely design a weighing machine with a large platform.
上記実施例において、ロードセル21,22
と、同23,24とを夫々一つのブロツクで作る
ようにしたが、全ロードセルを一つのブロツクで
作るようにしでもよく、また夫々単独に作つても
よい。 In the above embodiment, the load cells 21, 22
Although load cells 23 and 24 are each made from one block, the entire load cell may be made from one block, or each may be made independently.
上記実施例において、ロードセルの応力検出部
の構造を撓げ型の梁状のものとしたが、これに限
られることはなく、例えばパラレルグラム型のも
のとしてもよい。 In the above embodiments, the structure of the stress detecting section of the load cell is a flexible beam-like structure, but the structure is not limited to this, and for example, it may be of a parallel gram type.
上記実施例における、ロードセルの応力検出部
と、第1偏平部と、第2偏平部との位置関係は変
更することができる。 In the above embodiment, the positional relationship between the stress detection section, the first flat section, and the second flat section of the load cell can be changed.
上述したようにこの発明によれば、高さ寸法が
小さく、載台を大きく形成でき、しかも簡素で高
精度の計重機を提供できる。 As described above, according to the present invention, it is possible to provide a weighing machine that has a small height dimension, a large platform, and is simple and highly accurate.
第1図は従来の複数個のロードセルを使用した
計重機の構成の1例を示す主要部の概略斜視図、
第2図は上記とは別の従来の複数のロードセルを
使用した計重機の主要部の部分断面側面図、第3
図は第2図の計重機の全体の形状を示す部分破断
斜視図、第4図はこの発明の実施例の部分破断部
分省略平面図、第5図は第4図のA−A断面図、
第6図は同実施例の主要部斜視図、第7図及び第
8図はロードセルの特性改善方法を説明するため
のロードセルの側面図、第9図は同ロードセルの
モーメント値と荷重との関係を示すグラフであ
る。
20……基台、21,22,23,24……ロ
ードセル、21a……固定部、21b……応力検
出部、21c……第1偏平部、21d……第2偏
平部、21e……負荷部、25……載台。
FIG. 1 is a schematic perspective view of the main parts showing an example of the configuration of a conventional weighing machine using a plurality of load cells;
Figure 2 is a partial cross-sectional side view of the main part of a conventional weighing machine using multiple load cells, which is different from the above.
The figure is a partially cutaway perspective view showing the overall shape of the weighing machine shown in FIG. 2, FIG. 4 is a partially cutaway plan view of an embodiment of the present invention, and FIG. 5 is a sectional view taken along line AA in FIG. 4.
Fig. 6 is a perspective view of the main parts of the same embodiment, Figs. 7 and 8 are side views of the load cell for explaining a method for improving the characteristics of the load cell, and Fig. 9 is the relationship between the moment value and load of the load cell. This is a graph showing. 20... Base, 21, 22, 23, 24... Load cell, 21a... Fixed part, 21b... Stress detection part, 21c... First flat part, 21d... Second flat part, 21e... Load Part 25... Mounting table.
Claims (1)
ルと、その各々のロードセルの荷重負荷部に支持
される載台とからなる計重機において、上記各々
のロードセルの荷重負荷部と固定部との間に弾性
材料からなる鉛直な第1偏平部及び第1偏平部に
直角かつ鉛直な第2偏平部を設けたことを特徴と
する計重機。 2 上記ロードセルの応力検出部と第1偏平部と
第2偏平部とを一連の同一材料で形成したことを
特徴とする特許請求の範囲1に記載の計重機。[Scope of Claims] 1. A weighing machine comprising a plurality of load cells each having a fixed portion attached to a base and a platform supported by the load bearing portion of each of the load cells, wherein the load loading portion of each of the load cells is A weighing machine characterized in that a first vertical flat part made of an elastic material is provided between the fixed part and the fixed part, and a second flat part is perpendicular to and vertical to the first flat part. 2. The weighing machine according to claim 1, wherein the stress detection part, the first flat part, and the second flat part of the load cell are formed of a series of the same material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2126283A JPS59147225A (en) | 1983-02-10 | 1983-02-10 | Weighing machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2126283A JPS59147225A (en) | 1983-02-10 | 1983-02-10 | Weighing machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59147225A JPS59147225A (en) | 1984-08-23 |
JPH038492B2 true JPH038492B2 (en) | 1991-02-06 |
Family
ID=12050179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2126283A Granted JPS59147225A (en) | 1983-02-10 | 1983-02-10 | Weighing machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59147225A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0653934U (en) * | 1992-12-25 | 1994-07-22 | 株式会社タニタ | Weight detection unit of scale |
-
1983
- 1983-02-10 JP JP2126283A patent/JPS59147225A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59147225A (en) | 1984-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5510581A (en) | Mass-produced flat multiple-beam load cell and scales incorporating it | |
US4261429A (en) | Unitized weighing apparatus and method for making such an apparatus | |
US5708236A (en) | Weighing scale with cantilever beam for transmitting force to a strain gauge | |
US4898255A (en) | Planar load cell | |
JP2834282B2 (en) | Load cell | |
JP3534905B2 (en) | Load cell for health meter | |
JPS6232324A (en) | Multi-range load cell scale | |
JPH038492B2 (en) | ||
US5670753A (en) | Disc-shaped transducer for a weighing system | |
JPH032824Y2 (en) | ||
US5591944A (en) | Overload stop assembly for a load cell | |
CN209745440U (en) | Force sensor | |
JPH01212327A (en) | Load cell and preparation thereof | |
CA1216312A (en) | Load cell apparatus | |
JP3553664B2 (en) | Load cell | |
JPS6119928B2 (en) | ||
JPH088422Y2 (en) | Weight scale | |
JPH059625Y2 (en) | ||
JPH0337691B2 (en) | ||
JP5911138B2 (en) | Load cell and method of manufacturing load cell | |
JPS6316980Y2 (en) | ||
JPH084573Y2 (en) | Weight scale | |
JP2969959B2 (en) | Load cell | |
JPS596372B2 (en) | load cell | |
JPH0526499Y2 (en) |