JPH033902Y2 - - Google Patents
Info
- Publication number
- JPH033902Y2 JPH033902Y2 JP1983125404U JP12540483U JPH033902Y2 JP H033902 Y2 JPH033902 Y2 JP H033902Y2 JP 1983125404 U JP1983125404 U JP 1983125404U JP 12540483 U JP12540483 U JP 12540483U JP H033902 Y2 JPH033902 Y2 JP H033902Y2
- Authority
- JP
- Japan
- Prior art keywords
- hot water
- heat exchanger
- heat
- refrigerant
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 230
- 239000003507 refrigerant Substances 0.000 claims description 49
- 238000010438 heat treatment Methods 0.000 claims description 22
- 238000009833 condensation Methods 0.000 claims description 6
- 230000005494 condensation Effects 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 claims description 5
- 230000017525 heat dissipation Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000002918 waste heat Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000003287 bathing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
- Y02A30/274—Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、エンジンにより冷凍装置の圧縮機を
駆動し、冷媒給湯熱交換器での冷媒凝縮熱とエン
ジン排熱を回収する排熱給湯熱交換器での熱媒放
熱とにより貯湯タンク内の水を加熱して給湯する
如くしたエンジン駆動式給湯装置に関するもので
ある。[Detailed description of the invention] (Field of industrial application) This invention uses an engine to drive the compressor of a refrigeration system, and recovers the refrigerant condensation heat and engine exhaust heat in the refrigerant hot water heat exchanger. The present invention relates to an engine-driven water heater that heats water in a hot water storage tank and supplies hot water by dissipating heat from a heat medium in an exchanger.
(従来技術)
従来、エンジン排熱を回収する給湯装置として
は、例えば第4図に示す如く貯湯タンク11内の
下部に、圧縮機2から供給される冷媒ガスを凝縮
させる冷媒給湯熱交換器5と、エンジン1の排熱
を回収した熱を放熱する排熱給湯熱交換器9とを
互いに近接させて配置したものとか、第5図に示
す如く貯湯タンク11内の下部と上部とにそれぞ
れ冷媒給湯熱交換器5と排熱給湯熱交換器9とを
配置したものとかが知られている。(Prior Art) Conventionally, as a hot water supply system for recovering engine exhaust heat, a refrigerant hot water heat exchanger 5 that condenses refrigerant gas supplied from a compressor 2 is installed in the lower part of a hot water storage tank 11 as shown in FIG. 4, for example. and an exhaust heat water supply heat exchanger 9 that radiates the heat recovered from the exhaust heat of the engine 1 are arranged close to each other, or as shown in FIG. A system in which a hot water supply heat exchanger 5 and a waste heat hot water supply heat exchanger 9 are arranged is known.
ところが、これらの従来例の給湯装置において
は、冷媒給湯熱交換器5と排熱給湯熱交換器9の
取付位置によつて下記する如き問題点があつた。
即ち、第4図に示す従来例の如く貯湯タンク11
内底部に冷媒給湯熱交換器5と排熱給湯熱交換器
9とを近接配置させたものにおいては、
(1) 貯湯タンク11内水温が均一に上昇するの
で、所定温度まで到達するのに時間がかかる、
(2) 貯湯タンク11内水温が凝縮温度以下の50〜
55℃(冷媒としてR−22を使用した場合)とな
り、さし湯としては温度が低くすぎる、
(3) 瞬間性能がないので、風呂に大量に使用した
後の使い勝手が悪い、
等の問題があつた。 However, these conventional water heaters have the following problems due to the mounting positions of the refrigerant hot water heat exchanger 5 and the exhaust heat hot water heat exchanger 9.
That is, as in the conventional example shown in FIG.
In the case where the refrigerant hot water supply heat exchanger 5 and the exhaust heat hot water supply heat exchanger 9 are arranged close to each other at the inner bottom, (1) Since the water temperature in the hot water storage tank 11 rises uniformly, it takes time to reach a predetermined temperature. (2) When the water temperature in the hot water storage tank 11 is below the condensing temperature,
55℃ (when R-22 is used as the refrigerant), which is too low for hot water; (3) It does not have instant performance, so it is not easy to use after using a large amount in a bath. It was hot.
また第5図(実開昭57−188928号)に示す如
く、貯湯タンク11内において、上部に排熱給湯
熱交換器9を、下部に冷媒給湯熱交換器5を配置
したものにおいては、
(1) 冷媒給湯熱交換器5と排熱給湯熱交換器9と
の両方で給湯加熱する場合、排熱給湯熱交換器
9の位置によつては冷媒給湯熱交換器5の加熱
による対流の影響を受け、貯湯タンク11内の
温度が均一に上昇し、所定温度まで到達するの
に時間がかかり、又、瞬間性能がなく、風呂に
大量に利用した後の使い勝手が悪いばかりでな
く、湯温も冷媒の凝縮温度以下の50〜55℃(冷
媒としてR−22を使用した場合)と低く、さし
湯として利用できない、
(2) 排熱給湯熱交換器9のみにより給湯加熱する
場合には、貯湯タンク11上部の水しか加熱で
きず、蓄熱量が少なくなり、又、貯湯タンク1
1上部の水を所定温度まで加熱した後は、排熱
の水の加熱に利用することなくそのままラジエ
ータ等で放熱するので熱損失が大きい、
等の問題があつた。 Furthermore, as shown in Fig. 5 (Utility Model Application No. 57-188928), in the hot water storage tank 11, in the case where the exhaust heat hot water supply heat exchanger 9 is arranged in the upper part and the refrigerant hot water supply heat exchanger 5 is arranged in the lower part, ( 1) When hot water is heated by both the refrigerant hot water heat exchanger 5 and the waste heat hot water heat exchanger 9, depending on the position of the waste heat hot water heat exchanger 9, the influence of convection due to the heating of the refrigerant hot water heat exchanger 5 may occur. As a result, the temperature inside the hot water storage tank 11 rises uniformly, and it takes time to reach a predetermined temperature, and there is no instantaneous performance, which not only makes it difficult to use after using a large amount of water for bathing, but also makes it difficult to use the hot water. (2) When hot water is heated only by the exhaust heat hot water heat exchanger 9, , only the water in the upper part of the hot water storage tank 11 can be heated, and the amount of heat storage is reduced.
1. After the water in the upper part is heated to a predetermined temperature, the waste heat is not used to heat the water and is radiated directly through a radiator, etc., resulting in large heat losses.
更に、両従来例とも、熱交換器が貯湯タンク内
に設置されるため、熱交換器に故障がある場合は
いちいち貯湯タンク内から取出して修理を行う必
要があり、メンテナンスに問題があつた。 Furthermore, in both conventional examples, the heat exchanger is installed in the hot water storage tank, so if there is a failure in the heat exchanger, it is necessary to take it out from the hot water storage tank and repair it, which poses maintenance problems.
(考案の目的)
本考案は、貯湯タンク内の貯湯水の水温を短時
間で所定温度に達せしめて、瞬間性能の向上を図
るとともに、風呂のさし湯として利用可能な高温
水が得られ、しかも給湯運転初期における温水温
度の補償が得られるようにしたエンジン駆動式給
湯装置を提供することを目的とするものである。(Purpose of the invention) The present invention aims to improve instantaneous performance by bringing the temperature of the hot water stored in the hot water storage tank to a predetermined temperature in a short time, and to obtain high-temperature water that can be used as hot water for a bath. Moreover, it is an object of the present invention to provide an engine-driven hot water supply apparatus that can compensate for the hot water temperature at the initial stage of hot water supply operation.
(考案の構成)
本考案は、エンジンにより冷凍装置の圧縮機を
駆動し、冷媒給湯熱交換器での冷媒凝縮熱とエン
ジン排熱を回収する排熱給湯熱交換器での熱媒放
熱とにより貯湯タンク内の貯湯水を加熱して給湯
する如くしたエンジン駆動式給湯装置において、
前記貯湯タンク下部、貯湯水循環ポンプ、前記冷
媒給湯熱交換器、前記排熱給湯熱交換器及び貯湯
タンク上部を貯湯タンク外部において順次環状に
連絡して貯湯水加熱回路を構成するとともに、該
貯湯水加熱回路における冷媒給湯熱交換器と排熱
給湯熱交換器との間に、冷媒給湯熱交換器出口に
流量制御弁を介設し、該流量制御弁の設定温度以
下でも暖房時のエンジンの排熱のみで所定温度の
温水が得られる機構を前記流量制御弁に付加した
ことを特徴としている。(Structure of the invention) The present invention uses an engine to drive the compressor of the refrigeration system, and a refrigerant hot water heat exchanger that collects refrigerant condensation heat and an exhaust heat hot water heat exchanger that recovers heat from the heat medium. In an engine-driven water heater that heats water stored in a hot water storage tank to supply hot water,
The lower part of the hot water storage tank, the hot water circulation pump, the refrigerant hot water heat exchanger, the waste heat hot water heat exchanger, and the upper part of the hot water storage tank are successively connected in an annular manner outside the hot water storage tank to form a hot water heating circuit, and the hot water heating circuit is configured to form a hot water heating circuit. A flow control valve is interposed at the outlet of the refrigerant hot water heat exchanger between the refrigerant hot water heat exchanger and the exhaust heat hot water heat exchanger in the heating circuit, and the engine exhaust gas during heating is prevented even if the temperature is lower than the set temperature of the flow control valve. The present invention is characterized in that a mechanism for obtaining hot water at a predetermined temperature using only heat is added to the flow rate control valve.
(実施例)
以下、第1図を参照して本考案の実施例にかか
るエンジン駆動式給湯装置を説明する。(Embodiment) Hereinafter, an engine-driven water heater according to an embodiment of the present invention will be described with reference to FIG.
この給湯装置は、冷暖房回路Xと給湯回路Yに
よつて構成されている。 This hot water supply device is composed of an air conditioning circuit X and a hot water supply circuit Y.
前記冷暖房回路Xは、エンジン1によつて駆動
される冷凍装置用の圧縮機2と、四路切換弁3
と、室外熱交換器4と、逆止弁15を併設した暖
房用膨張弁6と、レシーバ8と、逆止弁16を併
設した冷房用膨張弁7と、室内熱交換器10とア
キユームレータ14とを順次接続して構成されて
おり、四路切換弁3の切換操作によつて、冷媒が
可逆的に循環するようにされている。 The air conditioning circuit X includes a compressor 2 for a refrigeration system driven by an engine 1, and a four-way switching valve 3.
, an outdoor heat exchanger 4, a heating expansion valve 6 with a check valve 15, a receiver 8, a cooling expansion valve 7 with a check valve 16, an indoor heat exchanger 10, and an accumulator. 14 are connected in sequence, and the refrigerant is reversibly circulated by switching the four-way switching valve 3.
前記給湯回路Yは、貯湯タンク11と、給水回
路Aと、出湯回路Bと、貯湯水加熱回路Cとによ
つて構成されている。 The hot water supply circuit Y includes a hot water storage tank 11, a water supply circuit A, a hot water supply circuit B, and a stored hot water heating circuit C.
前記給水回路Aは、貯湯タンク11の下部11
bに減圧逆止弁17を介して水道水を供給できる
ように構成されている。 The water supply circuit A is connected to the lower part 11 of the hot water storage tank 11.
It is configured such that tap water can be supplied to b via a pressure reducing check valve 17.
前記出湯回路Bは、貯湯タンク上部11aに溜
つた温水を出湯栓18から出湯し得るように構成
されている。 The hot water supply circuit B is configured so that the hot water stored in the upper part 11a of the hot water storage tank can be discharged from the hot water tap 18.
前記貯湯水加熱回路Cは、貯湯タンク下部11
bと、貯湯水循環ポンプ12と、冷媒給湯熱交換
器5と、流量制御弁13と、排熱給湯熱交換器9
と、貯湯タンク上部11aとを貯湯タンク11の
外部において順次接続して構成されている。 The hot water heating circuit C includes a lower part 11 of the hot water storage tank.
b, the stored hot water circulation pump 12, the refrigerant hot water supply heat exchanger 5, the flow control valve 13, and the exhaust heat hot water supply heat exchanger 9.
and the hot water storage tank upper part 11a are sequentially connected outside the hot water storage tank 11.
前記冷媒給湯熱交換器5は、圧縮機2の吐出側
の高圧冷媒配管19とレシーバ8との間を接続す
る冷媒給湯回路Dに介設され、凝縮器として作用
し、冷媒凝縮熱によつて貯湯水加熱回路Cを循環
する貯湯水を加熱する。又、前記排熱給湯熱交換
器9は、熱媒循環ポンプ20、冷却水熱交換器2
1及び排ガス熱交換器22とともにエンジン排熱
回収回路Eを構成し、エンジン冷却水と排ガスと
によつて加熱された熱媒によつて貯湯水加熱回路
Cを循環する貯湯水を加熱する。 The refrigerant hot water supply heat exchanger 5 is interposed in a refrigerant hot water supply circuit D that connects between the high pressure refrigerant pipe 19 on the discharge side of the compressor 2 and the receiver 8, and acts as a condenser, and uses the heat of condensation of the refrigerant to The stored hot water circulating through the stored hot water heating circuit C is heated. Further, the exhaust heat hot water supply heat exchanger 9 includes a heat medium circulation pump 20 and a cooling water heat exchanger 2.
1 and the exhaust gas heat exchanger 22, the engine exhaust heat recovery circuit E is configured, and the hot water circulating in the hot water heating circuit C is heated by the heat medium heated by the engine cooling water and the exhaust gas.
又、前記流量制御弁13としては、冷媒給湯熱
交換器5出口の温水温度を検知して動作するワツ
クスタイプの三方混合弁が採用されている。三方
混合弁13は、高温側入口13Hを絞り機構24
を介して冷媒給湯熱交換器5出口に接続し、低温
側入口13Cは前記絞り機構24をバイパスして
冷媒給湯熱交換器5出口に接続するとともに、三
方混合弁出口13Mを排熱給湯熱交換器9入口に
接続している。尚、本実施例では、絞り機構24
としてキヤピラリチユーブを用いているが、これ
に代えて閉鎖弁を用いてもよい。又、本実施例で
は、流量制御弁13として、三方混合弁を採用し
ているが、第2図及び第3図にそれぞれ図示する
如く、三方分岐弁及び二方弁を採用することもで
きる。該二方弁を採用する場合には、絞り機構を
設けず、内部リークをもたす如く成してもよい。
更に、本実施例では、感温筒を有しないものを示
しているが、感温筒をもつものでもよい。 Further, as the flow rate control valve 13, a wax type three-way mixing valve that operates by detecting the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 is adopted. The three-way mixing valve 13 has a high temperature side inlet 13H connected to a throttle mechanism 24.
The low temperature side inlet 13C bypasses the throttling mechanism 24 and connects to the outlet of the refrigerant hot water heat exchanger 5 through the three-way mixing valve outlet 13M for exhaust heat hot water heat exchange. Connected to the inlet of the container 9. Note that in this embodiment, the aperture mechanism 24
Although a capillary tube is used as a capillary tube, a closing valve may be used instead. Further, in this embodiment, a three-way mixing valve is employed as the flow control valve 13, but a three-way branch valve and a two-way valve may also be employed, as shown in FIGS. 2 and 3, respectively. When the two-way valve is employed, the throttle mechanism may not be provided and the valve may be configured to cause internal leakage.
Furthermore, although this embodiment shows a device without a temperature-sensitive tube, it may also have a temperature-sensing tube.
要するに、流量制御弁13は、冷媒給湯熱交換
器5出口の温水温度を一定(本実施例では約50
℃)に保持し得るように温水循環量を増減制御し
得るものであればよいのである。 In short, the flow rate control valve 13 keeps the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 constant (approximately 50% in this embodiment).
Any device that can increase or decrease the amount of hot water circulated so as to maintain the temperature at
次に、図示の実施例にかかるエンジン駆動式給
湯装置の作用を説明する。 Next, the operation of the engine-driven water heater according to the illustrated embodiment will be explained.
() 冷媒給湯とエンジン排熱給湯とを同時に
行なう場合、運転パターンとしては冷房給湯運
転あるいは給湯専用運転が考えられる。() When refrigerant hot water supply and engine exhaust heat hot water supply are performed at the same time, the possible operation patterns include cooling hot water supply operation or hot water supply only operation.
冷房給湯運転時における冷媒の流れは次のフ
ロー線図で示される。 The flow of refrigerant during cooling hot water supply operation is shown in the following flow diagram.
2→5→8→7→10→3→14
又、給湯専用運転時における冷媒の流れは次
のフロー線図で示される。 2→5→8→7→10→3→14 Furthermore, the flow of refrigerant during hot water supply only operation is shown in the following flow diagram.
2→5→8→6→4→3→14
そして、貯湯タンク11の下部11bの低温
の貯湯水は、貯湯水循環ポンプ12により、ま
ず冷媒給湯熱交換器5に送られ、ここで冷媒凝
縮熱により加熱される。 2→5→8→6→4→3→14 Then, the low-temperature stored water in the lower part 11b of the hot water storage tank 11 is first sent to the refrigerant hot water supply heat exchanger 5 by the hot water circulation pump 12, where the refrigerant condensation heat is heated by.
運転当初においては、冷媒給湯熱交換器5出
口の温水温度が三方混合弁13の設定温度(例
えば50℃)より低いので、貯湯水は、絞り機構
24、三方混合弁13の高温側入口13H、三
方混合弁13の出口13Mを通つて排熱給湯熱
交換器9に導びかれる。この場合の流量は、絞
り機構24によつて極めて微小流量に設定され
ており、それ故、冷媒給湯熱交換器5出口の温
水温度は比較的短時間に三方混合弁13の設定
温度である50℃まで上昇する。従つて、排熱給
湯熱交換器9を出て貯湯タンク11の上部11
aよりためられる貯湯水のうちで温度の低いも
のは運転当初における極く少量となり、瞬間性
能が向上する。 At the beginning of operation, the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 is lower than the set temperature (for example, 50°C) of the three-way mixing valve 13, so the stored hot water is passed through the throttle mechanism 24, the high temperature side inlet 13H of the three-way mixing valve 13, The waste heat is led to the hot water supply heat exchanger 9 through the outlet 13M of the three-way mixing valve 13. The flow rate in this case is set to an extremely small flow rate by the throttle mechanism 24, and therefore the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 reaches the set temperature of the three-way mixing valve 13 in a relatively short time. The temperature rises to ℃. Therefore, the exhaust heat exits the hot water supply heat exchanger 9 and is transferred to the upper part 11 of the hot water storage tank 11.
Of the hot water stored from a, the amount of low temperature water is extremely small at the beginning of operation, improving instantaneous performance.
冷媒給湯熱交換器5出口の温水温度が三方混
合弁13の設定温度である50℃以上になると、
貯湯水の1部又は全部が三方混合弁13の低温
側入口13cから三方混合弁出口13Mに流れ
て、循環流量が増大し、冷媒給湯熱交換器5出
口の温水温度を50℃に保持するように流量制御
される。冷媒給湯熱交換器5を出た温水は、更
に排熱給湯熱交換器9において60〜70℃以上に
加熱されて、貯湯タンク上部11aよりためこ
まれていく。 When the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 reaches 50°C or higher, which is the set temperature of the three-way mixing valve 13,
Part or all of the stored hot water flows from the low-temperature side inlet 13c of the three-way mixing valve 13 to the three-way mixing valve outlet 13M, increasing the circulation flow rate and maintaining the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 at 50°C. The flow rate is controlled. The hot water that has exited the refrigerant hot water heat exchanger 5 is further heated to 60 to 70°C or higher in the exhaust heat hot water heat exchanger 9, and is stored from the upper part 11a of the hot water storage tank.
() エンジン排熱給湯のみを行なう場合、運
転パターンとしては、暖房運転あるいは冷房運
転が考えられる。() When only engine exhaust heat hot water supply is performed, the operation pattern may be heating operation or cooling operation.
(イ) 暖房運転時
この時の冷媒の流れは次のフロー線図で示され
る。(b) During heating operation The flow of refrigerant at this time is shown in the flow diagram below.
2→3→10→8→6→4→3→14
この場合には、冷媒給湯熱交換器5出口の温水
温度は、貯湯タンク下部11bの温水温度と同一
となり、三方混合弁13の設定温度50℃以下とな
る。従つて、貯湯水は、貯湯タンク下部11b、
貯湯水循環ポンプ12、冷媒給湯熱交換器5、絞
り機構24、三方混合弁13の高温側入口13
H、三方混合弁出口13M、排熱給湯熱交換器
9、貯湯タンク上部11aの順に循環し、循環流
量は絞り機構24のみによつて規制される。 2 → 3 → 10 → 8 → 6 → 4 → 3 → 14 In this case, the hot water temperature at the outlet of the refrigerant hot water supply heat exchanger 5 is the same as the hot water temperature at the lower part 11b of the hot water storage tank, and the set temperature of the three-way mixing valve 13 The temperature will be below 50℃. Therefore, the hot water is stored in the lower part of the hot water tank 11b,
Stored hot water circulation pump 12, refrigerant hot water supply heat exchanger 5, throttling mechanism 24, high temperature side inlet 13 of three-way mixing valve 13
H, the three-way mixing valve outlet 13M, the exhaust heat hot water supply heat exchanger 9, and the hot water storage tank upper part 11a, and the circulation flow rate is regulated only by the throttle mechanism 24.
尚、排熱給湯熱交換器9入口の温水温度が最低
となるときは、貯湯タンク11内の温水が出湯回
路Bから出湯されている状態の時で、給水温度
(約10℃)と等しくなる。そこで、排熱給湯熱交
換器9出口の温水温度が70℃となるように循環流
量を決定したらよい。例えば、1RTクラスの冷
凍装置において、暖房標準条件のエンジン回転数
を2000rpmとすると、エンジン排熱は約
2000Kcal/h回収可能であり、この場合の循環
流量は2000/(70−10)/60=0.56l/minで与え
られる。従つて、絞り機構24は、循環流量が
0.56l/minになる如く設定すればよいことになる
のである。 In addition, when the hot water temperature at the inlet of the exhaust heat hot water supply heat exchanger 9 is the lowest, when the hot water in the hot water storage tank 11 is being discharged from the hot water supply circuit B, it is equal to the water supply temperature (approximately 10 degrees Celsius). . Therefore, the circulation flow rate may be determined so that the hot water temperature at the outlet of the exhaust heat hot water supply heat exchanger 9 is 70°C. For example, in a 1RT class refrigeration system, if the engine speed under standard heating conditions is 2000 rpm, the engine exhaust heat will be approximately
2000 Kcal/h can be recovered, and the circulation flow rate in this case is given by 2000/(70-10)/60=0.56 l/min. Therefore, the throttle mechanism 24 has a circulating flow rate of
All you have to do is set it so that it is 0.56l/min.
(ロ) 冷房運転時
この時の冷媒の流れは次のフロー線図で示され
る。(b) During cooling operation The flow of refrigerant at this time is shown in the flow diagram below.
2→3→4→8→7→10→3→14
冷房運転では、貯湯タンク11内の温水温度が
設定温度以下の場合は冷房給湯運転となるため、
エンジン排熱のみによる給湯運転は、貯湯タンク
11内の温水温度が設定温度に達した後に行なわ
れることになる。 2 → 3 → 4 → 8 → 7 → 10 → 3 → 14 In cooling operation, if the hot water temperature in the hot water storage tank 11 is below the set temperature, cooling hot water supply operation will be performed.
Hot water supply operation using only engine exhaust heat is performed after the hot water temperature in the hot water storage tank 11 reaches the set temperature.
それ故、貯湯水は、貯湯タンク下部11b、貯
湯水循環ポンプ12、冷媒給湯熱交換器5、三方
混合弁13の低温側入口13c、三方混合弁出口
13M、排熱給湯熱交換器9、貯湯タンク上部1
1aを順に循環することになり、循環流量は絞り
機構24による制約を受けず大量循環する。従つ
て設定温度の貯湯水が排熱給湯熱交換器9で加熱
されて貯湯タンク11にためられることになる。 Therefore, the hot water is stored in the hot water storage tank lower part 11b, the hot water circulation pump 12, the refrigerant hot water heat exchanger 5, the low temperature side inlet 13c of the three-way mixing valve 13, the three-way mixing valve outlet 13M, the exhaust heat hot water heat exchanger 9, and the hot water storage tank. Upper part 1
1a in order, and the circulating flow rate is not restricted by the throttling mechanism 24 and circulates in large quantities. Therefore, the stored hot water at the set temperature is heated by the exhaust heat hot water supply heat exchanger 9 and stored in the hot water storage tank 11.
このようにすると、貯湯タンク11内の温水温
度は徐々に昇温し、最終的には排熱回収用熱媒温
度に近くなり、排熱給湯熱交換器9での熱交換量
は徐々に低下し、その低下分だけ、ラジエータ
(図示省略)で放熱されることとなる。しかし、
貯湯タンク11内には、十分に蓄熱された後の放
熱なので問題とならない。 In this way, the temperature of the hot water in the hot water storage tank 11 gradually increases, and eventually becomes close to the temperature of the heat medium for exhaust heat recovery, and the amount of heat exchanged in the exhaust heat hot water supply heat exchanger 9 gradually decreases. However, the heat corresponding to the decrease will be radiated by a radiator (not shown). but,
There is no problem because the heat is released after sufficient heat has been stored in the hot water storage tank 11.
次いで本実施例の給湯装置を次記の運転条件で
運転した結果を示す。 Next, the results of operating the water heater of this example under the following operating conditions will be shown.
(運転条件)
冷媒:R−22、エンジン回転数:2000rpm、熱
交換器4,10:両方とも二重管・向流式、外気
条件:乾球温度7℃、湿球温度6℃、初期タンク
内温度:10℃、高圧圧力:17Kg/cm2G
(運転結果)
COP(貯湯水加熱量/インプツト熱量)=1.37貯
湯タンク11内の位置a,b,c及びdにおける
温水温度の運転時間に対する変化は第6図図示の
通りであつた。これによれば、貯湯タンク11内
においては上部から下部に向つて順次高温水が貯
溜されていくことがわかる。つまり、瞬間性能が
存しているのである。(Operating conditions) Refrigerant: R-22, Engine speed: 2000 rpm, Heat exchangers 4 and 10: Both double pipe/counterflow type, Outside air conditions: Dry bulb temperature 7℃, wet bulb temperature 6℃, Initial tank Internal temperature: 10℃, high pressure: 17Kg/cm 2 G (operation results) COP (hot water heating amount/input heat amount) = 1.37 Hot water temperature at positions a, b, c, and d in hot water storage tank 11 versus operating time The changes were as shown in Figure 6. According to this, it can be seen that high temperature water is sequentially stored in the hot water storage tank 11 from the top to the bottom. In other words, instantaneous performance exists.
(考案の効果)
続いて本考案のエンジン駆動式給湯装置の効果
を述べる。(Effects of the invention) Next, the effects of the engine-driven water heater of the invention will be described.
本考案によれば、貯湯水をまず冷媒凝縮熱で加
熱し、次にエンジン排熱で加熱することによつ
て、かなり高温の貯湯水が得られるようにし、し
かも、貯湯タンク11内で最低温度の下部11b
の貯湯水を加熱し、加熱後の温水を貯湯タンク上
部11aからためこんでいくようにしたので次記
の効果がある。 According to the present invention, by first heating the stored hot water with refrigerant condensation heat and then heating with engine exhaust heat, fairly high temperature stored hot water can be obtained. lower part 11b of
Since the hot water stored in the tank is heated and the heated hot water is stored from the upper part 11a of the hot water storage tank, the following effects can be obtained.
(イ) 高温水が貯湯タンク上部11aよりたまるの
で瞬間性能があり、又温度的にも60〜70℃以上
となり、風呂のさし湯としても十分利用でき
る。(a) Since the high temperature water is accumulated from the upper part 11a of the hot water storage tank, it has instantaneous performance, and the temperature is 60 to 70°C or higher, so it can be used sufficiently as hot water for a bath.
(ロ) 貯湯タンク11全体に高温水をためることが
できるので、蓄熱量が大となる。(b) Since high-temperature water can be stored in the entire hot water storage tank 11, the amount of heat storage becomes large.
又、冷媒給湯熱交換器5と排熱給湯熱交換器9
との間に冷媒給湯熱交換器5出口の設定温度以下
でも暖房時のエンジン1の排熱のみで所定の温水
が得られる機構を付加した流量制御弁13を設け
たので、次記の効果がある。 Moreover, a refrigerant hot water supply heat exchanger 5 and an exhaust heat hot water supply heat exchanger 9
A flow rate control valve 13 with a mechanism that allows a specified amount of hot water to be obtained only by the exhaust heat of the engine 1 during heating even if the temperature is lower than the set temperature at the outlet of the refrigerant hot water heat exchanger 5 is installed between the be.
(イ) 運転当初も所定流量(≒少量)が流れるの
で、高温貯湯できるまでの時間が短くなる。(b) Since a predetermined flow rate (≒a small amount) flows even at the beginning of operation, the time until high-temperature hot water can be stored is shortened.
(ロ) エンジン排熱のみの給湯時でも所定温度以上
の高温貯湯が可能となり、さし湯として十分利
用できる。(b) Even when hot water is supplied using only engine exhaust heat, it is possible to store hot water at a temperature higher than a predetermined temperature, and it can be fully used as hot water.
(ハ) 貯湯タンク内を高温まで加熱した後ラジエー
タで放熱するので無駄がなくなる。(c) After heating the inside of the hot water storage tank to a high temperature, the heat is radiated by the radiator, eliminating waste.
更に、図示の実施例の如く、流量制御弁13と
してワツクスタイプのものを使用すると、自力的
に流量制御を行なうので、電気が不要となり、省
電力となる利点もある。 Furthermore, if a wax type valve is used as the flow rate control valve 13 as in the illustrated embodiment, the flow rate control valve 13 is self-controlled, thereby eliminating the need for electricity and having the advantage of saving power.
尚、ワツクスタイプの流量制御弁は設定温度以
下では、全閉あるいは全開作動するが、本実施例
の如く、絞り機構を介して全閉時あるいは全開時
にも所定の循環流量(微少量)を確保し得るよう
にしておけば、運転当初における高温貯湯できる
までの時間が短くなるとともに、エンジンの排熱
のみによる給湯運転時にも、所定温度以上の高温
貯湯が可能になる。 Note that wax type flow control valves operate fully closed or fully open when the temperature is below the set temperature, but as in this example, a predetermined circulating flow rate (a very small amount) can be ensured through the throttling mechanism even when fully closed or fully open. If this is done, the time required to store hot water at a high temperature at the beginning of operation will be shortened, and hot water at a temperature higher than a predetermined temperature can be stored even during hot water supply operation using only exhaust heat from the engine.
第1図は本考案の実施例にかかるエンジン駆動
式給湯装置のシステム図、第2図及び第3図は第
1図のシステム図中における流量制御弁の変形例
を示す部分図、第4図及び第5図は従来のエンジ
ン駆動式給湯装置のシステム図、第6図は第1図
の給湯装置における貯湯水の温度状態図である。
1……エンジン、2……圧縮機、5……冷媒給
湯熱交換器、9……排熱給湯熱交換器、11……
貯湯タンク、11a……貯湯タンク上部、11b
……貯湯タンク下部、12……貯湯水循環ポン
プ、13……流量制御弁、C……貯湯水加熱回
路。
Fig. 1 is a system diagram of an engine-driven water heater according to an embodiment of the present invention, Figs. 2 and 3 are partial views showing a modification of the flow control valve in the system diagram of Fig. 1, and Fig. 4. 5 is a system diagram of a conventional engine-driven water heater, and FIG. 6 is a diagram showing the temperature state of stored hot water in the water heater of FIG. 1...Engine, 2...Compressor, 5...Refrigerant hot water supply heat exchanger, 9...Exhaust heat hot water supply heat exchanger, 11...
Hot water storage tank, 11a...Hot water storage tank top, 11b
...Hot water storage tank lower part, 12...Hot water circulation pump, 13...Flow rate control valve, C...Hot water heating circuit.
Claims (1)
し、冷媒給湯熱交換器5での冷媒凝縮熱とエンジ
ン排熱を回収する排熱給湯熱交換器9での熱媒放
熱とにより貯湯タンク11内の貯湯水を加熱して
給湯する如くしたエンジン駆動式の給湯装置にお
いて、前記貯湯タンク11の下部11b、貯湯水
循環ポンプ12、前記冷媒給湯熱交換器5、前記
排熱給湯熱交換器9及び貯湯タンク11の上部1
1aを貯湯タンク11外部において順次環状に連
絡して貯湯水加熱回路Cを構成するとともに、該
貯湯水加熱回路Cには、前記冷媒給湯熱交換器5
と排熱給湯熱交換器9との間に、冷媒給湯熱交換
器5出口に流量制御弁13を介設し、該流量制御
弁13の設定温度以下でも暖房時のエンジン1の
排熱のみで所定温度の温水が得られる機構を前記
流量制御弁13に付加したことを特徴とするエン
ジン駆動式給湯装置。 The engine 1 drives the compressor 2 of the refrigeration system, and the refrigerant condensation heat in the refrigerant hot water heat exchanger 5 and the heat medium heat dissipation in the exhaust heat hot water heat exchanger 9 that recovers engine exhaust heat are used to increase the amount of water in the hot water storage tank 11. In an engine-driven water heater that heats stored water to supply hot water, the lower part 11b of the hot water storage tank 11, the stored water circulation pump 12, the refrigerant hot water heat exchanger 5, the exhaust heat hot water heat exchanger 9, and the hot water storage tank. 11 top 1
1a are sequentially connected in an annular manner outside the hot water storage tank 11 to constitute a stored hot water heating circuit C, and the hot water heating circuit C includes the refrigerant hot water supply heat exchanger 5.
A flow control valve 13 is interposed at the outlet of the refrigerant hot water heat exchanger 5 between the exhaust heat hot water heat exchanger 9 and the exhaust heat hot water heat exchanger 9. An engine-driven water heater characterized in that a mechanism for obtaining hot water at a predetermined temperature is added to the flow rate control valve 13.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983125404U JPS6033176U (en) | 1983-08-11 | 1983-08-11 | Engine-driven water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1983125404U JPS6033176U (en) | 1983-08-11 | 1983-08-11 | Engine-driven water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6033176U JPS6033176U (en) | 1985-03-06 |
JPH033902Y2 true JPH033902Y2 (en) | 1991-01-31 |
Family
ID=30285521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1983125404U Granted JPS6033176U (en) | 1983-08-11 | 1983-08-11 | Engine-driven water heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033176U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH052056Y2 (en) * | 1987-11-30 | 1993-01-19 | ||
JP5830698B2 (en) * | 2011-03-09 | 2015-12-09 | パナソニックIpマネジメント株式会社 | Combined heat and power system |
-
1983
- 1983-08-11 JP JP1983125404U patent/JPS6033176U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6033176U (en) | 1985-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3916638A (en) | Air conditioning system | |
JPS6155018B2 (en) | ||
JPH0432669A (en) | Heat pump system controlling method therefor | |
JPH033902Y2 (en) | ||
JP2538210B2 (en) | Engine driven heat pump device | |
JPS6343662B2 (en) | ||
JPS6018761Y2 (en) | Air conditioning equipment | |
KR100419480B1 (en) | Multi heat pump system with advanced heating and cooling performance | |
JPH07151359A (en) | Refrigerant circulation type air conditioning system | |
JPH0355752B2 (en) | ||
JPS6343664B2 (en) | ||
JPH05340641A (en) | Heat pump | |
JP2844124B2 (en) | Heat pump type heating equipment using antifreeze | |
JPS6135900Y2 (en) | ||
JPH0471142B2 (en) | ||
JPS6018735Y2 (en) | Heat recovery heating and cooling equipment | |
JPS5922437Y2 (en) | Air conditioning/heating water heater | |
JPS6110137Y2 (en) | ||
JPS624847Y2 (en) | ||
SU1597500A1 (en) | Absorption refrigeration unit | |
JPH0626731A (en) | Cooler, heater and hot water supplying device | |
JPS60569Y2 (en) | Air conditioning equipment | |
JP2691423B2 (en) | Engine driven heat pump air conditioner | |
JPS6110149Y2 (en) | ||
JPS6216568Y2 (en) |