JPH0338334B2 - - Google Patents

Info

Publication number
JPH0338334B2
JPH0338334B2 JP58006529A JP652983A JPH0338334B2 JP H0338334 B2 JPH0338334 B2 JP H0338334B2 JP 58006529 A JP58006529 A JP 58006529A JP 652983 A JP652983 A JP 652983A JP H0338334 B2 JPH0338334 B2 JP H0338334B2
Authority
JP
Japan
Prior art keywords
magnetic
range
atom
atomic
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58006529A
Other languages
Japanese (ja)
Other versions
JPS58123851A (en
Inventor
Hasegawa Ryusuke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell International Inc
Original Assignee
AlliedSignal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AlliedSignal Inc filed Critical AlliedSignal Inc
Publication of JPS58123851A publication Critical patent/JPS58123851A/en
Publication of JPH0338334B2 publication Critical patent/JPH0338334B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15316Amorphous metallic alloys, e.g. glassy metals based on Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

発明の分野 本発明は、ほゞれロに近い磁気歪、高い磁気的
か぀熱的安定性および優れた軟質磁性を有するガ
ラス化金属合金に関する。 埓来技術の叙述 飜和磁気歪λsは、枛磁状態から飜和された匷
磁性状態ぞの移行においお磁性材料に生じる長さ
の倉化率はΔlに関するものである。この磁
気歪の倀はデむメンシペンをもたない量である
が、しばしばミクロ歪の単䜍で衚されるこゝに
ミクロ歪はppmの長さの倉化率である。 磁気歪の䜎い匷磁性合金は幟぀かの盞互関係の
ある理由によ぀お芁望されおいる。  軟質磁性䜎保磁性、高透磁率は䞀般に飜
和磁気歪λsず結晶磁気異方性定数が共にれロ
に近接しおいる堎合に埗られる。埓぀お異方性
が同じならば、磁気歪の䜎い合金の方が䜎い盎
流保磁力ず高い透磁率を瀺す。このような合金
はいろいろは軟質磁性甚途に適しおいる。  かかるれロ近接磁気歪材料の磁性は機械的歪
には鈍感である。かゝる堎合、曲げ、打抜きあ
るいはかかる材料でデバむスを぀くるのに必芁
なその他の物理的凊眮のあず歪陀去のための焌
鈍の必芁はほずんどないずいうこずである。こ
れず察照的に、結晶質合金のように歪に敏感な
材料の磁性はこうした冷間加工によ぀おかなり
劣化する。埓぀おかかる材料は慎重に焌鈍され
なければならない。  れロ磁気歪材料の䜎盎流保磁力は亀流操䜜条
件に持ち越されるず、そこで再び䜎保磁力ず高
い透磁率を衚わすただし結晶性磁気異方性が
倧きすぎぬこず、および電気抵抗が小さすぎな
いこずが条件である。たた、飜和磁気歪がれ
ロのずき゚ネルギヌは機械的振動の圱響を受け
ないかられロ磁気歪材料の磁心損倱は党く䜎い
ものである。このようにしお結晶磁気異方性
が適床あるいは䜎いずころのれロ磁気歪の磁
性合金は、磁心損倱が䜎く、亀流透磁率が高い
こずが必芁ずされる堎合に有益である。このよ
うな甚途にはいろいろな巻きテヌプや電力トラ
ンスのような成局磁心デバむス、通信甚トラン
ス、磁気蚘録ヘツドおよび類䌌のものがある。  終りに、れロ磁気歪材料を有する電磁気デバ
むスは亀流励磁の際音響ノむズを発生しない。
これは䞊蚘した䜎い磁心損倱によるものである
が倚くの電磁気デバむスにおける固有のうなり
を陀くものであるからたた本来必芁な性質でも
ある。 れロ磁気歪をも぀ものずしお぀の結晶質合
金がよく知られおいる以䞋、断りがなければ
原子パヌセントである。 (1) 箄80ニツケルを含むニツケル−鉄合金
「80ニツケルパヌマロむ」 (2) 箄90コバルトを含むコバルト−鉄合金お
よび (3) 玄重量珪玠を含む鉄−珪玠合金 たたこれらの範疇には、二元を基本ずしたそれ
ら合金にモリブデンあるいはアルミニりムのよう
な他の少量の元玠を添加しお特定の性質倉化をさ
せたれロ磁気歪合金も含たれおいる。これらには
たずえば電気抵抗および透磁率を高めたΔ
Mo、79Ni、17FeモリパヌマロむMoly
Permalloyの名で垂販、軟質磁性および延性改
善のためにパヌマロむにいろいろな量で銅を加え
たものミナヌメタルMumetalの名で垂販、
および異方性をれロずした85重量Fe、重量
Si、重量AlセンダストSendustの名で
垂販がある。 範疇(1)に含たれる合金は䞊にあげた皮類のう
ちでは最も広く利甚されおいる。䜕故ならそれら
はれロ磁気歪ず䜎異方性をあわせ持぀おおり、そ
れ故に極めお磁気的に軟質だからである。すなわ
ちそれらは䜎保磁力、高透磁率および䜎磁心損倱
性を有しおいる。これらパヌマロむはたた機械的
に比范的軟質であり、高枩1000℃以䞊での焌
鈍によ぀お埗られるそれらのすぐれた磁性は比范
的軜い機械的衝撃によ぀おも劣化しやすいもので
ある。 Co90Fe10を基本にした合金のような範疇(2)の合
金はパヌマロむよりもさらに高い飜和磁束密床
Bs箄1.9テスラを有しおいる。しかしたたそれ
らは匷い負の結晶磁気異方性を有しおおり、それ
らを良奜な軟質磁性材料たらしめるこずを劚げお
いる。たずえばCo90Fe10の初透磁率は玄100〜200
にすぎない。 重量Si−Feおよびそれに関連した䞉元合
金センダスト䞊蚘のような範疇(3)もたたパヌ
マロむよりも高い飜和磁束密床それぞれBs箄
1.8テラスおよび1.1テスラを瀺す。しかし、こ
れらの合金は極めお脆く、そしおそれ故に粉䜓で
のみに䜿甚が限られおいる。最近6.5重量Si−
Fe〔IEEE Trans.MAG−167281980〕およびセ
ンダスト合金〔IEEE Trans.MAG−15、1149
1970〕は共に急速凝固法によ぀お比范的に延性
を出せるようにな぀た。しかしながら、磁気歪の
成分䟝存性はこれらの材料にあ぀おは非垞に匷
く、れロに近接した磁気歪をもたせるべく合金組
成を綿密にあわせるこずは困難なこずである。 結晶磁気異方性がガラス化状態においお効果的
に陀去されるこずは知られおいる。それ故れロの
磁気歪を有するガラス化金属合金を探すのが望た
しいこずになる。こうした合金は前蚘した組成に
近いずころに芋出されるであろう。しかしながら
半金属の存圚は遷移金属の電子状態ぞの電荷の
移動により磁化を抑える傟向を有しおいるため、
80ニツケルパヌマロむを基づいたガラス化金属合
金は垞枩で非磁性であるかたたは飜和磁束密床が
䜎くお容認し難い。たずえばガラス化金属合金
Fe40Ni40P14B6添付数倀は原子パヌセントであ
るは玄0.8テスラの飜和磁束密床を有し、䞀方
ガラス化合金Ni49Fe29P14B6Si2は玄0.46テラスの
飜和磁束密床を有し、たたガラス化合金Ni80P20
は非磁性である。ほがれロに等しい飜和磁気歪を
有するガラス化金属合金は鉄に富むセンダストの
組成の近くにはただ芋出されおいない。䞊蚘(2)に
おけるCo−Feの結晶質合金に基づく倚くのれロ
近接磁気歪ガラス化金属合金が文献に報告されお
いる。たずえばこれらはCo72Fe3P16P6Al3AIP
Conference ProceedingsNo.24pp.745〜746
1975Co70.5Fe4.5Si15B10Vol.14Japanse
Journal of Applied Physics.pp.1077〜1078
1975、Co31.2Fe7.8Ni39.0B14Si8〔Proceedings
of 3rd International Conference on Rapidly
Quenched Metalsp.1831979〕および
Co74Fe6B20〔IEEE Trans.MAG−12、942
1976〕である。第衚にこれら材料の磁気的性
質の幟぀かをあげおある。
FIELD OF THE INVENTION The present invention relates to vitrified metal alloys with near-zero magnetostriction, high magnetic and thermal stability, and excellent soft magnetic properties. Description of the Prior Art Saturation magnetostriction λs refers to the rate of change in length that occurs in a magnetic material in the transition from a demagnetized state to a saturated ferromagnetic state, Δl/l. The value of magnetostriction is a dimensionless quantity, but is often expressed in units of microstrain (where microstrain is the rate of change in length in ppm). Ferromagnetic alloys with low magnetostriction are desired for several interrelated reasons. 1 Soft magnetism (low coercivity, high permeability) is generally obtained when both the saturation magnetostriction λ s and the magnetocrystalline anisotropy constant K are close to zero. Therefore, if the anisotropy is the same, an alloy with lower magnetostriction will exhibit lower DC coercive force and higher magnetic permeability. Such alloys are suitable for a variety of soft magnetic applications. 2 The magnetism of such near-zero magnetostrictive materials is insensitive to mechanical strain. In such cases, there is little need for strain relief annealing after bending, stamping, or other physical procedures necessary to make devices from such materials. In contrast, the magnetic properties of strain-sensitive materials such as crystalline alloys are significantly degraded by such cold working. Such materials must therefore be carefully annealed. 3 The low DC coercivity of zero magnetostrictive materials is carried over to AC operating conditions, where they again exhibit low coercivity and high permeability (provided that the crystalline magnetic anisotropy is not too large and the electrical resistance is too small). ). Furthermore, when the saturation magnetostriction is zero, the energy is not affected by mechanical vibrations, so the core loss of the zero magnetostrictive material is quite low. Zero magnetostrictive magnetic alloys (with moderate or low magnetocrystalline anisotropy) are thus useful where low core losses and high AC permeability are required. Such applications include various wound tapes, layered core devices such as power transformers, communications transformers, magnetic recording heads, and the like. 4. Finally, electromagnetic devices with zero magnetostrictive materials do not generate acoustic noise upon alternating current excitation.
This is due to the low magnetic core loss mentioned above, but is also an inherently necessary property since it eliminates the inherent beat in many electromagnetic devices. Three crystalline alloys are well known as having zero magnetostriction (hereinafter in atomic percent unless otherwise noted). (1) Nickel-iron alloys containing about 80% nickel ("80 nickel permalloy"), (2) cobalt-iron alloys containing about 90% cobalt, and (3) iron-silicon alloys containing about 6% silicon by weight. This category also includes zero magnetostrictive alloys, which are binary based alloys with the addition of small amounts of other elements, such as molybdenum or aluminum, to modify specific properties. These include, for example, Δ% with increased electrical resistance and magnetic permeability.
Mo, 79% Ni, 17% Fe (Molypermalloy; Moly
permalloy with varying amounts of copper added to improve soft magnetism and ductility (sold under the name Mumetal),
and 85% Fe, 9% Si, and 6% Al (commercially available under the name Sendust) with zero anisotropy. Alloys in category (1) are the most widely used of the three listed above. This is because they have both zero magnetostriction and low anisotropy, and are therefore extremely magnetically soft. That is, they have low coercive force, high permeability and low core loss. These permalloys are also mechanically relatively soft, and their excellent magnetic properties obtained by annealing at high temperatures (above 1000° C.) are susceptible to deterioration even by relatively light mechanical shock. Alloys in category (2), such as those based on Co90Fe10 , have even higher saturation flux densities (Bs approximately 1.9 Tesla) than permalloy. However, they also have strong negative magnetocrystalline anisotropy, which prevents them from being good soft magnetic materials. For example, the initial permeability of Co 90 Fe 10 is approximately 100 to 200
It's nothing more than that. Category (3) such as 6 wt% Si-Fe and related ternary alloy Sendust (described above) also have higher saturation flux densities (respectively about Bs) than permalloy.
1.8 terraces and 1.1 Tesla). However, these alloys are extremely brittle and are therefore limited to use only in powder form. Recently 6.5wt%Si−
Fe [IEEE Trans.MAG-16728 (1980)] and Sendust alloy [IEEE Trans.MAG-15, 1149]
(1970)] both became relatively ductile through rapid solidification. However, the component dependence of magnetostriction is very strong in these materials, and it is difficult to carefully adjust the alloy composition to provide magnetostriction close to zero. It is known that magnetocrystalline anisotropy is effectively removed in the vitrified state. It would therefore be desirable to look for vitrified metal alloys that have zero magnetostriction. Such alloys may be found close to the compositions described above. However, the presence of metalloids tends to suppress magnetization due to charge transfer to the d-electron state of transition metals.
Vitrified metal alloys based on 80 nickel permalloy are either non-magnetic at room temperature or have unacceptable low saturation magnetic flux densities. For example vitrified metal alloys
Fe 40 Ni 40 P 14 B 6 (the attached figures are in atomic percent) has a saturation flux density of about 0.8 Tesla, while the vitrified alloy Ni 49 Fe 29 P 14 B 6 Si 2 has a saturation flux density of about 0.46 Tesla Density and also vitrified alloy Ni 80 P 20
is non-magnetic. A vitrified metal alloy with a saturation magnetostriction approximately equal to zero has not yet been found close to the composition of iron-rich sendust. Many near-zero magnetostrictive vitrified metal alloys based on the Co-Fe crystalline alloy in (2) above have been reported in the literature. For example, these are Co 72 Fe 3 P 16 P 6 Al 3 (AIP
Conference Proceedings, No. 24, pp. 745-746
(1975)), Co 70.5 Fe 4.5 Si 15 B 10 (Vol.14, Japanse
Journal of Applied Physics.pp.1077〜1078
(1975)), Co 31.2 Fe 7.8 Ni 39.0 B 14 Si 8 [Proceedings
of 3rd International Conference on Rapidly
Quenched Metals, p.183, (1979)] and
Co 74 Fe 6 B 20 [IEEE Trans.MAG−12, 942
(1976)]. Table 1 lists some of the magnetic properties of these materials.

【衚】【table】

【衚】 これら合金の飜和磁束密床Bsは0.6〜1.2テ
スラの範囲である。Bsが0.6テスラに近いガラス
化合金は結晶のスヌパヌマロむに范べお䜎い保磁
力ず透磁率を瀺しおいる。しかし、これらの合金
は比范的䜎い枩床い150℃で、磁気的に䞍安
定な傟向を有しおおる。これに察しお、Bs1.2テ
スラ以䞋のガラス化合金はそれらの䞀次結晶枩床
Tclの近くたたはそれ以䞊のずころに、それ
らの匷磁性のキナリヌ枩床Ξをも぀傟向にあ
る。このこずはこれら材料の熱凊理によ぀お必芁
な軟質磁性を埗るこずを非垞に困難なものずす
る。䜕故ならば、こうした焌鈍はΞ近くの枩床で
行なうずき最も効果的なものだからである。 明らかに、より高い磁気的か぀熱的安定性およ
び可胜な限り高い飜和磁束密床を有するれロ磁気
歪ガラス化合金が必芁ずされおいるのである。 本発明の芁玄 本発明に埓えば、少くずも70はガラス化した
磁性合金で、れロに近い磁気歪、高い磁気的か぀
熱的安定性およびすぐれた軟質磁性を有する合金
が埗られる。 本発明のガラス質磁性金属合金は、 匏 CoaFebNicModBeSif 匏䞭は58〜70原子、は〜7.5原子、
は原子以䞋、は〜原子、は11〜
15原子、は〜14原子のそれぞれの範囲内
にあるものずし、ただしの合蚈が72〜
76原子、の合蚈が23〜26原子の範囲内
にあるこずを条件ずする又は 匏 CoaFebModBeSif 匏䞭は58〜70原子、は〜7.5原子、
は〜原子、は11〜15原子、は〜
14原子のそれぞれの範囲内にあるものずし、た
だしの合蚈が72〜76原子、の合蚈
が23〜26原子の範囲内にあるこずを条件ずす
るを有する合金である。本発明のガラス質合金
は、次の性質を合わせ有する。 (a) −1.1×10-6ず1.1×10-6の間の磁気歪倀、 (b) 0.6Tに等しいか又はこれを超える飜和磁束
密床、 (c) 0.56Aを超えない盎流保磁力、 (d) 少くずも8200である、0.1T、50kHにおける
透磁率。 そしおさらに、玄550〜670Kの範囲のキナリヌ
枩床および玄790〜870Kの範囲の䞀次結晶枩床を
有しおいる。 本発明の詳现な説明 本発明に埓えば、少くずも70のガラス化した
磁性合金、そしおれロに近接した磁気歪、高い磁
気的か぀熱的安的性さらに高い透磁性、䜎い磁心
損倱および䜎い保磁力ずい぀た軟質磁性を含む性
質を顕著に組合わせた合金が埗られる。 本発明のガラス質磁性金属合金は、 匏 CoaFebNicModBeSif 匏䞭は58〜70原子、は〜7.5原子、
は原子以䞋、は〜原子、は11〜
15原子、は〜14原子のそれぞれの範囲内
にあるものずし、ただしの合蚈が72〜
76原子、の合蚈が23〜26原子の範囲内
にあるこずを条件ずする又は 匏 CoaFebModBeSif 匏䞭は58〜70原子、は〜7.5原子、
は〜原子、は11〜15原子、は〜
14原子のそれぞれの範囲内にあるものずし、た
だしの合蚈が72〜76原子、の合蚈
が23〜26原子の範囲内にあるこずを条件ずす
るを有する合金である。本発明のガラス質合金
は、次の性質を合わせ有する。 (a) −1.1×10-6ず1.1×10-6の間の磁気歪倀、 (b) 0.6Tに等しいか又はこれを超える飜和磁束
密床、 (c) 0.56Aを超えない盎流保磁力、 (d) 少くずも8200である、0.1T、50kHにおける
透磁率。 そしおさらに、550〜670Kの範囲のキナリヌ枩
床および玄790〜870Kの範囲の䞀次結晶枩床を有
しおいる。 䞊蚘成分の玔床は、通垞の商甚実斜でみられる
皋床のものである。しかしながら、本発明の合金
䞭のモリブデンは少くずもタングステン、ニオビ
りム、タンタル、チタニりム、ゞルコニりムおよ
びハフニりムのような他の遷移金属元玠の぀ず
おきかえられ埗るこず、およびこれらガラス化合
金の必芁な磁気的性質を重倧に劣䞋させるこずな
く、Siの玄原子パヌセントたでを炭玠、アルミ
ニりムあるいはゲルマニりムによ぀おおきかえら
れ埗るこずは認識されよう。 本発明の必須的なれロ磁気歪ガラス化金属合金
ずしおは、Co67.4Fe4.1Ni3.0Mo1.5B12.5Si11.5、
Co67.1Fe4.4Ni3.0Mo1.5B12.5Si11.5、Co64.0Fe4.5Ni6.0
Mo1.5B12.5Si11.5、Co67.0Fe4.5Ni3.0Mo1.5B12Si12、
Co67.0Fe4.5Ni3.0Mo1.5B13Si11およびCo67.5Fe4.5
Ni3.0Mo1.0B12Si12がある。これらのガラス化合金
は玄0.7〜0.8テスラの飜和磁束密床、600〜670K
のキナリヌ枩床、玄800Kの䞀次結晶枩床および
すぐれた延性を有しおいる。これらおよび本発明
の他のれロ近接磁気歪ガラス化合金の幟぀かの磁
気的および熱的性質を第衚にあげた。これらは
先に報告したれロ磁気歪のガラス化金属合金に぀
いおの第衚にあげた性質ずよい比范になる。
[Table] The saturation magnetic flux density (Bs) of these alloys ranges from 0.6 to 1.2 Tesla. Vitrified alloys with Bs close to 0.6 Tesla exhibit lower coercivity and permeability than crystalline supermalloy. However, these alloys tend to be magnetically unstable at relatively low temperatures (150°C). In contrast, vitrified alloys below 1.2 Tesla tend to have their ferromagnetic Curie temperatures (Ξ) near or above their primary crystallization temperatures (Tcl). This makes it very difficult to obtain the necessary soft magnetism by heat treating these materials. This is because such annealing is most effective when performed at temperatures near Ξ. Clearly, there is a need for zero magnetostrictive vitrifying alloys with higher magnetic and thermal stability and as high a saturation flux density as possible. SUMMARY OF THE INVENTION In accordance with the present invention, an alloy is obtained that is at least 70% vitrified magnetic alloy, has near-zero magnetostriction, high magnetic and thermal stability, and excellent soft magnetism. The glassy magnetic metal alloy of the present invention has the formula Co a Fe b Nic Mo d B e Sif (where a is 58 to 70 at%, b is 2 to 7.5 at%,
c is 8 at% or less, d is 1 to 2 at%, e is 11 to
15 at%, f shall be within the range of 9 to 14 at%, provided that the sum of a+b+c is 72 to
76 atomic%, provided that the sum of e+f is within the range of 23 to 26 atomic%) or the formula Co a Fe b Mo d B e Si f (where a is 58 to 70 atomic% and b is 2 ~7.5 atom%,
d is 1 to 2 atom%, e is 11 to 15 atom%, f is 9 to 2 atom%
14 atomic %, provided that the sum of a+b is within the range of 72 to 76 atomic %, and the sum of e+f is within the range of 23 to 26 atomic %). The glassy alloy of the present invention has the following properties. (a) magnetostriction value between −1.1×10 -6 and +1.1×10 -6 ; (b) saturation magnetic flux density equal to or greater than 0.6 T; (c) not exceeding 0.56 A/m. DC coercivity, (d) Magnetic permeability at 0.1T, 50kHz, which is at least 8200. It further has a Curie temperature in the range of about 550-670K and a primary crystallization temperature in the range of about 790-870K. DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a magnetic alloy with at least 70% vitrification and close to zero magnetostriction, high magnetic and thermal stability, high magnetic permeability, low core loss and low The result is an alloy with a remarkable combination of properties including coercivity and soft magnetism. The glassy magnetic metal alloy of the present invention has the formula Co a Fe b Nic Mo d B e Sif (where a is 58 to 70 at%, b is 2 to 7.5 at%,
c is 8 at% or less, d is 1 to 2 at%, e is 11 to
15 at%, f shall be within the range of 9 to 14 at%, provided that the sum of a+b+c is 72 to
76 atomic%, provided that the sum of e+f is within the range of 23 to 26 atomic%) or the formula Co a Fe b Mo d B e Si f (where a is 58 to 70 atomic% and b is 2 ~7.5 atom%,
d is 1 to 2 atom%, e is 11 to 15 atom%, f is 9 to 2 atom%
14 atomic %, provided that the sum of a+b is within the range of 72 to 76 atomic %, and the sum of e+f is within the range of 23 to 26 atomic %). The glassy alloy of the present invention has the following properties. (a) magnetostriction value between −1.1×10 -6 and +1.1×10 -6 ; (b) saturation magnetic flux density equal to or greater than 0.6 T; (c) not exceeding 0.56 A/m. DC coercivity, (d) Magnetic permeability at 0.1T, 50kHz, which is at least 8200. Furthermore, it has a Curie temperature in the range of 550-670K and a primary crystallization temperature in the range of approximately 790-870K. The purity of the above components is that found in normal commercial practice. However, it should be noted that the molybdenum in the alloys of the invention can be replaced by at least one of the other transition metal elements such as tungsten, niobium, tantalum, titanium, zirconium and hafnium, and the necessary magnetic properties of these vitrified alloys. It will be appreciated that up to about 2 atomic percent of the Si can be replaced by carbon, aluminum, or germanium without significantly degrading the Si. The essential zero magnetostrictive vitrified metal alloys of the present invention include Co 67.4 Fe 4.1 Ni 3.0 Mo 1.5 B 12.5 Si 11.5 ,
Co 67.1 Fe 4.4 Ni 3.0 Mo 1.5 B 12.5 Si 11.5 , Co 64.0 Fe 4.5 Ni 6.0
Mo 1.5 B 12.5 Si 11.5 , Co 67.0 Fe 4.5 Ni 3.0 Mo 1.5 B 12 Si 12 ,
Co 67.0 Fe 4.5 Ni 3.0 Mo 1.5 B 13 Si 11 and Co 67.5 Fe 4.5
There are Ni 3.0 Mo 1.0 B 12 Si 12 . These vitrified alloys have a saturation magnetic flux density of about 0.7-0.8 Tesla, 600-670K
It has a Curie temperature of about 800K, a primary crystal temperature of about 800K, and excellent ductility. Some magnetic and thermal properties of these and other near-zero magnetostrictive vitrifying alloys of the present invention are listed in Table 2. These compare well with the properties listed in Table 1 for the zero magnetostrictive vitrified metal alloys previously reported.

【衚】【table】

【衚】 磁化の再配列のための掻性化゚ネルギヌEa
を幟぀かの代衚的なれロ近接磁気歪ガラス化合金
に぀いお第衚にあげた。この衚はSiがEaを高
める傟向をも぀こずそしおたたEaはSiの比
がに近づくずき高くなる傟向をも぀こずを瀺し
おいる。Eaの倀が高くなるほどこの系の磁気的
安定性が高くなるこずが瀺されるのは望たしいこ
ずである。第衚および第衚に基づくこうした
知芋を䜵せるず、奜たしいSi量は、Siが
23〜26原子パヌセントのずき、〜14原子パヌセ
ントになる。 Moの存圚はTclを高め、埓぀おこの合金系の
熱的安定性を高める。〜原子の範囲が適圓
である。しかし、原子パヌセントを越えるMo
の量はキナリヌ枩床を、通垞の磁気デバむスでは
奜たしくない、550K以䞋にたで䜎䞋させる。
[Table] Activation energy (Ea) for magnetization rearrangement
are listed in Table 3 for some representative near-zero magnetostrictive vitrification alloys. This table shows that Si tends to increase Ea and that Ea also tends to increase as the Si/B ratio approaches 1. It is desirable to show that the higher the value of Ea, the higher the magnetic stability of the system. Combining these findings based on Tables 2 and 3, the preferable amount of Si is (Si+B).
When it is 23-26 atomic percent, it becomes 9-14 atomic percent. The presence of Mo increases the Tcl and thus the thermal stability of this alloy system. A range of 1 to 2 atomic % is suitable. However, Mo exceeding 2 atomic percent
This amount lowers the Curie temperature to below 550 K, which is undesirable for normal magnetic devices.

【衚】 幟぀かの甚途には僅かに正たたは僅かに負の磁
気歪を有する材料を甚いるのが望たしいあるいは
容認される。このようなれロ近接磁気歪ガラス化
金属合金は、およびがそれぞれ58〜702〜
7.5および〜原子パヌセントの範囲で、、
およびの合蚈が72〜76原子パヌセントの範囲
を条件ずしお埗られる。 これらのガラス質金属合金の飜和磁気歪の絶察
倀λsは1.1×10-6よりも小さいすなわち飜
和磁気歪範囲は、−1.1×10-6から1.1×10-6又は
−からミクロストレむンの範囲内にあ
る。。これらガラス質金属合金の飜和磁束密床
は、0.6テスラに等しいか、又はこれを超える倀
であり、ほが0.6〜0.8テスラの範囲である。 さらにれロに近づけたλsの倀は、、およ
びの倀をそれぞれ63〜69、〜および〜
の範囲、ただし、およびの合蚈が玄72〜76
原子パヌセントの範囲ずしたずきに埗られる。こ
のような掚奚組成でλsは0.5×10-6以䞋ずな
る。必須的な磁気歪のれロ倀は、およびの
倀がそれぞれ64〜68、〜および〜原子パ
ヌセントの範囲で、たゞし、およびの合蚈
が玄72〜76原子パヌセントの範囲で、たたが11
〜12原子パヌセントおよびが24原子パ
ヌセントに近いずきに埗られる。それ故このよう
な成分が最も奜たしい。 本発明のガラス化金属合金は他で容易に䜿われ
おいる技術で郜合よく぀くられる。䟋えば1974幎
11月日発行の米囜特蚱第3845805号および1974
幎12月24日発行の米囜特蚱第3856513号を参照の
こず。䞀般に連続したリボン、綿等の圢にな぀た
ガラス化合金は必芁な組成をも぀溶湯から、少な
くずも玄105K秒の速床で急激に冷华されたも
のである。 党合金成分の23〜26原子パヌセントの範囲内で
の硌玠および珪玠ずいう半金属成分は、11〜15原
子パヌセントの範囲の硌玠および〜14原子パヌ
セントの範囲の珪玠でも぀お十分ガラス化圢成が
できる。䞊蚘したように、に近いSi比およ
び11〜12原子パヌセントずいう珪玠量“”は
最も奜適である。䜕故ならば、それらによ぀およ
り高い安定性が埗られ、磁気歪れロに近いが
半金属組成に関し比解的に鈍感になるからであ
る。たずえば、67.1b4.5、3.0および
1.5原子パヌセントのずき、珪玠量に関する磁
気歪量の倉化率dλsdfは10たたは13原
子パヌセントの近くではほが0.8×10-6原子
Siであるが、11〜12原子パヌセントのに぀いお
はdλsdfはれロに近い。67.8、3.7、
3.0および1.5原子パヌセントのずき、
12原子パヌセントの近くではdλsdfの量は
れロになり、10たたは13原子パヌセントの近
くでは玄0.1×10-6Si原子パヌセントになる。 少量のNiは本合金系においおは磁気歪倀を倉
えるには比范的効果は少なく、本質的にはCo
Feの比が結果の磁気歪倀をきめる。本合金系に
おいおCoFeの比が玄14〜16.5察のずきれロ
の磁気歪が埗られる。Co70.5Fe4.5B10Si15および
Co74Fe6B20のような埓来技術でのガラス化金属
合金では、その比率は挟くそれぞれ玄14ず12に蚭
定されおいる。λsおよびdλsdfを埗る
ため、11.5原子パヌセントの近くで玄14
〜16.5間の䞊蚘CoFe比率範囲および玄±
0.5原子パヌセントの蚱容差をずるこずは材料の
統合的芋地からしお有益である。 第衚に異なる枩床Taで焌鈍した本発明
のれロ近接磁気歪ガラス化合金に぀いお0.1テス
ラ磁束密床および50KHzにおける亀流磁心損倱
(L)、励磁電力Peおよび透磁率Όを瀺す。
Table: For some applications it is desirable or acceptable to use materials with slightly positive or slightly negative magnetostriction. Such a zero-near magnetostrictive vitrified metal alloy has a, b and c of 58 to 702, respectively.
a, in the range of 7.5 and 0 to 8 atomic percent;
Provided that the sum of b and c is in the range of 72 to 76 atomic percent. The absolute value of the saturation magnetostriction |λ s | of these glassy metal alloys is less than 1.1×10 −6 (i.e. the saturation magnetostriction range is from −1.1×10 −6 to +1.1×10 −6 or − (within a range of 1 to +1 microstrain). The saturation magnetic flux density of these glassy metal alloys is equal to or greater than 0.6 Tesla, and generally ranges from 0.6 to 0.8 Tesla. The value of λs that is even closer to zero makes the values of a, b, and c 63 to 69, 3 to 6, and 0 to 6, respectively.
range, where the sum of a, b and c is approximately 72 to 76
Obtained when the range is in atomic percent. With such a recommended composition, |λs| becomes 0.5×10 -6 or less. The essential magnetostriction zero values range from 64 to 68, 4 to 5, and 0 to 6 atomic percent for values of a, b, and c, respectively, such that the sum of a, b, and c is approximately 72 to 76 in the atomic percent range, and f is 11
~12 atomic percent and when (e+f) is close to 24 atomic percent. Such components are therefore most preferred. The vitrified metal alloys of the present invention are conveniently made using techniques readily used elsewhere. For example in 1974
U.S. Patent No. 3,845,805 issued November 5th and 1974
See U.S. Pat. No. 3,856,513, issued December 24, 2013. The vitrified alloy, generally in the form of a continuous ribbon, cotton, etc., is rapidly cooled from a molten metal of the required composition at a rate of at least about 105 K/sec. The semimetallic components of boron and silicon in the range of 23 to 26 atomic percent of the total alloy composition are sufficient to form vitrification with boron in the range of 11 to 15 atomic percent and silicon in the range of 9 to 14 atomic percent. . As mentioned above, a Si/B ratio close to 1 and a silicon content ("f") of 11 to 12 atomic percent are most preferred. This is because they provide higher stability and the magnetostriction (close to zero) is relatively insensitive to the semimetallic composition. For example, a=67.1b=4.5, c=3.0 and d
= 1.5 atomic percent, the rate of change in magnetostriction with respect to silicon content |dλs/df| is approximately 0.8×10 -6 /at % near f = 10 or 13 atomic percent.
For Si, dλs/df is close to zero for f between 11 and 12 atomic percent. a=67.8, b=3.7, c
=3.0 and d=1.5 atomic percent, then f=
Near 12 atomic percent, the amount |dλs/df| becomes zero, and near f=10 or 13 atomic percent it becomes about 0.1×10 −6 /Si atomic percent. A small amount of Ni is relatively ineffective in changing the magnetostriction value in this alloy system, and is essentially Co:
The Fe ratio determines the resulting magnetostriction value. Zero magnetostriction is obtained in the present alloy system when the Co:Fe ratio is about 14-16.5:1. Co 70.5 Fe 4.5 B 10 Si 15 and
In prior art vitrified metal alloys such as Co 74 Fe 6 B 20 , the ratios are set at approximately 14 and 12, respectively. approximately 14:1 near f = 11.5 atomic percent to obtain λs = 0 and dλs/df = 0
The above Co:Fe ratio range between ~16.5:1 and about ±
Taking a tolerance of 0.5 atomic percent is beneficial from a material integrity standpoint. Table 4 shows AC core loss at 0.1 Tesla magnetic flux density and 50 KHz for near-zero magnetostrictive vitrified alloys of the present invention annealed at different temperatures (Ta).
(L), excitation power (Pe) and magnetic permeability (Ό).

【衚】 第衚は、盎流保磁力Hc、残留磁束密床
Br、亀流保磁力Hc′および角圢比Br
Blにおよがす焌鈍枩床Taおよびトロむダ
ル詊料の円呚方向に付䞎された焌鈍磁堎Hll
の効果を瀺したものである。こゝにBlは本発明
のれロ磁気合金の぀に぀いお50KHzで10eの磁
堎をかけたずきの磁化であ぀お、Όは50KHzおよ
び0.1テスラ磁化におけるものである。高呚波で
の䜎保磁力およびに近い高角圢比は絊電スむツ
チのような磁気デバむス甚途には望たしいもので
ある。
[Table] Table 5 shows DC coercive force (Hc), residual magnetic flux density (Br), AC coercive force (Hc') and squareness ratio (Br/
Annealing temperature (Ta) applied to Bl) and annealing magnetic field (Hll) applied in the circumferential direction of the toroidal sample
This shows the effect of Here, Bl is the magnetization of one of the zero magnetic alloys of the present invention when a magnetic field of 10e is applied at 50 KHz, and Ό is the magnetization at 50 KHz and 0.1 Tesla. Low coercivity at high frequencies and high squareness ratios close to unity are desirable for magnetic device applications such as power switches.

【衚】【table】

【衚】 第衚は本発明のれロ磁気歪合金の぀に぀い
お、、PeおよびΌにおよがす焌鈍時間Ta
の効果を瀺すたものである。
[Table] Table 6 shows the annealing time (Ta) on L, Pe, and Ό for one of the zero magnetostrictive alloys of the present invention.
This shows the effect of

【衚】 䞊蚘第〜第衚に瀺した結果から、本発明の
25〜30Ό厚さのれロ磁気歪ガラス化合金に぀い
お、0.1テスラおよび50KHzにおいお4W
Kg、Pe7VaKgおよびΌ23000が埗られるこ
ずが指摘される。これらの数倀ず比べ、同様厚さ
25Όの埓来技術の結晶質の無磁気歪スヌパ
ヌマロむは0.1テスラおよび50KHzでは8W
Kg、Pe10VAKgおよびΌ19000を瀺す。本
発明の無磁気歪ガラス化合金の性質は結晶質スヌ
パヌマロむのそれらよりすぐれおいるこずは明ら
かである。発明の範囲倖のアモルフアス合金の䟋
を第衚に瀺した。本発明の合金によ぀お䞎えら
れる性質の有利な組み合せはCo74Fe6B20のよう
な高い飜和磁束密床をも぀埓来技術の無磁気歪ガ
ラス合金によ぀おは埗られない。䜕故ならば、そ
れらのキナリヌ枩床は䞀次結晶枩床よりも高く、
それらの性質を改善するための熱凊理はより䜎い
飜和磁束密床をも぀たものほどには有効ではな
い。本発明のガラス化合金においお埗られる䞊蚘
の性質は埓来技術の䜎磁化ガラス化合金でも埗ら
れる。しかしながら、Co31.2Fe7.8Ni39.0B14Si8の
ような埓来技術のこれらの合金は前に指摘したよ
うに玄150℃ずいう比范的䜎い枩床で磁気的に䞍
安定ずなる傟向がある。
[Table] From the results shown in Tables 4 to 6 above, it is clear that the present invention
For zero magnetostrictive vitrified alloys 25-30 ÎŒm thick, L = 4 W/ at 0.1 Tesla and 50 KHz.
It is noted that Kg, Pe=7Va/Kg and Ό=23000 are obtained. Compared to these numbers, a prior art crystalline non-magnetostrictive supermalloy of similar thickness (25 Όm) has L = 8 W/ at 0.1 Tesla and 50 KHz.
Kg, Pe=10VA/Kg and Ό=19000. It is clear that the properties of the non-magnetostrictive vitrifying alloy of the present invention are superior to those of crystalline supermalloy. Examples of amorphous alloys outside the scope of the invention are shown in Table 7. The advantageous combination of properties provided by the alloys of the present invention is not available with prior art non-magnetostrictive glass alloys with high saturation flux densities such as Co 74 Fe 6 B 20 . This is because their Kyrie temperature is higher than the primary crystal temperature,
Heat treatments to improve their properties are not as effective as those with lower saturation flux densities. The above properties obtained in the vitrifying alloys of the present invention are also obtained in prior art low magnetization vitrifying alloys. However, these prior art alloys such as Co 31.2 Fe 7.8 Ni 39.0 B 14 Si 8 tend to become magnetically unstable at relatively low temperatures of about 150° C., as previously pointed out.

【衚】 第衚はCoaFebNicModBeSif組成をも぀代衚的
ガラス化合金でその、、、、および
の少くずも぀が本発明に芏定された組成範囲倖
にある堎合の幟぀かの磁性を瀺したものである。
この衚は、成分の少くずも぀が芏定範囲倖にあ
る合金が次のような奜たしからざる性質の少くず
も぀を瀺しおいるこずを指摘しおいる。 () λsの倀が×10-6よりも倧きい。 () キナリヌ枩床Ξfが結晶化枩床Tcl
よりも高い。 結晶化により加工の磁堎焌鈍の効果が䜎䞋す
る。および () キナリヌ枩床および飜和磁束密床Bsが
䜎すぎお実甚的でなくなる。 次の実斜䟋は本発明のより完党な理解を䞎える
ために瀺すものである。本発明の原理および実際
を明らかにするための特定の技術、条件、材料、
比率および報告デヌタは兞型的なものであ぀お、
本発明の範囲を限定するものず解釈しおはならな
い。 実斜䟋  詊料補造 第衚〜第衚にあげたガラス化合金は米囜
特蚱第3856513号の䞭でChenおよびPolkによ぀
お教瀺された技術に埓぀お溶湯から急激に冷华
玄106K秒されたものである。埗られたリ
ボンは兞型的に25〜30Ό厚で、0.5〜2.5cmå·Ÿ
をもち、線回折Cuk攟射線䜿甚および走
査熱量枬定によ぀お重倧な結晶はないこずが確
認された。ガラス化金属合金のリボンは匷力で
光沢があり、硬くそしお延性がある。  磁気枬定 䞊蚘ので述べられた方法に埓぀お぀くられ
たガラス化金属合金の連続したリボンはボビン
倖埄3.8cmに巻かれ閉磁気回路トロむダル詊
料ずされた。詊料はそれぞれリボン〜を
含んでいる。トロむド巻磁心環には絶瞁線
の䞀次および二次巻きそれぞれ少くずも10回
以䞊が斜された。これら詊料は垂販の曲線ト
レヌサヌでも぀おヒステリシス曲線保磁力ず
残留磁束密床および初透磁率ならびに磁心損
倱を求めるのに甚いられたIEEE
Standard106−1972による。 各詊料の飜和磁化Msは垂販の振動詊料磁気
蚈Princeton Applied Research補でも぀
お枬定された。この堎合においおリボンは幟぀
かの小角片玄mm×mmにカツトされた。
これらは垞態ずしおランダムに向いおおり、そ
れらの面はかけられた磁堎〜720KA
により平行ずされた。次いで枬定された量密床
を甚いお飜和磁束密床Bs4πMsDが蚈算
された。 匷磁性のキナリヌ枩床Ξfは、むンダクタ
ンス法により枬定され、たた埮分走査熱量蚈に
よ぀お怜査された。この熱量蚈は䞻ずしお結晶
枩床を確認するのに甚いられた。䞀次結晶枩床
すなわち初晶枩床Tclは本発明および埓来
技術発明におけるいろいろのガラス化合金の熱
的安定性を比范するのに甚いられた。 磁気的安定性はJournal of Applied
Physics.Vol.49p.65101978に蚘茉された
方法この方法に文献によるものを組み合わせ
たに埓い、磁化の再配列動力孊から確認され
た。 磁気歪枬定には金属歪ゲヌゞBLH
Electronics補を甚いた。これを぀の短い
リボン間に貌り぀けたEastman−910
cementによる。リボン軞ずゲヌゞ軞は平行で
ある。磁気歪は平らな堎での瞊の歪Δl
‖ず垂盎の歪Δl ⊥ずから匏λ2/3
〔Δl ‖−Δl ⊥〕に埓぀お、適甚
した磁堎の関数ずしお決定された。 本発明をこのようにむしろ十分詳现に述べたが
この现郚に厳密に拘わる必芁はなく、これからさ
らに倉化され改善されるこずは、本技術に熟緎し
た人にはすべお远加特蚱請求範囲によ぀お芏定さ
れるような発明の範囲内に属するものであるこず
ずしお玍埗され埗るものであるこずは諒解される
であろう。
[Table] Table 7 shows representative vitrification alloys with the composition Co a Fe b Ni c Mo d B e Si f , and their a, b, c, d, e and f.
The graph shows some magnetic properties when at least one of the above is outside the composition range defined in the present invention.
The table points out that alloys in which at least one of the components is outside the specified range exhibit at least one of the following undesirable properties: () The value of |λs| is greater than 1×10 -6 . () The Curie temperature (Ξf) is the crystallization temperature (Tcl)
higher than Crystallization reduces the effectiveness of magnetic field annealing for machining. and () the Curie temperature and saturation magnetic flux density (Bs) are too low to be practical. The following examples are presented to provide a more complete understanding of the invention. Specific techniques, conditions, and materials to clarify the principles and practices of the invention;
Ratios and reported data are typical;
It should not be construed as limiting the scope of the invention. Example 1 Sample Preparation The vitrified alloys listed in Tables 2-7 were rapidly cooled (approximately 10 6 K) from a molten metal according to the technique taught by Chen and Polk in U.S. Pat. /second). The resulting ribbons were typically 25-30 ÎŒm thick, 0.5-2.5 cm wide, and were confirmed to be free of significant crystals by X-ray diffraction (using Cuk radiation) and scanning calorimetry. Vitrified metal alloy ribbons are strong, shiny, hard and ductile. 2 Magnetic measurements A continuous ribbon of vitrified metal alloy made according to the method described in 1 above was wound around a bobbin (outer diameter 3.8 cm) to form a closed magnetic circuit toroidal sample. Each sample contains 1-3 g of ribbon. The toroid (wound core ring) had primary and secondary windings (at least 10 turns each) of insulated wire. These samples were used to determine the hysteresis curve (coercive force and residual magnetic flux density), initial permeability, and core loss using a commercially available curve tracer (IEEE
According to Standard 106−1972). The saturation magnetization Ms of each sample was also measured using a commercially available vibrating sample magnetometer (manufactured by Princeton Applied Research). In this case the ribbon was cut into several small square pieces (approximately 2 mm x 2 mm).
These are normally oriented randomly, and their faces are exposed to an applied magnetic field (0 to 720 KA/m).
It was assumed that they were parallel. Then, the saturation magnetic flux density Bs (=4πMsD) was calculated using the measured quantity density D. The ferromagnetic Curie temperature (Ξf) was measured by the inductance method and examined by differential scanning calorimetry. This calorimeter was mainly used to check the crystallization temperature. The primary crystal temperature or primary crystal temperature (Tcl) was used to compare the thermal stability of various vitrified alloys in the present invention and prior art inventions. Magnetic stability Journal of Applied
This was confirmed from the magnetization rearrangement dynamics according to the method described in Physics. Vol. 49, p. 6510 (1978) (combining this method with those from the literature). Metal strain gauges (BLH) are used for magnetostriction measurements.
Electronics) was used. I pasted this between two short pieces of ribbon (Eastman-910
(by cement). The ribbon axis and gauge axis are parallel. Magnetostriction is the longitudinal strain in a flat field (Δl/l)
From ‖ and perpendicular strain (Δl/l) ⊥, formula λ = 2/3
It was determined as a function of the applied magnetic field according to [(Δl/l) ‖−(Δl/l) ⊥]. Although the present invention has thus been described in rather sufficient detail, it is not necessary to dwell on this detail; further changes and improvements hereafter will be apparent to those skilled in the art as defined by the appended claims. It will be understood that the invention can be accepted as falling within the scope of the invention as described above.

Claims (1)

【特蚱請求の範囲】  匏 CoaFebNicModBeSif 匏䞭は58〜70原子、は〜7.5原子、
は原子以䞋、は〜原子、は11〜
15原子、は〜14原子のそれぞれの範囲内
にあるものずし、ただしの合蚈が72〜
76原子、の合蚈が23〜26原子の範囲内
にあるこずを条件ずするを有し、か぀ (a) −1.1×10-6ず1.1×10-6の間の磁気歪倀、 (b) 0.6Tに等しいか又はこれを超える飜和磁束
密床、 (c) 0.56Aを超えない盎流保磁力、 (d) 少くずも8200である、0.1T、50kHにおける
透磁率。 の性質をあわせ有するこずを特城ずする高い磁気
的及び熱的安定性を有し磁気歪がほずんど零の、
少くずも70がガラス質の磁性金属合金。  が63〜69原子、が〜原子、が
原子以䞋の範囲内にある特蚱請求の範囲第
項蚘茉の磁性合金。  が11〜12原子の間にあり、か぀ずず
の合蚈が24原子近くである堎合においお、が
64〜68原子、が〜原子、が原子
以䞋の範囲内にある特蚱請求の範囲第項蚘茉の
磁性合金。  匏Co67.4Fe4.1Ni3.0Mo1.5B12.5Si11.5を有する特
蚱請求の範囲第項蚘茉の磁性合金。  匏Co67.1Fe4.4Ni3.0Mo1.5B12.5Si11.5を有する特
蚱請求の範囲第項蚘茉の磁性合金。  匏Co64.0Fe4.5Ni6.0Mo1.5B12.5Si11.5を有する特
蚱請求の範囲第項蚘茉の磁性合金。  匏Co67.0Fe4.5Ni3.0Mo1.5B12Si12を有する特蚱
請求の範囲第項蚘茉の磁性合金。  匏Co67.0Fe4.5Ni3.0Mo1.5B13Si11を有する特蚱
請求の範囲第項蚘茉の磁性合金。  匏Co67.5Fe4.5Ni3.0Mo1.0B12Si12を有する特蚱
請求の範囲第項蚘茉の磁性合金。  匏 CoaFebModBeSif 匏䞭は58〜70原子、は〜7.5原子、
は〜原子、は11〜15原子、は〜
14原子のそれぞれの範囲内にあるものずし、た
だしの合蚈が72〜76原子、の合蚈
が23〜26原子の範囲内にあるこずを条件ずす
るを有し、か぀ (a) −1.1×10-6ず1.1×10-6の間の磁気歪倀、 (b) 0.6Tに等しいか又はこれを超える飜和磁束
密床、 (c) 0.56Aを超えない盎流保磁力、 (d) 少くずも8200である、0.1T、50kHにおける
透磁率。 の性質をあわせ有するこずを特城ずする高い磁気
的及び熱的安定性を有し磁気歪がほずんど零のガ
ラス質金属合金。  が63〜69原子、が〜原子の範
囲内にある特蚱請求の範囲第項蚘茉の磁性合
金。  が11〜12原子の間にあり、か぀ず
ずの合蚈が24原子近くである堎合においお、
が64〜68原子、が〜原子の範囲内にあ
る特蚱請求の範囲第項蚘茉の磁性合金。
[Claims] 1 Formula: Co a Fe b Ni c Mo d B e Si f (wherein a is 58 to 70 atomic %, b is 2 to 7.5 atomic %,
c is 8 at% or less, d is 1 to 2 at%, e is 11 to
15 at%, f shall be within the range of 9 to 14 at%, provided that the sum of a+b+c is 72 to
76 atomic %, provided that the sum of e+f is within the range of 23 to 26 atomic %), and (a) has a magnetic field between -1.1×10 -6 and +1.1×10 -6 strain value; (b) saturation magnetic flux density equal to or greater than 0.6 T; (c) DC coercivity not exceeding 0.56 A/m; (d) permeability at 0.1 T, 50 kHz which is at least 8200. It has high magnetic and thermal stability and has almost zero magnetostriction.
A magnetic metal alloy that is at least 70% glassy. 2 Claim 1 in which a is within the range of 63 to 69 at%, b is within the range of 3 to 6 at%, and c is within the range of 6 at% or less
Magnetic alloys described in section. 3 When f is between 11 and 12 atomic % and the sum of e and f is close to 24 atomic %, a is
64 to 68 atom%, b 4 to 5 atom%, c 6 atom%
A magnetic alloy according to claim 1 falling within the following range. 4. A magnetic alloy according to claim 3 having the formula Co 67.4 Fe 4.1 Ni 3.0 Mo 1.5 B 12.5 Si 11.5 . 5. A magnetic alloy according to claim 3 having the formula Co 67.1 Fe 4.4 Ni 3.0 Mo 1.5 B 12.5 Si 11.5 . 6. A magnetic alloy according to claim 3 having the formula Co 64.0 Fe 4.5 Ni 6.0 Mo 1.5 B 12.5 Si 11.5 . 7. A magnetic alloy according to claim 3 having the formula Co 67.0 Fe 4.5 Ni 3.0 Mo 1.5 B 12 Si 12 . 8. A magnetic alloy according to claim 3 having the formula Co 67.0 Fe 4.5 Ni 3.0 Mo 1.5 B 13 Si 11 . 9. A magnetic alloy according to claim 3 having the formula Co 67.5 Fe 4.5 Ni 3.0 Mo 1.0 B 12 Si 12 . 10 Formula Co a Fe b Mo d B e Si f (In the formula, a is 58 to 70 at%, b is 2 to 7.5 at%,
d is 1 to 2 atom%, e is 11 to 15 atom%, f is 9 to 2 atom%
(with the condition that the sum of a+b is within the range of 72 to 76 atom%, and the sum of e+f is within the range of 23 to 26 atom%), and ( a) magnetostriction values between −1.1×10 -6 and +1.1×10 -6 ; (b) saturation magnetic flux density equal to or exceeding 0.6 T; (c) direct current not exceeding 0.56 A/m. Coercivity, (d) Magnetic permeability at 0.1T, 50kH, which is at least 8200. A glassy metal alloy having high magnetic and thermal stability and almost zero magnetostriction, characterized by having the following properties. 11. The magnetic alloy according to claim 10, wherein a is in the range of 63 to 69 atom % and b is in the range of 3 to 6 atom %. 12 f is between 11 and 12 atom%, and e and f
When the total of a and is nearly 24 at%,
11. The magnetic alloy according to claim 10, wherein b is in the range of 64 to 68 atomic % and b is in the range of 4 to 5 atomic %.
JP58006529A 1982-01-18 1983-01-18 Glassy metal alloy having high magnetic and thermal stability with almost zero magnetostriction Granted JPS58123851A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34041382A 1982-01-18 1982-01-18
US340413 1982-01-18

Publications (2)

Publication Number Publication Date
JPS58123851A JPS58123851A (en) 1983-07-23
JPH0338334B2 true JPH0338334B2 (en) 1991-06-10

Family

ID=23333255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58006529A Granted JPS58123851A (en) 1982-01-18 1983-01-18 Glassy metal alloy having high magnetic and thermal stability with almost zero magnetostriction

Country Status (4)

Country Link
EP (1) EP0084138B1 (en)
JP (1) JPS58123851A (en)
CA (1) CA1222647A (en)
DE (1) DE3275492D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541331A (en) * 1999-04-12 2002-12-03 アラむドシグナル むンコヌポレむテッド Magnetic glassy alloys for high frequency applications

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643627B2 (en) * 1985-07-26 1994-06-08 ナニチカ株匏䌚瀟 Amorphous metal wire
US4938267A (en) * 1986-01-08 1990-07-03 Allied-Signal Inc. Glassy metal alloys with perminvar characteristics
EP0240600B1 (en) * 1986-01-08 1992-05-13 AlliedSignal Inc. Glassy metal alloys with perminvar characteristics
JPH0625399B2 (en) * 1986-11-03 1994-04-06 アラむド・コヌポレヌション Glassy alloy with almost zero magnetostriction for high frequency use
ATE172794T1 (en) * 1987-08-07 1998-11-15 Mitsui Chemicals Inc DEVICE FOR ASSESSING THE CONDITION OF INSULATION
EP0303324A1 (en) * 1987-08-10 1989-02-15 Koninklijke Philips Electronics N.V. Magnetic material, method of manufacturing this material and a magnetic head provided with this material
DE3900946A1 (en) * 1989-01-14 1990-07-26 Vacuumschmelze Gmbh MAGNETIC CORE FOR AN INTERFACE TRANSMITTER
US6118365A (en) * 1996-09-17 2000-09-12 Vacuumschmelze Gmbh Pulse transformer for a u-interface operating according to the echo compensation principle, and method for the manufacture of a toroidal tape core contained in a U-interface pulse transformer
EP2821183B1 (en) 2013-07-05 2017-06-21 Black & Decker Inc. Hammer Drill

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL182182C (en) * 1974-11-29 1988-01-18 Allied Chem DEVICE WITH AMORPHIC METAL ALLOY.
US4056411A (en) * 1976-05-14 1977-11-01 Ho Sou Chen Method of making magnetic devices including amorphous alloys
US4038073A (en) * 1976-03-01 1977-07-26 Allied Chemical Corporation Near-zero magnetostrictive glassy metal alloys with high saturation induction
US4150981A (en) * 1977-08-15 1979-04-24 Allied Chemical Corporation Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541331A (en) * 1999-04-12 2002-12-03 アラむドシグナル むンコヌポレむテッド Magnetic glassy alloys for high frequency applications

Also Published As

Publication number Publication date
EP0084138A3 (en) 1985-08-21
EP0084138B1 (en) 1987-02-25
EP0084138A2 (en) 1983-07-27
DE3275492D1 (en) 1987-04-02
JPS58123851A (en) 1983-07-23
CA1222647A (en) 1987-06-09

Similar Documents

Publication Publication Date Title
US4150981A (en) Glassy alloys containing cobalt, nickel and iron having near-zero magnetostriction and high saturation induction
US4038073A (en) Near-zero magnetostrictive glassy metal alloys with high saturation induction
US4268325A (en) Magnetic glassy metal alloy sheets with improved soft magnetic properties
US4152144A (en) Metallic glasses having a combination of high permeability, low magnetostriction, low ac core loss and high thermal stability
JP2013100603A (en) Magnetic glassy alloy for high frequency application
JP2013168637A (en) Glassy metal alloy for monitoring electron article
JP2552274B2 (en) Glassy alloy with perminer characteristics
JPH0338334B2 (en)
US5284528A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
US5110378A (en) Metallic glasses having a combination of high permeability, low coercivity, low ac core loss, low exciting power and high thermal stability
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
US4938267A (en) Glassy metal alloys with perminvar characteristics
EP0329704B1 (en) Near-zero magnetostrictive glassy metal alloys for high frequency applications