JPH0331380B2 - - Google Patents

Info

Publication number
JPH0331380B2
JPH0331380B2 JP58125732A JP12573283A JPH0331380B2 JP H0331380 B2 JPH0331380 B2 JP H0331380B2 JP 58125732 A JP58125732 A JP 58125732A JP 12573283 A JP12573283 A JP 12573283A JP H0331380 B2 JPH0331380 B2 JP H0331380B2
Authority
JP
Japan
Prior art keywords
amplitude
amplitude value
test piece
circuit
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58125732A
Other languages
Japanese (ja)
Other versions
JPS6017339A (en
Inventor
Ryuichiro Ebara
Yoshikazu Yamada
Eiji Yamamitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryomei Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Ryomei Engineering Co Ltd
Priority to JP58125732A priority Critical patent/JPS6017339A/en
Publication of JPS6017339A publication Critical patent/JPS6017339A/en
Publication of JPH0331380B2 publication Critical patent/JPH0331380B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 本発明は、試験片に振動を与え、受光素子群に
より試験片の振幅変化を読み取り、さらに出力信
号値を演算、補正することにより常に一定量の振
幅を試験片へ与える疲労試験機に関する。
Detailed Description of the Invention The present invention applies vibration to a test piece, reads the amplitude change of the test piece using a group of light-receiving elements, and further calculates and corrects the output signal value to always apply a constant amount of amplitude to the test piece. Regarding the fatigue testing machine given.

超音波疲労試験機は、その繰返し速度(15K
Hz)が速いことから通常の疲労試験機(繰返し速
度がせいぜい〜60Hz程度)に比較して高繰返し数
領域(繰返し数が109〜1010回)の疲労試験が極
めて短時間に実施可能で能率的、経済的であると
いう特徴を有する。これら、従来の超音波疲労試
験においては、繰返し速度が速いために試験片先
端の振幅の測定は、目盛り付きの拡大顕微鏡を使
用して目視により行うのが最も確実とされてい
た。ところが、これでは測定者による誤差及びあ
る一定の振幅を越えると測定できなくなると言つ
た不具合があつた。そこで本発明は上記問題点を
解決するため測定者による誤差を少なくした疲労
試験機の提供を目的とする。
The ultrasonic fatigue testing machine has a high repetition rate (15K
Hz), it is possible to perform fatigue tests in the high repetition rate range (10 9 to 10 10 times) in an extremely short time compared to normal fatigue testing machines (repetition rate is around 60 Hz at most). It has the characteristics of being efficient and economical. In these conventional ultrasonic fatigue tests, since the repetition rate is high, the amplitude at the tip of the test piece is most reliably measured by visual observation using a scaled magnifying microscope. However, this method had problems such as errors caused by the measurer and the inability to measure when the amplitude exceeds a certain level. SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention aims to provide a fatigue testing machine that reduces errors caused by the operator.

すなわち本発明は、発振器と発振器の出力を受
けて試験片に振動を与える振動子とを有する振動
疲労試験機において、試験片に光を照射する光源
と、試験片をはさんで同光源と対向する位置に設
けられた受光器と、受光器の出力から振幅値を求
める振幅演算回路と、振幅演算回路の出力である
振幅値と事前に設定してある設定振幅値とを比較
する振幅比較演算器と、振幅比較演算器の出力を
受けて試験片の振幅値が設定振幅値に近づくよう
に発振器の出力を補正する補正器とを備えてなる
振動疲労試験機を要旨とする。そのため本発明は
受光器が受ける光量の変化から振幅値が正確に測
定され、更に振幅比較演算器と補正器により自動
的に設定振幅値へ実測振幅値を近づけようと作用
するので設定振幅値と正確に一致した、しかも一
定の振幅に保たれた実測振幅値の疲労試験が可能
となる。
That is, the present invention provides a vibration fatigue testing machine that includes an oscillator and a vibrator that receives the output of the oscillator and vibrates the test piece. an amplitude calculation circuit that calculates an amplitude value from the output of the optical receiver; and an amplitude comparison calculation that compares the amplitude value output from the amplitude calculation circuit with a preset amplitude value. The gist of the present invention is a vibration fatigue testing machine comprising a oscillator and a corrector that receives the output of an amplitude comparison calculator and corrects the output of the oscillator so that the amplitude value of the test piece approaches the set amplitude value. Therefore, in the present invention, the amplitude value is accurately measured from the change in the amount of light received by the light receiver, and furthermore, the amplitude comparison calculator and the corrector automatically work to bring the measured amplitude value closer to the set amplitude value. It becomes possible to conduct a fatigue test with actually measured amplitude values that match exactly and are kept at a constant amplitude.

以下、第1図に示す本発明の一実施例により本
発明を説明する。
The present invention will be explained below with reference to an embodiment of the present invention shown in FIG.

振幅設定器11により初期の振幅値を設定し、
この設定振幅値Aに依存し超音波発振器12によ
つて発生させた超音波レベルの電流をゲイン調整
つまみ19及びゲイン調整回路18で調整した増
幅回路17により増幅し、更に二段増幅するパワ
ードライブ回路20により高電圧に増幅する。こ
の高電圧となつた超音波レベルの電流の波形を波
形整形回路23により矩形波から正弦波に整形し
た後、この電流を超音波振動子4に負荷して超音
波振動子4の先端に設けられた試験片3に超音波
による縦振動を起こす。固有の振動数を持つ試験
片3は超音波による加熱を防止するため透明の水
溶液25中に浸されているが、この試験片3をは
さみ、対向する位置に電源24と結線し試験片3
に平行光線を発する発光素子1及びこの平行光線
を受光する受光素子2とが設けられている。受光
素子2は水槽外の受光素子検出回路5と結線し、
さらにその出力は振幅演算回路6に入力される。
試験片3が無い場合、受光素子2は光線を検知
し、受光素子検出回路5から出力信号を発する。
ところが試験片3が発光素子1と受光素子2の間
にあるので試験片3で遮へいされた部分の受光素
子2は光線を検知できないから出力信号を発しな
い。すなわち、あらかじめ振幅ゼロのときの受光
素子2の出力信号値を振幅演算回路6に記憶設定
しておけば試験片3を振動振幅させたときの受光
素子2の出力信号値は減少するので、振幅ゼロの
ときの受光素子2の出力信号値と振幅させたとき
の受光素子2の出力信号値との差により試験片3
へ与えられた実測振幅値B′が検出できる。この
実測振幅値Bの一部は振幅表示回路7に入力さ
れ、又一部は振幅比較演算器8に入力されて設定
振幅値Aと比較される。尚、振幅比較演算器8内
での設定振幅値Aと実測振幅値Bの比較は、アナ
ログ信号同志又はデイジタル信号同志を比較して
も良いが、デイジタル信号の比較のほうが記憶容
易で又比較が迅速となるので好ましい。尚、この
場合、実測振幅値Bをデイジタル信号に変換する
工程が振幅比較演算器に入力される前に必要とな
る。振幅一致回路10により設定振幅値Aと実測
振幅値Bとを比較した後、それらの大小関係によ
つて位相進み信号14、位相遅れ信号15を振幅
一致回路10の出力に付加し、又は付加せず直接
位相補正回路13に入力されて、ひいては試験片
3の振幅を補正する。第2図に位相(発振周波
数)と実測振幅値との関係を示すが、これらは最
大共振点の発振周波数fmaxを頂点とする凸状の
関係にある。共振点調整回路16により、動作周
波数foを最大共振点の発振周波数fmax以下に調
整する。振幅値を実測したところ、設定振幅値A
が実測振幅値Bよりも大きい場合、位相進み信号
14により発振周波数を大きくすれば、第2図の
f1に示すとおり実測振幅値Bがμ1に増加する。逆
に振幅値Aが実測振幅値Bよりも小さい場合、位
相遅れ信号15により発振波数を小さくすれば、
第2図のf−1に示すとおり実測振幅値Bがμ−1
に減小する。従つて上記の構成とすれば、自動的
に常に設定振幅値と同一の一定の振幅を試験片に
加えることができる。又、本実施例には波形整形
回路23の前に破断停止回路21及び停止レベル
調整器22が備えてあるが、試験片が破断した場
合には破断停止回路21内のインピーダンス変化
検出器が、試験片の破断による固有振動数の変
化、すなわち振動振幅の変化によつて生じる超音
波電流のインピーダンス変化を検知し、疲労試験
機を停止させる。
Setting the initial amplitude value using the amplitude setting device 11,
A power drive that amplifies the ultrasonic level current generated by the ultrasonic oscillator 12 depending on the set amplitude value A by the amplifier circuit 17 adjusted by the gain adjustment knob 19 and the gain adjustment circuit 18, and further amplifies it in two stages. The circuit 20 amplifies the voltage to a high voltage. After shaping the waveform of this high-voltage ultrasonic-level current from a rectangular wave to a sine wave by the waveform shaping circuit 23, this current is applied to the ultrasonic vibrator 4 and placed at the tip of the ultrasonic vibrator 4. Vertical vibration is caused in the test piece 3 by ultrasonic waves. The test piece 3, which has a unique frequency, is immersed in a transparent aqueous solution 25 to prevent heating by ultrasonic waves.
A light emitting element 1 that emits parallel light rays and a light receiving element 2 that receives the parallel light rays are provided. The light receiving element 2 is connected to a light receiving element detection circuit 5 outside the aquarium,
Further, its output is input to an amplitude calculation circuit 6.
If there is no test piece 3, the light receiving element 2 detects the light beam, and the light receiving element detection circuit 5 emits an output signal.
However, since the test piece 3 is located between the light emitting element 1 and the light receiving element 2, the light receiving element 2 in the portion shielded by the test piece 3 cannot detect the light beam and therefore does not emit an output signal. That is, if the output signal value of the light-receiving element 2 when the amplitude is zero is stored and set in the amplitude calculation circuit 6 in advance, the output signal value of the light-receiving element 2 will decrease when the test piece 3 is subjected to vibration amplitude. The difference between the output signal value of the light receiving element 2 at zero and the output signal value of the light receiving element 2 at amplitude
The measured amplitude value B' given to can be detected. A part of the measured amplitude value B is input to the amplitude display circuit 7, and another part is input to the amplitude comparison calculator 8 and compared with the set amplitude value A. Note that the comparison between the set amplitude value A and the measured amplitude value B in the amplitude comparison calculator 8 may be performed by comparing analog signals or digital signals, but comparing digital signals is easier to remember and easier to compare. This is preferable because it is quick. In this case, a step of converting the measured amplitude value B into a digital signal is required before inputting it to the amplitude comparison calculator. After the amplitude matching circuit 10 compares the set amplitude value A and the measured amplitude value B, the phase lead signal 14 and the phase lag signal 15 are added or not added to the output of the amplitude matching circuit 10 depending on their magnitude relationship. The signal is directly input to the phase correction circuit 13, which in turn corrects the amplitude of the test piece 3. FIG. 2 shows the relationship between the phase (oscillation frequency) and the measured amplitude value, which has a convex relationship with the peak at the oscillation frequency fmax at the maximum resonance point. The resonance point adjustment circuit 16 adjusts the operating frequency fo to below the oscillation frequency fmax at the maximum resonance point. When the amplitude value was actually measured, the set amplitude value A
is larger than the measured amplitude value B, if the oscillation frequency is increased by the phase advance signal 14, the result shown in FIG.
As shown in f1 , the measured amplitude value B increases to μ1 . Conversely, if the amplitude value A is smaller than the measured amplitude value B, if the oscillation wave number is decreased by the phase delay signal 15,
As shown in f- 1 in Figure 2, the measured amplitude value B is μ- 1.
decreases to Therefore, with the above configuration, a constant amplitude that is the same as the set amplitude value can be automatically applied to the test piece at all times. Further, in this embodiment, a rupture stop circuit 21 and a stop level adjuster 22 are provided before the waveform shaping circuit 23, but when the test piece breaks, the impedance change detector in the rupture stop circuit 21 The fatigue testing machine is stopped by detecting the change in the natural frequency due to the fracture of the test piece, that is, the change in the impedance of the ultrasonic current caused by the change in vibration amplitude.

また、本実施例では媒体として透明な水25を用
いているので、超音波振動によつて試験片3に発
生する熱をとりさり、また光をよく透すため精度
の高い試験を行なうことが可能となる。
In addition, since transparent water 25 is used as the medium in this example, it removes the heat generated in the test piece 3 due to ultrasonic vibration and allows light to pass through, making it possible to perform highly accurate tests. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す回路図、第
2図は周波数と実測振幅値との関係を示すグラフ
である。 1……光源、2……受光素子、3は試験片、4
……超音波振動子、5……受光素子検出回路、6
……振幅演算回路、7は振幅表示回路、8……振
幅補正回路、9……振幅設定回路、10……振幅
一致回路、11……振幅設定器、12……超音波
発振器、13……位相補正回路、14……位相進
み信号、15……位相遅れ信号、16……共振点
調整回路、17……増幅回路、18……ゲイン調
整回路、19……ゲイン調整、20……パワード
ライブ回路、21……破断停止回路、22……停
止レベル調整、23……波形整形回路、24……
電源、25……水溶液。
FIG. 1 is a circuit diagram showing an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between frequency and measured amplitude value. 1... Light source, 2... Light receiving element, 3 is a test piece, 4
... Ultrasonic transducer, 5 ... Light receiving element detection circuit, 6
... amplitude calculation circuit, 7 is amplitude display circuit, 8 ... amplitude correction circuit, 9 ... amplitude setting circuit, 10 ... amplitude matching circuit, 11 ... amplitude setting device, 12 ... ultrasonic oscillator, 13 ... Phase correction circuit, 14... Phase lead signal, 15... Phase lag signal, 16... Resonance point adjustment circuit, 17... Amplification circuit, 18... Gain adjustment circuit, 19... Gain adjustment, 20... Power drive Circuit, 21... Fracture stop circuit, 22... Stop level adjustment, 23... Waveform shaping circuit, 24...
Power supply, 25...Aqueous solution.

Claims (1)

【特許請求の範囲】[Claims] 1 発振器と、発振器の出力を受けて試験片に振
動を与える振動子とを有する疲労試験機におい
て、試験片に光を照射する光源と、試験片をはさ
んで同光源と対向する位置に設けられた受光器
と、受光器の出力から振幅値を求める振幅演算回
路と振幅演算回路の出力である振幅値と事前に設
定してある設定振幅値とを比較する振幅比較演算
器と、振幅比較演算器の出力を受けて試験片の振
幅値が設定振幅値に近づくように発振器の出力を
補正する補正器とを備えてなる疲労試験機。
1. In a fatigue testing machine that has an oscillator and a vibrator that receives the output of the oscillator and vibrates the test piece, a light source that irradiates the test piece with light and a light source that is installed at a position facing the light source with the test piece in between. an amplitude computation circuit that calculates an amplitude value from the output of the photoreceiver; an amplitude comparator that compares the amplitude value output from the amplitude computation circuit with a preset amplitude value; A fatigue testing machine comprising: a corrector that corrects the output of an oscillator so that the amplitude value of a test piece approaches a set amplitude value in response to the output of a computing unit.
JP58125732A 1983-07-11 1983-07-11 Fatigue testing machine Granted JPS6017339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58125732A JPS6017339A (en) 1983-07-11 1983-07-11 Fatigue testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58125732A JPS6017339A (en) 1983-07-11 1983-07-11 Fatigue testing machine

Publications (2)

Publication Number Publication Date
JPS6017339A JPS6017339A (en) 1985-01-29
JPH0331380B2 true JPH0331380B2 (en) 1991-05-02

Family

ID=14917410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58125732A Granted JPS6017339A (en) 1983-07-11 1983-07-11 Fatigue testing machine

Country Status (1)

Country Link
JP (1) JPS6017339A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1544594A1 (en) * 2002-07-19 2005-06-22 Consejo Superior De Investigaciones Cientificas Method and device for examining fatigue resistance of metallic materials at ultrasonic frequencies and constant temperature
JP4480640B2 (en) * 2005-07-07 2010-06-16 本田技研工業株式会社 Ultrasonic fatigue test apparatus and ultrasonic fatigue test method

Also Published As

Publication number Publication date
JPS6017339A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
US5955669A (en) Method and apparatus for acoustic wave measurement
US7290930B2 (en) Method for monitoring an x-ray apparatus and x-ray apparatus
CN112834430B (en) Gas detection device and method based on acoustic pulse excitation of photoacoustic cell
JP3974662B2 (en) Multi-frequency phase detector for ultrasonic cataract emulsification and aspiration
US4453238A (en) Apparatus and method for determining the phase sensitivity of hydrophones
JPH0331380B2 (en)
JPH0245801Y2 (en)
CN1165952A (en) Measuring method for laser power and energy from beam outside
JPH10185654A (en) Method of detecting liquid level of furnace-melted matter
JP2726562B2 (en) Resonance frequency detector
JPH08159862A (en) Vibration monitoring apparatus
JP3679888B2 (en) Automation method in absolute calibration method of vibration pickup using interference fringe elimination method
US3397607A (en) Single faraday cell polarimeter
JP3679887B2 (en) Automation method in absolute calibration method of vibration pickup using interference fringe counting method
JP2697297B2 (en) Jitter measurement device for laser beam scanner motor
JPH0449088B2 (en)
RU854167C (en) Method of remote measuring of atmosphere parameters
SU333461A1 (en) ULTRASONIC DEVICE FOR MEASURING PARAMETERS OF SPREADING OF OSCILLATIONS IN ENVIRONMENT
RU2140072C1 (en) Method testing and stabilizing sensitivity of capacitive converter
SU842567A1 (en) Ultrasonic method of multi-layer article quality control
JPS59141390A (en) Monitoring device for laser energy
SU819709A2 (en) Acoustical method of flaw detection
SU1642260A1 (en) Device for measuring vibration parameters
SU1429007A1 (en) Electromagnetic flaw detector
SU716135A1 (en) Method of non-destructive quality control of piezoelements