JPH032604A - Apparatus for micropositioning - Google Patents
Apparatus for micropositioningInfo
- Publication number
- JPH032604A JPH032604A JP13574889A JP13574889A JPH032604A JP H032604 A JPH032604 A JP H032604A JP 13574889 A JP13574889 A JP 13574889A JP 13574889 A JP13574889 A JP 13574889A JP H032604 A JPH032604 A JP H032604A
- Authority
- JP
- Japan
- Prior art keywords
- movable member
- sample
- reference surface
- micro
- positioning device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000523 sample Substances 0.000 claims abstract description 64
- 230000005641 tunneling Effects 0.000 claims abstract description 8
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q1/00—Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
- B23Q1/25—Movable or adjustable work or tool supports
- B23Q1/44—Movable or adjustable work or tool supports using particular mechanisms
- B23Q1/50—Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism
- B23Q1/52—Movable or adjustable work or tool supports using particular mechanisms with rotating pairs only, the rotating pairs being the first two elements of the mechanism a single rotating pair
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、走査型トンネル顕微鏡などの各種精密機器に
使用される微小位置決め装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a micropositioning device used in various precision instruments such as a scanning tunneling microscope.
[従来の技術]
近年、原子、分子オーダーの分解能を有する走査型トン
ネル顕微鏡が開発され、表面構造解析、表面粗さ計測な
どに応用されている。[Prior Art] In recent years, scanning tunneling microscopes having resolution on the order of atoms and molecules have been developed and are being applied to surface structure analysis, surface roughness measurement, and the like.
この走査トンネル顕微鏡は、導電性試料と導電性探針の
間に電圧を印加し、lnm程度の距離まで接近させると
トンネル電流が流れ、その距離によりトンネル電流が指
数関数的に変化することを利用したものである。その探
針として、先端を電解研摩等で非常に先鋭に仕上げたも
のを用いて導電性物質からなる試料表面との距離を一定
に保ち2次元的に走査すると表面の原子配列または、凹
凸の形状によりトンネル電流が変化し、表面像を得るこ
とができる(r固体物理J Vo ρ22、No、3
1987 PPI 76−186)。This scanning tunneling microscope utilizes the fact that a voltage is applied between a conductive sample and a conductive probe, and when the probe is brought close to a distance of about 1 nm, a tunnel current flows, and the tunnel current changes exponentially with the distance. This is what I did. The tip of the probe is polished to a very sharp point by electrolytic polishing, etc., and when it scans two-dimensionally while maintaining a constant distance from the sample surface made of a conductive material, the atomic arrangement of the surface and the shape of the irregularities can be detected. The tunnel current changes and a surface image can be obtained (rSolid State Physics J Vo ρ22, No. 3
1987 PPI 76-186).
従来、走査型トンネル顕微鏡(以下、STMと略す)を
初めとする、ナノメートル(nm)オーダーの微小位置
決めを必要とする装置には、圧電素子をアクチュエータ
ーとし、試料と探針間の距離を数nmまで接近させる構
成をとるものが数多く用いられている。イ列えば、アイ
・ビー・エムジャーナル リサーチ デベロプメント(
Vou30 No、4のベージ356)には、X、Y
Z独立の圧電素子だけで構成されたトライボ・νF型ア
クチュエーターによる微小位置決め機構を提案している
。Conventionally, devices that require minute positioning on the order of nanometers (nm), such as scanning tunneling microscopes (hereinafter abbreviated as STM), use piezoelectric elements as actuators to control the distance between the sample and the probe. Many devices are in use that have a configuration that allows them to approach each other down to nanometers. IBM Journal Research Development (
Vou30 No. 4 page 356) has X, Y
We are proposing a micro-positioning mechanism using a tribo-νF type actuator consisting only of Z-independent piezoelectric elements.
又、圧電素子以外の装置としては、特開昭63−197
45号公報に開示されているように、板ばねをマイクロ
メータで押す機構をもつものがある。その構成を第5図
に記載する。測定すべきサンプル33はサンプルホルダ
32に取付けられる。サンプルホルダ32は部材23お
よび板はね20を介して基板37上に設けられる。サン
プル33の下面の基板37上には支柱36を介して探針
を構成するトンネルチップ34が設けられる。In addition, as a device other than a piezoelectric element, Japanese Patent Application Laid-Open No. 1987-197
As disclosed in Japanese Patent No. 45, there is a device having a mechanism for pushing a leaf spring with a micrometer. Its configuration is shown in FIG. A sample 33 to be measured is attached to a sample holder 32. The sample holder 32 is provided on the substrate 37 via the member 23 and the plate 20. A tunnel chip 34 constituting a probe is provided on a substrate 37 on the lower surface of the sample 33 via a support 36 .
サンプル33はマイクロメータ28によりトンネルチッ
プ34に対し微動駆動され位置決めされる。The sample 33 is finely moved and positioned with respect to the tunnel chip 34 by the micrometer 28.
[発明が解決しようとする課題]
しかしながら、上記従来の圧電素子をアクチュエーター
とする微小位置決めでは、動作性能は圧電素子の性能に
よるところが大きく、変位量(可動範囲)が数マイクロ
であり、圧電素子を積層したものでも10マイクロ程度
が限界である。又、従来のマイクロメータと板ばねを用
いた微小位置決めにおいては、可動範囲は、マイクロか
らミリオーダーまで大きくとれるが、板ばねは弾性変形
を利用したものであり剛性が小さく、振動の影響を受け
やすいためSTM等に用いるためには好適なものとは言
えない。STMにおいては、試料と探針間の距離は数ナ
ノメートルまで接近していて、外部振動の影響が、装置
全体に大きく関与する。従ってこのような振動は極力避
けなければならない。外部振動に強い装置を求める場合
、ロックを行なうことが考えられるが装置の簡略化や繰
作性向上の観点からは、複雑なロック墨構なしでかつ外
部振動に強い機構が望まれる。[Problems to be Solved by the Invention] However, in the conventional micro-positioning using the piezoelectric element as an actuator, the operating performance largely depends on the performance of the piezoelectric element, and the amount of displacement (movement range) is several microns, making it difficult to use the piezoelectric element as an actuator. Even in a laminated structure, the limit is about 10 microns. In addition, in micro-positioning using conventional micrometers and leaf springs, the range of movement can be wide from micro to millimeter order, but leaf springs utilize elastic deformation, have low rigidity, and are not affected by vibration. Since it is easy to use, it cannot be said to be suitable for use in STM, etc. In STM, the distance between the sample and the probe is close to several nanometers, and the influence of external vibrations greatly affects the entire device. Therefore, such vibrations must be avoided as much as possible. When seeking a device that is resistant to external vibrations, a lock may be considered, but from the viewpoint of simplifying the device and improving operability, a mechanism that does not have a complicated lock mechanism and is resistant to external vibrations is desired.
[課題を解決するための手段および作用]本発明では、
上記問題点を解決するために以下の技術的手段を設けた
。[Means and effects for solving the problem] In the present invention,
In order to solve the above problems, the following technical means were provided.
本発明の位置決め手段は、摺動面を有し、かつ試料が固
定可能な可動台を固定台基準面に抑圧固定させ、可動台
を基準面に沿って回転移動させる方式である。即ち本発
明は、可動台を固定台に押圧させることにより、可動台
の剛性を高め、外部振動に強い微小位置決め装置の提供
が可能である。また、可動台を移動させる手段に限定が
ないので、目的に応じた移動手段を設けることが可能と
なり、装置の幅広い通用が行なわれる。The positioning means of the present invention is a system in which a movable table having a sliding surface and capable of fixing a sample is pressed and fixed to a reference surface of the fixed table, and the movable table is rotated along the reference surface. That is, according to the present invention, by pressing the movable base against the fixed base, it is possible to increase the rigidity of the movable base and provide a micro-positioning device that is resistant to external vibrations. Further, since there is no limitation on the means for moving the movable base, it is possible to provide a moving means according to the purpose, and the device can be used in a wide range of applications.
[実施例]
以下、図面を用いて本発明による、微小位置決め装置の
構成及びその動作機構について詳細に説明する。[Example] Hereinafter, the configuration of a micro-positioning device and its operating mechanism according to the present invention will be described in detail with reference to the drawings.
第1図(a)及び(b)は、各々本発明に係る微小位置
決め装置の全体斜視図及び分解斜視図を表わす図面であ
る。(a)図において、1は位置決めすべき対象物又は
試料台となる可動ブロック、2及び3は可動ブロックの
フレーム、4は可動ブロックを動かすためのマイクロメ
ータヘッド、14は試料、15はSTMTM116は探
針15をX、Y、Z方向に変位させるためのチューブ型
圧電素子である。(b)図において、5は可動ブロック
1を支持しかつ軸受となる支持回転軸、6及び7は軸受
、8は軸受7の軸受支持棒、9及び10は可動ブロック
1を押圧するためのねじ、11及び12は可動ブロック
1を押圧するためのはね、13は可動ブロック1とフレ
ーム2が接触している摺動面である。FIGS. 1(a) and 1(b) are drawings showing an overall perspective view and an exploded perspective view, respectively, of a micro-positioning device according to the present invention. (a) In the figure, 1 is a movable block that serves as an object to be positioned or a sample stage, 2 and 3 are frames of the movable block, 4 is a micrometer head for moving the movable block, 14 is a sample, and 15 is an STMTM 116. This is a tube-shaped piezoelectric element for displacing the probe 15 in the X, Y, and Z directions. (b) In the figure, 5 is a support rotating shaft that supports the movable block 1 and serves as a bearing, 6 and 7 are bearings, 8 is a bearing support rod of the bearing 7, and 9 and 10 are screws for pressing the movable block 1. , 11 and 12 are springs for pressing the movable block 1, and 13 is a sliding surface on which the movable block 1 and the frame 2 are in contact.
本実施例は、STMの試料と探針間距離を接近させるた
めの、くわしくは、試料と探針間にトンネル電流が流れ
る距11iff(1ナノメートル程度)まで接近させる
ための微小位置決め装置である。従って、可動ブロック
l上には、試料14が搭載され、その上部には、探針1
5とそれを支持し、走査するためのチューブ型圧電素子
16が設置されている。探針15と試料14間距離を、
あらかじめ、数100ナノメートルの距離まで光学顕微
鏡等で観察しながら接近させである。This embodiment is a micro-positioning device for bringing the distance between the STM sample and the probe closer, specifically to the distance 11iff (approximately 1 nanometer) through which a tunnel current flows between the sample and the probe. . Therefore, the sample 14 is mounted on the movable block l, and the probe 1 is mounted on the upper part of the sample 14.
5 and a tube-shaped piezoelectric element 16 for supporting and scanning it. The distance between the probe 15 and the sample 14 is
In advance, the object is approached to a distance of several hundred nanometers while being observed using an optical microscope or the like.
第1図(a)のマイクロメータヘッド4を回転させると
、回転軸5を中心として可動ブロック1は、上下動の変
位力を受ける。ここで、可動ブロック1は、厳密には回
転軸5を中心とする円弧運動を描くが、本実施例の目的
に関しては、100ナノメートル以下の移動距離である
ため可動ブロック1は、上下方向の直線的運動を行なう
と考えることができる。When the micrometer head 4 shown in FIG. 1(a) is rotated, the movable block 1 receives a vertical displacement force about the rotating shaft 5. Strictly speaking, the movable block 1 moves in an arc around the rotation axis 5, but for the purpose of this embodiment, the moving distance is less than 100 nanometers, so the movable block 1 moves in the vertical direction. It can be thought of as performing linear motion.
第2図および第3図は、第1図(a)のA−A断面図及
びB−B断面図であり、これを参照して、さらに、詳細
に本発明の微動機構について説明を行なう。2 and 3 are a sectional view taken along the line AA and sectional view taken along the line BB in FIG.
第2図において可動ブロック1は、回転軸5によって支
持されている。回転軸5は、フレーム2に対し、ねじ1
7により、固定されている。可動ブロック1と回転軸5
は、軸受6によりガイドされ、回転軸5と可動ブロック
1間の摩擦を減少させかつ、可動ブロック1の回転をス
ムーズに行なわせるための構成をとっている。また、可
動ブロック1とフレーム2の接触力は軸受6を、押圧板
18で押す力の強弱により調整自在である。可動ブロッ
ク1とフレーム2の摺動面13は、第1図(b)に示す
ように、可動ブロック1の回転@b5まわつとマイクロ
メータ4で押圧する位置に設けられており、他の部分は
、フレーム2と接触しないように逃げている。なお摺動
面の形状は、これに限定するものではない。これは、摩
擦を減らし回転をスムーズに行なわせるための手段であ
る。In FIG. 2, the movable block 1 is supported by a rotating shaft 5. As shown in FIG. The rotating shaft 5 is attached to the frame 2 by screw 1.
7, it is fixed. Movable block 1 and rotating shaft 5
is guided by a bearing 6, and is configured to reduce friction between the rotary shaft 5 and the movable block 1 and to allow the movable block 1 to rotate smoothly. Further, the contact force between the movable block 1 and the frame 2 can be adjusted by adjusting the strength of the force for pressing the bearing 6 with the press plate 18. As shown in FIG. 1(b), the sliding surfaces 13 of the movable block 1 and the frame 2 are provided at positions where they are pressed by the micrometer 4 when the movable block 1 rotates @b5, and the other parts are pressed by the micrometer 4. , escapes to avoid contact with frame 2. Note that the shape of the sliding surface is not limited to this. This is a means to reduce friction and ensure smooth rotation.
尚、回転軸5まわり以外の摺動面と、対抗した位置に抑
圧はね12が設・けられている。押圧力は、ねし9によ
り調整自在である。軸受7は、可動ブロック1の運動方
向を拘束しないように設けられたものであり、なんら軸
受に限定するものではない。例えば、金属ボールでもよ
い。Note that a suppression spring 12 is provided at a position opposite to the sliding surface other than around the rotating shaft 5. The pressing force can be freely adjusted using the screw 9. The bearing 7 is provided so as not to restrict the moving direction of the movable block 1, and is not limited to a bearing in any way. For example, a metal ball may be used.
第3図において、マイクロメータヘッド4と可動ブロッ
ク1をはさんだ対向位置に押圧ばね11と押圧調整ねじ
10が設けられている。ばね11の、ばね弾性力は、摺
動面面積と、接触力から計算される可動ブロックlとフ
レーム2間の摩擦力よりも犬ぎく設定される。In FIG. 3, a pressure spring 11 and a pressure adjustment screw 10 are provided at opposing positions sandwiching the micrometer head 4 and movable block 1. The spring elastic force of the spring 11 is set to be more rigid than the frictional force between the movable block l and the frame 2 calculated from the sliding surface area and the contact force.
回転@5とマイクロメータヘッド4による押圧位置まで
の距11tItと、可動ブロック1の中心から回転軸5
までの距1lil!Sの比により、縮小又は拡大率の割
合が、自由に設定できる。I>Sならば、縮小機構とな
り、u<Sならば、拡大機構となる。ただし、回転軸5
の半径は!、Sのいずれよりも小さくなければならない
。本実施例では、縮小機構の構成をとっている。以上の
機構をもつ微小位置決め装置をSTMに用いたところ、
試料と探針間距離をトンネル電流が流れる距離まで接近
し、その位置で保持できた。また、STMの位置決めに
おいては、試料14/探針15間距離が数ナノメートル
と接近するため、初期接近時及び機械的援和が終了する
まで、あるいは探針で試料上を2次元走査する際には、
試料14と探針15間距離を一定に保つための電気的フ
ィードバックを与えることが必要である。第4図に、本
実施例の位置決め装置に電気的ブロック図を付加したも
のを示す。同図において、41は試料14にバイアス電
圧を印加するためのバイアス電圧、42は試料14と探
針15が数ナノメートルの距離まで近づいた時に流れる
トンネル電流を検出するためのトンネル電流検出回路、
43はトンネル電流検出回路42からの情報を元にして
試料14と探針15間の距離が所望即動になるように圧
電素子16にフィードバックを与えるための試料/探針
間距離制御回路である。このように、電気的フィードバ
ックを与えることにより、初期接近時における試料と探
針の接触を回避し、機械的緩和によるドリフトや2次元
操作を行なった場合の試料と探針との接触も回避で計る
。又、探針で試料上を2次元走査する時、圧電素子に制
御回路42が与える制御信号を不図示のモニタ手段でモ
ニタする事により試料14の2次元像が得られ凹凸の検
出等かできる。位置決めの為のマイクロメータヘッドの
回転は、手動でも、また、ステッピングモーター等を用
いて機械的に回転力を与えることも可能である。Rotation @5, distance 11tIt from the pressing position by the micrometer head 4, and rotation axis 5 from the center of the movable block 1.
Distance to 1 lil! Depending on the ratio of S, the reduction or enlargement ratio can be freely set. If I>S, the mechanism becomes a reduction mechanism, and if u<S, it becomes an expansion mechanism. However, rotation axis 5
The radius of is! , S. In this embodiment, a reduction mechanism is used. When a micro-positioning device with the above mechanism was used for STM,
The distance between the sample and the probe was brought close enough to allow tunneling current to flow, and the probe could be held in that position. In addition, during STM positioning, since the distance between the sample 14 and the probe 15 is close to several nanometers, it is necessary to for,
It is necessary to provide electrical feedback to keep the distance between the sample 14 and the probe 15 constant. FIG. 4 shows the positioning device of this embodiment with an electrical block diagram added. In the figure, 41 is a bias voltage for applying a bias voltage to the sample 14, 42 is a tunnel current detection circuit for detecting the tunnel current that flows when the sample 14 and the probe 15 approach to a distance of several nanometers;
43 is a sample/probe distance control circuit for giving feedback to the piezoelectric element 16 so that the distance between the sample 14 and the probe 15 becomes a desired instantaneous movement based on information from the tunnel current detection circuit 42. . In this way, by providing electrical feedback, it is possible to avoid contact between the sample and the tip during the initial approach, and also avoid contact between the sample and the tip when performing drift due to mechanical relaxation or two-dimensional operation. measure. Furthermore, when the probe is two-dimensionally scanned over the sample, a two-dimensional image of the sample 14 can be obtained by monitoring the control signal given by the control circuit 42 to the piezoelectric element with a monitor means (not shown), and it is possible to detect irregularities, etc. . The rotation of the micrometer head for positioning can be done manually or by mechanically applying rotational force using a stepping motor or the like.
次に本発明の他の実施例について説明する。Next, other embodiments of the present invention will be described.
第3図に示すマイクロメータヘッド4とはね11を用い
た押圧機構以外の方法について第4図を用いて説明する
。A method other than the pressing mechanism using the micrometer head 4 and spring 11 shown in FIG. 3 will be explained using FIG. 4.
本実施例は、数マイクロオーダーの微小位置決めを行う
際に使用した。積層型圧電PZT42と43に正と負の
重圧を同時に印加すると、可動ブロック1は、変位力を
受ける。また、積層型圧電PZT43と42に前記電圧
極性と逆に、つまり負と正に電圧を同時に印加すると、
可動ブロックは前記変位方向と逆の変位力を受ける。This example was used when performing minute positioning on the order of several micrometers. When positive and negative pressures are simultaneously applied to the laminated piezoelectric PZTs 42 and 43, the movable block 1 receives a displacement force. Furthermore, when a voltage is applied to the stacked piezoelectric PZTs 43 and 42 in the opposite polarity to the voltage polarity, that is, negative and positive at the same time,
The movable block receives a displacement force opposite to the displacement direction.
上記積層型PZTを使用した結果、数マイクロオーダー
の微小位置決めを精度良く行なうことか可能であった。As a result of using the above-mentioned laminated PZT, it was possible to accurately perform minute positioning on the order of several micrometers.
なお本明細書内におけるr感度を下げる」は出力を減少
させる意味であり、光電子増倍管の光電子増幅率を下げ
る等して受光光量に対する出力の割合を減少させること
、光電子増倍管の受光部のmlに減光手段(例えばフィ
ルター)を挿入する等して受光光を減少させるあるいは
遮光すること、あるいはレチクルに入射する光そのもの
を減光あるいは遮光することが含まれるものである。In this specification, "reducing r sensitivity" means reducing the output, which means reducing the ratio of the output to the amount of light received by, for example, lowering the photoelectron amplification factor of the photomultiplier tube. This includes reducing or blocking the received light by inserting a light attenuating means (for example, a filter) into the ml of the reticle, or reducing or blocking the light itself incident on the reticle.
[発明の効果]
以上の機構をもつ微小位置決め装置により、外部振動に
十分耐える剛性の高い装置が達成される。それに伴い数
10〜数100ナノメートルの微小位置決めを精度よく
行うことができ、装置の信頼性の向上に大ぎな効果があ
る。本発明では、摩擦ロックを採用しているため、機械
的緩和が終了した時点で静止状態を保つことが可能であ
り、その際に振動を与えにくく探針と試料との接触を防
ぐ装置の操作性もよく、また、複雑なロック機構を必要
としない、高性能・高剛性な装置が実現できる。[Effects of the Invention] With the micro-positioning device having the above-described mechanism, a device with high rigidity that can sufficiently withstand external vibrations can be achieved. Accordingly, minute positioning of several tens to hundreds of nanometers can be performed with high accuracy, which has a great effect on improving the reliability of the apparatus. In the present invention, since a friction lock is adopted, it is possible to maintain a stationary state once mechanical relaxation is completed, and at this time, it is possible to operate the device with less vibration and prevent contact between the probe and the sample. Furthermore, it is possible to realize a high-performance, high-rigidity device that does not require a complicated locking mechanism.
第1図(a)及び(b)は、各々本発明を実施した微小
位置決め装置の組立状態の斜視図及び、分解斜視図、第
2図は、第1図(a)のA−A断面図、第3図は、第1
図(b)のB−B断面図、第4図は、本発明の他の実施
例の構成図、第5図は従来の微小位置決め装置の構成図
である。
1;可動ブロック、
2.3:フレーム、
4;マイクロメータヘッド、
5;軸、
6.7;軸受、
8:@受支持棒、
q、to ;ねじ、
11.12.ばね、
13;摺動面、
14;試料、
15:探針、
16:チューブ型圧電素子、
42.43:圧1jPZT。
(A−A前面口)
第
図
第
図
手続補正書(自発)
平成元年11月16日FIGS. 1(a) and (b) are an assembled perspective view and an exploded perspective view of a micro-positioning device embodying the present invention, respectively, and FIG. 2 is a sectional view taken along line AA in FIG. 1(a). , Figure 3 shows the first
FIG. 4 is a block diagram of another embodiment of the present invention, and FIG. 5 is a block diagram of a conventional micro-positioning device. 1; Movable block, 2.3: Frame, 4; Micrometer head, 5; Shaft, 6.7; Bearing, 8: @Reception support rod, q, to; Screw, 11.12. Spring, 13; Sliding surface, 14; Sample, 15: Probe, 16: Tube type piezoelectric element, 42.43: Pressure 1j PZT. (A-A Front Entrance) Diagram Procedure Amendment (Voluntary) November 16, 1989
Claims (6)
摺動面を有し且つ位置決めすべき試料が搭載される可動
部材と、該可動部材を固定部材に対し回転可能に支承す
る前記基準面に垂直な回転軸と、前記可動部材の摺動面
を固定部材の基準面側に押圧する押圧手段と、前記可動
部材を前記軸回りに回転移動させるための駆動手段とを
備えたことを特徴とする微小位置決め装置。(1) A fixed member having a reference surface, a movable member having a sliding surface that contacts the reference surface and on which a sample to be positioned is mounted, and the movable member rotatably supporting the movable member with respect to the fixed member. A rotation axis perpendicular to the reference plane, a pressing means for pressing the sliding surface of the movable member toward the reference plane of the fixed member, and a driving means for rotationally moving the movable member about the axis. A micro-positioning device featuring:
な外周面のうち少なくとも一面を押圧し、前記試料は該
可動部材の外周面の別の面に搭載されたことを特徴とす
る特許請求の範囲第1項記載の微小位置決め装置。(2) The driving means presses at least one outer circumferential surface of the movable member perpendicular to the sliding surface, and the sample is mounted on another outer circumferential surface of the movable member. A micro-positioning device according to claim 1.
とを特徴とする特許請求の範囲第1項記載の微小位置決
め装置。(3) The micro-positioning device according to claim 1, wherein the driving means comprises a micrometer head.
る特許請求の範囲第1項記載の微小位置決め装置。(4) The micro-positioning device according to claim 1, wherein the driving means comprises a piezoelectric element.
固定可能な可動部材と、該可動部材と該固定部材とを、
前記基準面に直交する方向に回転支持する軸と、該軸上
に該可動部材摺動面を基準面に押圧する機構と、該可動
部を基準面に沿って回転移動させる押圧機構とを備えた
微小位置決め装置。(5) A movable member capable of fixing a sample and having a sliding surface in contact with a reference surface of the fixed member, and the movable member and the fixed member,
A shaft rotatably supported in a direction perpendicular to the reference surface, a mechanism on the shaft for pressing the movable member sliding surface against the reference surface, and a pressing mechanism for rotationally moving the movable member along the reference surface. Micro positioning device.
摺動面を有し且つ位置決めすべき試料が搭載される可動
部材と、該可動部材に搭載された試料に対向し且つ試料
との間にトンネル電流を流す事が可能な位置に配置され
る探針と、前記可動部材に搭載された試料と前記探針と
の間のトンネル電流を検出する手段と、前記可動部材の
摺動面を固定部材の基準面側に押圧する押圧手段と、固
定部材に対し可動部材を移動させるための駆動手段とを
備えた事を特徴とする微小位置決め装置。(6) A fixed member having a reference surface, a movable member having a sliding surface that contacts the reference surface and on which a sample to be positioned is mounted, and a movable member facing the sample mounted on the movable member and facing the sample. a probe disposed at a position where a tunneling current can flow between the probes, a means for detecting a tunneling current between the sample mounted on the movable member and the probe, and a sliding portion of the movable member. A micro-positioning device comprising: a pressing means for pressing a surface toward a reference surface of a fixed member; and a driving means for moving a movable member relative to the fixed member.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13574889A JPH032604A (en) | 1989-05-31 | 1989-05-31 | Apparatus for micropositioning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13574889A JPH032604A (en) | 1989-05-31 | 1989-05-31 | Apparatus for micropositioning |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH032604A true JPH032604A (en) | 1991-01-09 |
Family
ID=15158949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13574889A Pending JPH032604A (en) | 1989-05-31 | 1989-05-31 | Apparatus for micropositioning |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH032604A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002522900A (en) * | 1998-08-04 | 2002-07-23 | マイクリオン コーポレーション | Workpiece vibration suppression device |
-
1989
- 1989-05-31 JP JP13574889A patent/JPH032604A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002522900A (en) * | 1998-08-04 | 2002-07-23 | マイクリオン コーポレーション | Workpiece vibration suppression device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2815196B2 (en) | Micro surface shape measuring device | |
US5963367A (en) | Micromechanical xyz stage for use with optical elements | |
US5286977A (en) | Positioning device | |
US5438206A (en) | Positioning device | |
EP0674170B1 (en) | Inter-atomic measurement techniques | |
US5214342A (en) | Two-dimensional walker assembly for a scanning tunneling microscope | |
JP2572107B2 (en) | Coarse movement mechanism of scanning tunneling microscope | |
US5635836A (en) | Mechanical apparatus with rod, pivot, and translation means for positioning a sample for use with a scanning microscope | |
JPH09223477A (en) | Scanning electron microscope | |
JPH032604A (en) | Apparatus for micropositioning | |
JP2549746B2 (en) | Scanning tunnel microscope | |
US7705323B2 (en) | Microscope stage with flexural axis | |
JP2000009867A (en) | Stage moving device | |
JPH08313785A (en) | Focusing mechanism for microscope | |
JP2937558B2 (en) | Positioning device | |
JP3060527B2 (en) | Positioning device | |
JPS58190080A (en) | Mechanism of rotary fine movement | |
JP3536193B2 (en) | Scanning probe microscope | |
JPH02235123A (en) | Fine adjustment | |
JP2691460B2 (en) | Tunnel current detector | |
KR100302179B1 (en) | 3- axes stage apparatus using kinematic joint | |
JPH02297003A (en) | Detecting part positioning mechanism, piezoelectric element fine adjustment mechanism and scanning type tunnel microscope using them | |
JPH06288760A (en) | Fine movement stage device | |
JP2001116677A (en) | Scanning probe microscope | |
JPH0643882B2 (en) | Scanning tunneling microscope |