JPH03243814A - Angular velocity sensor - Google Patents

Angular velocity sensor

Info

Publication number
JPH03243814A
JPH03243814A JP2039956A JP3995690A JPH03243814A JP H03243814 A JPH03243814 A JP H03243814A JP 2039956 A JP2039956 A JP 2039956A JP 3995690 A JP3995690 A JP 3995690A JP H03243814 A JPH03243814 A JP H03243814A
Authority
JP
Japan
Prior art keywords
elements
piezoelectric bimorph
angular velocity
piezoelectric element
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2039956A
Other languages
Japanese (ja)
Inventor
Kazumitsu Ueda
上田 和光
Jiro Terada
二郎 寺田
Hiroshi Takenaka
寛 竹中
Toshihiko Ichise
俊彦 市瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2039956A priority Critical patent/JPH03243814A/en
Publication of JPH03243814A publication Critical patent/JPH03243814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To obtain this highly reliable sensor which does not vary in sensitivity even in the case of receiving a thermal shock by structuring the sensor by sticking piezoelectric bimorph elements for driving and piezoelectric bimorph elements for detection on each other across an intermediate electrode. CONSTITUTION:The piezoelectric bimorph elements 2 for driving and piezoelectric bimorph elements 1 for detection are stacked and joined by joining members 6 having their vibrating directions so that they are intersected orthogonally with each other and the joined couples are joined in tuning fork structure by electrode blocks 3 to be the joining members. The elements 2 and 1 are two piezoelectric bimorph elements which are stuck together across the intermediate electrode and a resistance body is connected between the electrode and intermediate electrode on both sides of the bimorph elements structure. Further, a conductive adhesive 9 which has a specific resistance value is used to join the elements 2 and 1 and thus a resistance connection between electrodes on both sides of each piezoelectric bimorph element is made. Consequently, charges which are generated on both sides of the elements 2 and 1 owing to a thermal shock are discharged through the resistance body and the elements are prevented from breaking.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はジャイロスコープ、とくに圧電素子振動を用い
た角速度センサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a gyroscope, and particularly to an angular velocity sensor using vibration of a piezoelectric element.

従来の技術 従来、ジャイロスコープを用いた慣性航法装置として飛
行機、船舶のような移動する物体の方位を知る方法とし
て機械式の回転ジャイロが主に使われている。
BACKGROUND OF THE INVENTION Conventionally, a mechanical rotary gyro has been mainly used as an inertial navigation device using a gyroscope to determine the direction of a moving object such as an airplane or a ship.

これは安定した方位が得られるが機械式であることから
装置が大がかりであり、コストも高く、小型化が望まれ
る機器への応用は困難である。
Although this method can provide stable orientation, since it is mechanical, the device is large-scale and costly, and it is difficult to apply it to equipment that is desired to be miniaturized.

一方、回転力を使わずに物体を振動させて振動された検
知素子からrコリオリの力1を検出する振動型角速度セ
ンサがある。多くは圧電式と電磁式のメカニズムを採用
している構造のものである。
On the other hand, there is a vibration type angular velocity sensor that vibrates an object without using rotational force and detects the r Coriolis force 1 from a vibrated sensing element. Many of these structures employ piezoelectric and electromagnetic mechanisms.

これらはジャイロを構成する質量の運動が一定速度の運
動ではなく、振動になっている。したがって角速度が加
わった場合、コリオリの力は、質量の振動数と等しい振
動数の振動トルクとして生しるものである。このトルク
による振動を検出することによって角速度を測定するの
が振動型角速度センサの原理であり、特に圧電体を用い
たセンサが多く考案されている。(日本航空宇宙学会誌
第23巻第257号339−350ページ)上記の原理
に基づく一般的な角速度センサの構造を第1図に示す。
In these cases, the mass that makes up the gyro does not move at a constant speed, but instead vibrates. Therefore, when an angular velocity is applied, the Coriolis force occurs as a vibration torque with a frequency equal to the frequency of the mass. The principle of a vibration type angular velocity sensor is to measure angular velocity by detecting vibrations caused by this torque, and in particular, many sensors using piezoelectric bodies have been devised. (Journal of the Japan Institute of Aeronautics and Astronautics Vol. 23, No. 257, pages 339-350) The structure of a general angular velocity sensor based on the above principle is shown in FIG.

図示のように、検知用圧電素子lと、駆動用圧電素子2
が接合部材6で直交接合され、電極ブロック3により音
叉構造に接合されている。この音叉構造を支持棒4で支
持しヘス5に固定している。なお7はリード線、8はリ
ドピン、9は接着剤である。駆動用圧電素子2の振動を
検知用圧電素子lに伝達しなければならないので、接合
部材6は曲げ弾性率が高く、その温度変化の少ないアル
ミナ系のセラミックスを用いており、接着剤9は、接着
強度の高いエボキノ系のものを使っている。
As shown in the figure, a detection piezoelectric element 1 and a driving piezoelectric element 2
are orthogonally joined by a joining member 6, and joined to a tuning fork structure by an electrode block 3. This tuning fork structure is supported by a support rod 4 and fixed to a hess 5. Note that 7 is a lead wire, 8 is a lid pin, and 9 is an adhesive. Since the vibration of the drive piezoelectric element 2 must be transmitted to the detection piezoelectric element 1, the bonding member 6 is made of alumina-based ceramics that have a high bending elastic modulus and have little temperature change, and the adhesive 9 is I use an evokino type material with high adhesive strength.

以上のように構成された従来の角速度センサを動作させ
るには、まず一対の駆動用圧電素子2を駆動するために
対向している面を共通電極として、それぞれ外側の面と
の間に交流信号をかける。信号を印加された駆動用圧電
素子2は電極プロ、り3を中心にして対称な振動を始め
る、いわゆる音叉振動であり、これに角速度が加わると
rコリオリの力」が発生し、角速度が検出できる。
In order to operate the conventional angular velocity sensor configured as described above, first, in order to drive the pair of driving piezoelectric elements 2, the opposing surfaces are used as a common electrode, and an AC signal is connected between the opposing surfaces and the outer surfaces. multiply. The driving piezoelectric element 2 to which the signal is applied begins to vibrate symmetrically around the electrodes 3, which is what is called a tuning fork vibration, and when angular velocity is added to this, a Coriolis force is generated, and the angular velocity is detected. can.

発明が解決しようとする課題 以上のような従来の構成の角速度センサでは、下記のよ
うな課題があった。
Problems to be Solved by the Invention The angular velocity sensor having the conventional configuration described above has the following problems.

すなわち熱衝撃を受けると、感度が劣化していた。それ
は、圧電素子として圧電バイモルフ素子を用いた場合、
検知用、および駆動用圧電バイモルフ素子は、2枚の圧
電セラミックスで構成されているが、その貼り合わせ面
に当る中間電極が外部と電気的に接続されているのは、
前記圧電セラミックスの容量とその絶縁抵抗を通しての
みであるため、熱衝撃を受けたとき、焦電効果により発
生した電荷は、中間電極に帯電する。もし圧電バイモル
フ素子が、金属の補強板に2枚の圧電セラミックスを貼
り合わせて構成されていれば、この金属の補強板と、圧
電セラミックスとの膨張係数の違いによって発生するひ
ずみにより、圧電効果により発生する電荷が、前記焦電
効果により発生する電荷に重畳して中間電極に帯電する
。この帯電により発生する電圧が、前記圧電セラ稟ノク
スの抗電圧を上回っていれば、圧電セラミックスを破壊
し圧電バイモルフ素子の感度を劣化させる。
In other words, when subjected to thermal shock, the sensitivity deteriorated. That is, when a piezoelectric bimorph element is used as the piezoelectric element,
The detection and drive piezoelectric bimorph elements are composed of two pieces of piezoelectric ceramics, and the intermediate electrode on the bonded surface is electrically connected to the outside.
Since it is only through the capacitance of the piezoelectric ceramic and its insulation resistance, when a thermal shock is applied, the electric charge generated by the pyroelectric effect is charged to the intermediate electrode. If a piezoelectric bimorph element is constructed by bonding two pieces of piezoelectric ceramic to a metal reinforcing plate, the piezoelectric effect is caused by the strain caused by the difference in expansion coefficient between the metal reinforcing plate and the piezoelectric ceramic. The generated charge is superimposed on the charge generated by the pyroelectric effect, and the intermediate electrode is charged. If the voltage generated by this charging exceeds the coercive voltage of the piezoelectric ceramic, it destroys the piezoelectric ceramic and deteriorates the sensitivity of the piezoelectric bimorph element.

検知用圧電バイモルフ素子の感度劣化は、角速度センサ
の感度劣化となる。駆動用バイモルフ素子の感度劣化は
、その程度が小さいときは、駆動回路の振幅調整機能に
より、振幅量が増加し、振動の速度が増加する。「コリ
オリの力」は振動の速度に比例するので、角速度センサ
の感度は増加することになり、その劣化を補正する。駆
動用バイモルフ素子の感度劣化の程度が大きく、駆動回
路の振幅調整機能の範囲を越えたときは、角速度センサ
の感度は、低下する。
Deterioration in the sensitivity of the detection piezoelectric bimorph element results in deterioration in the sensitivity of the angular velocity sensor. When the degree of sensitivity deterioration of the drive bimorph element is small, the amplitude adjustment function of the drive circuit increases the amplitude amount and the vibration speed. Since the "Coriolis force" is proportional to the speed of vibration, the sensitivity of the angular velocity sensor will increase to compensate for its degradation. When the degree of sensitivity deterioration of the driving bimorph element is large and exceeds the range of the amplitude adjustment function of the driving circuit, the sensitivity of the angular velocity sensor decreases.

本発明はかかる課題に留意して、熱衝撃を受けても感度
が変化しない、信頼性の高い角速度センサを提供しよう
とするものである。
The present invention takes these problems into consideration and aims to provide a highly reliable angular velocity sensor whose sensitivity does not change even when subjected to thermal shock.

課題を解決するための手段 本発明は上記目的を達成するために、駆動用圧電バイモ
ルフ素子と、検知用圧電バイモルフ素子と、この駆動用
圧電バイモルフ素子と検知用圧電バイモルフ素子を振動
方向が直交するように積み上げ接合する第1の接合部材
と、前記接合された素子の一対を音叉構造に接合する第
2の接合部材を具備し、駆動用圧電バイモルフ素子およ
び検知用圧電バイモルフ素子が中間電極を介して2枚貼
り合わせた圧電バイモルフ素子の構造であるとともに、
この圧電バイモルフ素子構造の両側にある電極と中間電
極間に抵抗体を接続したものである。
Means for Solving the Problems In order to achieve the above object, the present invention has a driving piezoelectric bimorph element, a sensing piezoelectric bimorph element, and a driving piezoelectric bimorph element and a sensing piezoelectric bimorph element whose vibration directions are perpendicular to each other. The piezoelectric bimorph element for driving and the piezoelectric bimorph for sensing element are connected to each other via an intermediate electrode. It has a structure of a piezoelectric bimorph element made by bonding two pieces together.
A resistor is connected between the electrodes on both sides of this piezoelectric bimorph element structure and the intermediate electrode.

また第1の接合部材と駆動用圧電バイモルフ素子および
検知用圧電バイモルフ素子との接合に、ある比抵抗値の
ある導電性接着剤を用いることにより、この導電性接着
剤により、各圧電バイモルフ素子の両側電極と中間電極
間に抵抗接続するものである。
In addition, by using a conductive adhesive with a certain specific resistance value to bond the first bonding member to the drive piezoelectric bimorph element and the detection piezoelectric bimorph element, this conductive adhesive allows each piezoelectric bimorph element to A resistive connection is made between the electrodes on both sides and the middle electrode.

作用 上記構成の本発明の角速度センサは、熱衝撃により圧電
バイモルフ素子の両端に発生した電荷は、この圧電バイ
モルフ素子の両側電極と中間電極に接続された抵抗体を
通して放電され、帯電しないため、圧電バイモルフ素子
を破壊しない。また、第1の接合部材の接合に、導電性
接着剤を用いると、各圧電バイモルフ素子の端面に露出
している両側電極と中間電極が、ある抵抗値で接続され
るので、同様な効果が得られる。そのため、熱衝撃を受
けても、感度が変化しない、信頼性の高い角速度センサ
を得ることができる。
Function: The angular velocity sensor of the present invention having the above configuration is characterized in that the electric charge generated at both ends of the piezoelectric bimorph element due to thermal shock is discharged through the resistor connected to both side electrodes and the intermediate electrode of the piezoelectric bimorph element, and is not charged. Do not destroy bimorph elements. Furthermore, if a conductive adhesive is used to bond the first bonding member, the electrodes on both sides and the intermediate electrode exposed on the end face of each piezoelectric bimorph element are connected with a certain resistance value, so a similar effect can be obtained. can get. Therefore, it is possible to obtain a highly reliable angular velocity sensor whose sensitivity does not change even when subjected to thermal shock.

実施例 第1図は従来例であるとともに、本発明による角速度セ
ンサの一実施例を示す斜視図であり、その構造は、すで
に述べているが、検知用圧電バイモルフ素子lと、駆動
用圧電バイモルフ素子2を直交接合する接合部材6の接
合に用いている接着剤9は接着剤であるとともに金属酸
化物の高抵抗繊維を含有した100 kΩ〜100MΩ
の抵抗体を兼ねている。接着剤が抵抗体を兼ねるのでこ
の角速度センサを製造するにおいて、新たな工程が増え
るわけではない。角速度センサとしての動作原理は従来
例と同様である。
Embodiment FIG. 1 is a perspective view showing an embodiment of the angular velocity sensor according to the present invention as well as a conventional example.The structure thereof, as already described, includes a piezoelectric bimorph element l for detection and a piezoelectric bimorph element for drive. The adhesive 9 used to join the joining member 6 that orthogonally joins the elements 2 is an adhesive and also contains a metal oxide high resistance fiber of 100 kΩ to 100 MΩ.
It also serves as a resistor. Since the adhesive also serves as a resistor, no new steps are required in manufacturing this angular velocity sensor. The operating principle as an angular velocity sensor is the same as that of the conventional example.

角速度センサの外部温度をや激に変化させると、検知用
圧電バイモルフ素子1や駆動用圧電バイモルフ素子2へ
の熱伝導は均一にはありえないので、これらの素子は焦
電効果などにより電荷が発生する。しかし素子の端部に
露出している電極に付着している接着剤9はこの電荷を
放電するので高圧に帯電することはなく、角速度センサ
の感度は安定する。また、接着剤9の抵抗値をここでは
100MΩ以下に制限しているが、センサの外部を断熱
し、角速度センサの温度変化を緩やかにしたり、または
、センサの内部の熱伝導を良くし、検知用圧電バイモル
フ素子1や駆動用圧電バイモルフ素子2への熱伝導を均
一にすることにより、100MΩ以上の抵抗値において
も本発明の効果は期待できる。
If the external temperature of the angular velocity sensor changes drastically, heat cannot be uniformly conducted to the detection piezoelectric bimorph element 1 and the drive piezoelectric bimorph element 2, so charges are generated in these elements due to the pyroelectric effect. . However, since the adhesive 9 attached to the electrode exposed at the end of the element discharges this charge, it is not charged to a high voltage, and the sensitivity of the angular velocity sensor is stabilized. In addition, although the resistance value of the adhesive 9 is limited to 100 MΩ or less here, it is possible to insulate the outside of the sensor to slow down the temperature change of the angular velocity sensor, or to improve the heat conduction inside the sensor. By making heat conduction uniform to the piezoelectric bimorph element 1 for use and the piezoelectric bimorph element 2 for driving, the effects of the present invention can be expected even at a resistance value of 100 MΩ or more.

また本実施例では、接着剤9の抵抗値を100にΩ以上
としているが、本実施例の角速度センサの駆動周波数が
1kHzなので、その周波数の信号を減衰させないため
である。したがって、駆動周波数の高い角速度センサで
あれば、100にΩ以下であっても本発明の効果は期待
できる。
Further, in this embodiment, the resistance value of the adhesive 9 is set to 100Ω or more, but since the driving frequency of the angular velocity sensor of this embodiment is 1 kHz, this is to prevent signals at that frequency from being attenuated. Therefore, as long as the angular velocity sensor has a high driving frequency, the effects of the present invention can be expected even if the resistance is less than 100Ω.

本実施例では接着剤9に含有させる高抵抗の素材に金属
酸化物を用いているが、金属やカーボンなどの導電フィ
ラーを適当な混合量で用いてもよい。接着剤9の接着強
度を重視する場合は、接着剤9とは別に抵抗体を設けて
もよい。
In this embodiment, a metal oxide is used as the high-resistance material contained in the adhesive 9, but a conductive filler such as metal or carbon may be used in an appropriate amount. If the adhesive strength of the adhesive 9 is important, a resistor may be provided separately from the adhesive 9.

発明の効果 以上の説明より明らかなように本発明によれば、バイモ
ルフ素子を構成する2枚の圧電素子のそれぞれ両側の電
極すなわち、バイモルフ素子としての両側電極と中間電
極に100にΩ〜100MΩの抵抗体を電気的に並列に
接続することにより、熱衝撃により圧電バイモルフ素子
の両端に発生した電荷は、この抵抗体を通して放電し、
帯電しないから圧電バイモルフ素子を破壊しないので、
熱衝撃を受けても感度が変化しない、信頼性の高い角速
度センサを得ることができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, the electrodes on both sides of the two piezoelectric elements constituting the bimorph element, that is, the electrodes on both sides and the intermediate electrode of the bimorph element, have a resistance of 100 to 100 MΩ. By electrically connecting a resistor in parallel, the electric charge generated across the piezoelectric bimorph element due to thermal shock is discharged through this resistor.
Since it is not charged, it will not destroy the piezoelectric bimorph element.
A highly reliable angular velocity sensor whose sensitivity does not change even when subjected to thermal shock can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例および従来例の角速度センサ
の構成を示す概略斜視図である。 1・・・・・・検知用圧電バイモルフ素子、2・・・・
・・駆動用圧電バイモルフ素子、3・・・・・・電極ブ
ロック(第2の接合部材)、6・・・・・・接合部材(
第1の接合部材)、9・・・・・・接着剤。
FIG. 1 is a schematic perspective view showing the configuration of an angular velocity sensor according to an embodiment of the present invention and a conventional example. 1...Piezoelectric bimorph element for detection, 2...
... Drive piezoelectric bimorph element, 3... Electrode block (second bonding member), 6... Bonding member (
first bonding member), 9...adhesive.

Claims (2)

【特許請求の範囲】[Claims] (1)駆動用圧電素子と、検知用圧電素子と、前記駆動
用圧電素子と前記検知用圧電素子を振動方向が直交する
よう積み上げ接合する第1の接合部材と、前記接合され
た素子の一対を音叉構造に接合する第2の接合部材とを
具備し、前記駆動用圧電素子および前記検知用圧電素子
を中間電極を介して2枚貼り合わせた圧電バイモルフ素
子とし、前記2枚貼り合わせた圧電バイモルフ素子の両
側電極と中間電極間に抵抗体を接続した角速度センサ。
(1) A driving piezoelectric element, a sensing piezoelectric element, a first joining member for stacking and joining the driving piezoelectric element and the sensing piezoelectric element so that their vibration directions are perpendicular to each other, and a pair of the joined elements. and a second bonding member for bonding to a tuning fork structure, the driving piezoelectric element and the detection piezoelectric element are two piezoelectric bimorph elements bonded together via an intermediate electrode, and the two piezoelectric An angular velocity sensor with a resistor connected between the electrodes on both sides of a bimorph element and the intermediate electrode.
(2)第1の接合部材と駆動用圧電素子および検知用圧
電素子との接合に、ある比抵抗値を有する導電性接着剤
を用い、前記駆動用圧電素子および検知用圧電素子のそ
れぞれの両側電極と中間電極間を抵抗接続した請求項1
記載の角速度センサ。
(2) A conductive adhesive having a certain specific resistance value is used to bond the first bonding member to the drive piezoelectric element and the detection piezoelectric element, and both sides of the drive piezoelectric element and the detection piezoelectric element are bonded to each other. Claim 1: A resistance connection is made between the electrode and the intermediate electrode.
The angular velocity sensor described.
JP2039956A 1990-02-21 1990-02-21 Angular velocity sensor Pending JPH03243814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2039956A JPH03243814A (en) 1990-02-21 1990-02-21 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2039956A JPH03243814A (en) 1990-02-21 1990-02-21 Angular velocity sensor

Publications (1)

Publication Number Publication Date
JPH03243814A true JPH03243814A (en) 1991-10-30

Family

ID=12567411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2039956A Pending JPH03243814A (en) 1990-02-21 1990-02-21 Angular velocity sensor

Country Status (1)

Country Link
JP (1) JPH03243814A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42916E1 (en) * 1993-04-27 2011-11-15 Watson Industries, Inc. Single bar type vibrating element angular rate sensor system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42916E1 (en) * 1993-04-27 2011-11-15 Watson Industries, Inc. Single bar type vibrating element angular rate sensor system

Similar Documents

Publication Publication Date Title
US4489609A (en) Gyroscopes
US4654663A (en) Angular rate sensor system
US20080210007A1 (en) Angular velocity sensor
WO2005012922A1 (en) Accelerator sensor
GB2158579A (en) Angular rate sensor system
US20060201248A1 (en) Vibrating gyro element
WO2005012921A1 (en) Acceleration sensor
JPH063455B2 (en) Vibrating gyro
US4611490A (en) Angular acceleration sensor
US5447066A (en) Angular velocity sensor having a tuning fork construction and its method of manufacture
JP2734155B2 (en) Angular velocity sensor
JPH03243814A (en) Angular velocity sensor
JPH04142420A (en) Angular velocity sensor
JPH0989569A (en) Vibrating gyro
JPS60216210A (en) Angular velocity sensor
JPH08247770A (en) Vibration gyroscope
JPH06249874A (en) Acceleration sensor
JPH05264282A (en) Angular velosity sensor
JPS62228111A (en) Piezoelectric body angular velocity sensor
JPH04348218A (en) Angular velocity sensor
JPH0658226B2 (en) Angular velocity sensor
JPH0526889A (en) Angular velocity sensor
JPH0390813A (en) Angular velocity sensor
JPH08152326A (en) Oscillation gyro
JPH0341313A (en) Angular velocity sensor