JPH03239385A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPH03239385A JPH03239385A JP3398990A JP3398990A JPH03239385A JP H03239385 A JPH03239385 A JP H03239385A JP 3398990 A JP3398990 A JP 3398990A JP 3398990 A JP3398990 A JP 3398990A JP H03239385 A JPH03239385 A JP H03239385A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- type semiconductor
- semiconductor laser
- laser device
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 64
- 239000013078 crystal Substances 0.000 claims abstract description 18
- 230000010355 oscillation Effects 0.000 claims abstract description 15
- 238000002347 injection Methods 0.000 claims abstract description 4
- 239000007924 injection Substances 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 30
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 4
- 238000013139 quantization Methods 0.000 claims description 3
- 230000004888 barrier function Effects 0.000 claims 1
- 238000009792 diffusion process Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 46
- 239000002184 metal Substances 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 12
- 239000000758 substrate Substances 0.000 abstract description 9
- 229910045601 alloy Inorganic materials 0.000 abstract description 4
- 239000000956 alloy Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 10
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 230000005684 electric field Effects 0.000 description 6
- 230000031700 light absorption Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000010365 information processing Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000005685 electric field effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000005699 Stark effect Effects 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000005701 quantum confined stark effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、光交換・光情報処理等に用いられる光機能素
子として最も基本要素となり得る双安定の半導体レーザ
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a bistable semiconductor laser device that can be the most basic element as an optical functional element used in optical exchange, optical information processing, etc.
(従来の技術)
双安定の半導体レーザ装置は光記憶装置を始めとして光
情報処理のために重要な機能として、これまでそのデバ
イス開発が勢力的に進められてきているものである。そ
れらのデバイスの中で、半導体レーザ共振器内に可飽和
吸収効果を持つ非励起領域を設けることによって、双安
定動作を可能どした双安定半導体レーザ構成が簡単なこ
とから研究開発が行われている。(文献1、asher
・5olidState Electron、、 7(
1964) 707)しかしながら、非励起領域を有す
る双安定の半導体レーザの可飽和吸収体が、端面の劣化
等、偶然的に作られることが多く、再現性・制御性に問
題があること、さらに双安定の生じる領域が狭く、設計
上の自由度が小さいこと等により、デバイスとして実用
に共されるに至っていない。(Prior Art) Bistable semiconductor laser devices have an important function for optical information processing including optical storage devices, and the development of such devices has been actively promoted. Among these devices, research and development has been conducted on a simple bistable semiconductor laser configuration that enables bistable operation by providing a non-excited region with a saturable absorption effect within the semiconductor laser resonator. There is. (Reference 1, asher
・5solidState Electron, 7(
1964) 707) However, the saturable absorber of a bistable semiconductor laser having a non-excited region is often created accidentally due to deterioration of the end facets, etc., and there are problems with reproducibility and controllability. Because the stability region is narrow and the degree of freedom in design is small, it has not been put to practical use as a device.
これらの欠点を除去するため、活性層に超格子構造を有
し、電極層が電気的に分離されたセグメントを有する半
導体レーザ装置を用いて、低消費電力で調節可能で、高
速動作が可能な複合型の双安定半導体レーザ装置が提案
されている(特許出願公開昭和62−296573)。In order to eliminate these drawbacks, a semiconductor laser device with a superlattice structure in the active layer and an electrode layer with electrically separated segments is used, which is tunable with low power consumption and capable of high-speed operation. A composite type bistable semiconductor laser device has been proposed (Patent Application Publication No. 1988-296573).
これを第3図〜第5図を用いて説明する。例えば、単結
晶GaAsよりなるN型の半導体基板1の上に、クラッ
ド層としての、例えば単結晶A l x G a +
−x A s(0<x<1)よりなるN型の半導体層2
と、例えばGa、As/A1.Ga+−、As(0<z
<1)超格子構造層3としての半導体層と、例えば単結
晶A1.Ga+−AS(0<X<])よりなるP型の半
導体層4と、例えば単結晶GaAsよりなるP型で高導
電性を有し、かつ金属とオーミックな合金層を形威し得
る半導体層5とが、これらの順に積層されてなる半導体
層6を有する。この場合、半導体積層体6は、電流注入
のため、N型半導体基板1に接合する電極層7とP型の
半導体層5に接合する電極金属層8を有する。半導体層
4,5および電極金属層8を、電気的に分離された二つ
以」二のセグメントに分割し、一方のセグメント17に
定電圧源23を、他方のセグメントI5に定電流源1G
を印加する。This will be explained using FIGS. 3 to 5. For example, on an N-type semiconductor substrate 1 made of single-crystal GaAs, a cladding layer of, for example, single-crystal Al
-x A s (0<x<1) N-type semiconductor layer 2
For example, Ga, As/A1. Ga+-, As(0<z
<1) A semiconductor layer as the superlattice structure layer 3 and a single crystal A1. A P-type semiconductor layer 4 made of Ga+-AS (0<X<]) and a P-type semiconductor layer made of, for example, single crystal GaAs, which has high conductivity and can form an ohmic alloy layer with metal. 5 has a semiconductor layer 6 laminated in this order. In this case, the semiconductor stack 6 has an electrode layer 7 bonded to the N-type semiconductor substrate 1 and an electrode metal layer 8 bonded to the P-type semiconductor layer 5 for current injection. The semiconductor layers 4, 5 and the electrode metal layer 8 are divided into two or more electrically separated segments, one segment 17 is connected to a constant voltage source 23, and the other segment I5 is connected to a constant current source 1G.
Apply.
このとき、セグメント15の下の活性層3の領域19に
多数のキャリアを注入することにより、レーザ発振のた
めの光学利得を生じさせる領域として使用し、セグメン
ト17の下の活性層3の領域2oは、以下第4図で述べ
る原理によって制御可能な可飽和吸収の領域として使用
する。At this time, by injecting a large number of carriers into the region 19 of the active layer 3 under the segment 15, the region 2o of the active layer 3 under the segment 17 is used as a region for generating optical gain for laser oscillation. is used as a region of saturable absorption that can be controlled by the principle described in FIG. 4 below.
例えば、GaAs/A1.Ga+1Asのへテロ構造を
基本とする超格子構造では、通常の半導体に比べて、室
温でも励起子と呼ばれる電子−正孔の束縛状態が安定に
存在し、大きい光吸収ピークを有することが知られてい
る。この励起子吸収は、通常のバンド間の光吸収に比べ
て大きい吸収飽和を示すこと、超格子構造に電圧を印加
することにより、長波長側にピークをシフトできること
(量子閉じ込めシュタクル効果)が知られている。For example, GaAs/A1. It is known that in a superlattice structure based on a Ga+1As heterostructure, an electron-hole bound state called an exciton exists stably even at room temperature, and it has a large light absorption peak, compared to a normal semiconductor. ing. It is known that this exciton absorption exhibits a larger absorption saturation than normal optical absorption between bands, and that the peak can be shifted to longer wavelengths by applying a voltage to the superlattice structure (quantum confined Stackle effect). It is being
第4図は、第3図に示すような半導体レーザ装置におい
て観測される可飽和吸収領域20における励起子吸収の
スペクトルと、そのセグメント17に印加する電圧V2
依存性を模式的に示したものである。図中のCで示すピ
ークは、電界の印加されていない場合の励起子吸収ピー
クである。このピークはV2の変化とともに長波長側に
シフトする。図中のBで示す波長は、第3図に示す半導
体レーザ装置における光学利得発生領域19に起因する
レーザ発振波長を示す。従って、印加電圧の変化によリ
レーザ発振を起こすBの波長での光吸収量は変化する。FIG. 4 shows the spectrum of exciton absorption in the saturable absorption region 20 observed in the semiconductor laser device as shown in FIG. 3, and the voltage V2 applied to the segment 17.
This diagram schematically shows the dependence. The peak indicated by C in the figure is an exciton absorption peak when no electric field is applied. This peak shifts toward longer wavelengths as V2 changes. The wavelength indicated by B in the figure indicates the laser oscillation wavelength caused by the optical gain generation region 19 in the semiconductor laser device shown in FIG. Therefore, the amount of light absorbed at the wavelength of B, which causes relay laser oscillation, changes as the applied voltage changes.
超格子構造の励起子吸収は、光強度により容易に吸収の
飽和が起きることがよく知られている。It is well known that exciton absorption in a superlattice structure easily saturates depending on the light intensity.
第5図はGaAs/A1.Ga、+、As超格子の可飽
和吸収特性の実験例を示す。吸収スペクトルは光強度を
Wl→W2→W3と増加するに従って励起子吸収の超波
長側に顕著な吸収の飽和が見られる。FIG. 5 shows GaAs/A1. An experimental example of the saturable absorption characteristics of Ga, +, As superlattices is shown. In the absorption spectrum, as the light intensity increases from Wl to W2 to W3, significant absorption saturation is observed on the ultra-exciton absorption wavelength side.
可飽和吸収領域の吸収ピークが印加電圧v2によってシ
フトし、光利得領域のレーザ発振波長に一致すると、有
効な可飽和吸収体として機能し、光双安定動作を起こす
。When the absorption peak of the saturable absorption region is shifted by the applied voltage v2 and matches the laser oscillation wavelength of the optical gain region, it functions as an effective saturable absorber and causes optical bistable operation.
このようなレーザ装置で光双安定が安定に制御性良く構
成できるのは、光学利得領域の注入キャリアによってレ
ーザ発振が実現する波長が、励起子吸収ピークよりも2
0meV程度、低エネルギー側にあり、しかも外部から
印加す電圧によって、それ以上、励起子吸収ピークが長
波長側にシフトできるためである。The reason why optical bistable can be configured stably and with good controllability in such a laser device is that the wavelength at which laser oscillation is achieved by injected carriers in the optical gain region is 2
This is because the exciton absorption peak is on the low energy side of about 0 meV, and the exciton absorption peak can be further shifted to the long wavelength side by an externally applied voltage.
このような条件はGaAs/A1.Ga、 、As系の
超格子では一般的に満足している。Such conditions apply to GaAs/A1. Ga, , As-based superlattices are generally satisfied.
例えば、励起子吸収ピークとレーザ発振波長の関係に関
しては、Ta、rucha他Jpn、 J、 Appl
、 Phys。For example, regarding the relationship between the exciton absorption peak and the laser oscillation wavelength, Ta, Rucha et al. Jpn, J. Appl.
, Phys.
=5
221]p、 I、・182(1983)等の報告に、
励起子吸収ピークの印加電圧依存性に関しては、Tar
ucha他Jpn。=5 221] p, I, 182 (1983), etc.
Regarding the applied voltage dependence of the exciton absorption peak, Tar
ucha et al. Jpn.
J、 Appl、 Phys、 24 pp、L442
(1985)等の報告の通りである。J, Appl, Phys, 24 pp, L442
(1985) et al.
しかしながら、光通信の応用で、より重要な1.5μm
帯では状況が異なる。励起子吸収ピークに対しレーザ発
振の波長が、超格子構造では必ず20meV程度、低エ
ネルギーになるということでなく、キャリアによるバン
ド端のシュリンケージ効果と、バンドフィリング効果と
の競合によるものである。However, in optical communication applications, 1.5 μm is more important.
The situation is different in the belt. The wavelength of laser oscillation with respect to the exciton absorption peak does not always have a low energy of about 20 meV in a superlattice structure, but it is due to the competition between the band edge shrinkage effect due to carriers and the band filling effect.
1.5μm帯のMQWレーザ用の材料系として期待され
ているInGaAs(P)/InPまたはInGaAs
(P )/ InA IAs系の超格子では、材料固
有の特性(注入キャリアにより、オージェ吸収効果およ
びバンド内吸収等が生じて、GaAs系よりも相対的に
利得係数の飽和が低注入レベルで起きる。)により、励
起子吸収ピークに対してレーザ発振波長が、同じか数m
e〜を程度の極めてわずか低エネルギーで起こり、レー
ザ発振波長での可飽和吸収係数が、数千cm ’で大き
くなること、電界によって励起子吸収ピークを長波長側
にシフトさせても吸収効率の変化は僅かであり、第4図
のCの波長での吸収効果の変化に対応する。電界制御型
の双安定素子としては調整幅が少なく、デバイス化、多
段化が困難であった。InGaAs(P)/InP or InGaAs, which is expected to be a material system for 1.5 μm band MQW lasers
In the (P)/InA IAs-based superlattice, material-specific properties (injected carriers cause Auger absorption effects, intraband absorption, etc.), and saturation of the gain coefficient occurs at relatively lower implantation levels than in the GaAs-based superlattice. ), the laser oscillation wavelength is the same or a few meters away from the exciton absorption peak.
The saturable absorption coefficient at the laser oscillation wavelength increases at a few thousand cm', and even if the exciton absorption peak is shifted to longer wavelengths by an electric field, the absorption efficiency remains low. The change is slight and corresponds to the change in the absorption effect at wavelength C in FIG. As an electric field-controlled bistable element, the adjustment range is small, making it difficult to create devices and multiple stages.
(発明が解決しようとする課題)
本発明は、光情報処理や光通信における光演算、光交換
、光パルス整形等を行う有用な機能素子として、ダブル
へテロ接合を具える半導体レーザ装置の電極が高抵抗領
域よって二つ以上に分離され、一つ以上のセグメント電
極を介して電流を注入し、一つ以上のセグメント電極を
介して電圧を印加し、一つ以上の電圧または一つ以上の
光入力信号により、発振状態を制御することのできる半
導体レーザ装置を提供することにある。(Problems to be Solved by the Invention) The present invention provides an electrode for a semiconductor laser device including a double heterojunction as a useful functional element for optical calculation, optical exchange, optical pulse shaping, etc. in optical information processing and optical communication. is separated into two or more by a high resistance region, a current is injected through one or more segment electrodes, a voltage is applied through one or more segment electrodes, one or more voltages or one or more An object of the present invention is to provide a semiconductor laser device whose oscillation state can be controlled by an optical input signal.
(課題を解決するための手段)
本発明は、上記半導体レーザ装置において、抵抗領域に
よって相互に電気的に分離された二つ以上のセグメント
電極の下の活性領域における超格子の部分的混晶化(相
互拡散(interdiffusion))によって、
量子化準位を短波長側にシフトさせた超格子構造中に存
在する励起子の非線形吸収を、可飽和吸収媒質として利
用し、さらに電圧により上記励起子の非線形吸収を制御
することによって、二つ以上の先入ツノ信号に対し、二
つ以上の安定状態を得る。(Means for Solving the Problems) The present invention provides the above-mentioned semiconductor laser device in which a superlattice is partially mixed crystallized in an active region under two or more segment electrodes electrically separated from each other by a resistance region. (by interdiffusion),
By utilizing the nonlinear absorption of excitons existing in a superlattice structure in which the quantization level is shifted to the short wavelength side as a saturable absorption medium, and further controlling the nonlinear absorption of the excitons with a voltage, it is possible to Two or more stable states are obtained for three or more pre-initial horn signals.
励起子吸収の光非線形性と電界効果(量子閉じ込めシュ
タルク効果)を利用する可飽和吸収領域を、部分混晶化
により短波長側にシフトしたという点で、従来の通常の
超格子構造の励起子吸収の可飽和特性と電界効果を利用
した双安定半導体レーザと基本的な構成で異なる。The exciton structure of the conventional normal superlattice structure has the saturable absorption region, which utilizes the optical nonlinearity of exciton absorption and the electric field effect (quantum confined Stark effect), shifted to the short wavelength side by partial mixed crystallization. It differs in its basic configuration from a bistable semiconductor laser that utilizes saturable absorption characteristics and electric field effects.
(実施例)
第1図は本発明の一実施例の構造を示す図である。ただ
し、本発明の効果は主に1.5μm帯の双安定レーザに
顕著であるから、InGaAsP/ InP超格子の場
合を例にとって実施例を説明する。例えば、単結晶1n
PよりなるN型の半導体基板1の上に、クラッド層とし
ての、例えば単結晶1nPよりなるN型の半導体層2と
、例えばInGa、AsP/InP超格子構造層3とし
ての半導体層と、例えば単結晶1nPよりなるP型の半
導体層4と、例えは単結晶lNGaAsよりなるP型で
高導電性を有し、かつ金属とオーミックな合金層を形成
し得る半導体層5とが、これらの順に積層されて成る半
導体積層体6を有する。この場合、半導体積層体6は、
電流注入のため、N型半導体基板1に接合する電極層7
とP型の半導体層5に接合する電極金属層8を有する。(Embodiment) FIG. 1 is a diagram showing the structure of an embodiment of the present invention. However, since the effects of the present invention are mainly noticeable in bistable lasers in the 1.5 μm band, examples will be described using the case of an InGaAsP/InP superlattice as an example. For example, single crystal 1n
On an N-type semiconductor substrate 1 made of P, an N-type semiconductor layer 2 made of, for example, single-crystal 1nP as a cladding layer, a semiconductor layer 3 made of, for example, InGa, AsP/InP superlattice structure, etc. A P-type semiconductor layer 4 made of single-crystal 1nP and a P-type semiconductor layer 5 made of, for example, single-crystal 1NGaAs, which has high conductivity and can form an ohmic alloy layer with metal, are formed in this order. It has a semiconductor laminate 6 formed by stacking layers. In this case, the semiconductor stack 6 is
Electrode layer 7 bonded to N-type semiconductor substrate 1 for current injection
and an electrode metal layer 8 bonded to the P-type semiconductor layer 5.
半導体層4,5および電極金属層8を電気的に分離され
た二つ以上のセグメントに分割し、一方のセグメント1
7に定電圧源23を、他方のセク′メント15に定電流
源16を印加する。第1図に示す本発明による半導体レ
ーザ装置は、第3図に示す従来の半導体装置において、
次の事項を除いて、同様な構成を有する。定電圧源23
によって電圧が印加される可飽和吸収領域21の超格子
の部分が、以下に述べる方法により部分混晶化しである
ことである。The semiconductor layers 4 and 5 and the electrode metal layer 8 are divided into two or more electrically separated segments, and one segment 1
A constant voltage source 23 is applied to section 7, and a constant current source 16 is applied to the other sector 15. The semiconductor laser device according to the present invention shown in FIG. 1 differs from the conventional semiconductor device shown in FIG.
They have the same configuration except for the following. Constant voltage source 23
The superlattice portion of the saturable absorption region 21 to which a voltage is applied is partially mixed crystal by the method described below.
例えば、Miyazawaら(Jan、 J、 App
l、 Phys、28L]、039(1989) )に
報告しであるように、当該超格子構造の上のP型の半導
体層5の上に、さらに超格子構造の相互拡散が大きくな
るように、当該構1 〇−
造を形成する以外の物質
(例えば二酸化珪素または窒化珪素)を堆積し、短時間
熱処理法、または短時間熱処理繰り返し法を行うことに
より、超格子の励起子吸収ピークを短波長側にシフトし
ている点である。For example, Miyazawa et al. (Jan, J. App.
1, Phys, 28L], 039 (1989)), on the P-type semiconductor layer 5 above the superlattice structure, in order to further increase the interdiffusion of the superlattice structure, The exciton absorption peak of the superlattice can be reduced to a shorter wavelength by depositing a substance other than the one that forms the structure (for example, silicon dioxide or silicon nitride) and performing a short-time heat treatment method or a short-time repeated heat treatment method. The point is that it has shifted to the side.
第2図は上記に述べた方法による部分混晶化の実験例を
示す図である。第1図に示した構造の半導体積層体6を
有する結晶基板の一部に、プラズマCVD法で1000
人の厚さの窒化珪素膜を堆積し、昇温速度350°C/
分、最高温度800℃、保持時間1分間熱処理した場合
の超格子構造の光吸収特性を測定した結果を示す。dの
曲線は熱処理をする前の、eの曲線は窒化珪素膜の堆積
していない領域の熱処理後の、fの曲線は窒化珪素膜の
堆積している領域の熱処理後のそれぞれ光吸収特性の測
定例を示す。FIG. 2 is a diagram showing an experimental example of partial mixed crystallization using the method described above. A part of the crystal substrate having the semiconductor stack 6 having the structure shown in FIG.
A silicon nitride film with a human thickness was deposited and the heating rate was 350°C/
The results of measuring the light absorption characteristics of the superlattice structure when heat-treated at a maximum temperature of 800° C. for 1 minute are shown. The curve d shows the light absorption characteristics before heat treatment, the curve e shows the light absorption characteristics after heat treatment in the area where the silicon nitride film is not deposited, and the curve f shows the light absorption characteristics after the heat treatment in the area where the silicon nitride film is deposited. A measurement example is shown.
熱処理によりe、 fの曲線は短波長側にシフトする
が、堆積した窒化珪素の効果によりfの方がより短波長
側にシフトし、その差は60nm(37meV)に達す
る。さらに、この方法による部分混晶化では、超格子構
造が完全に混晶化して無くなってしまうのではなく、量
子井戸層に燐が拡散するので、バンドギャプが数十me
V大きくなるためで、超格子構造に特徴的な量子閉じ込
みシュタルク効果が存在する。Although the curves of e and f shift toward shorter wavelengths due to the heat treatment, f shifts toward shorter wavelengths due to the effect of the deposited silicon nitride, and the difference therebetween reaches 60 nm (37 meV). Furthermore, in partial mixed crystal formation using this method, the superlattice structure does not completely become mixed crystal and disappears, but phosphorus diffuses into the quantum well layer, so the band gap increases by several tens of meters.
This is because V increases, and there is a quantum confinement Stark effect characteristic of superlattice structures.
上記の選択的部分混晶化技術を用いて、第1図の光学利
得発生領域19は、吸収特性が第2図のeの曲線となる
ように、第1図の可飽和吸収領域21は吸収特性が、第
2図のfとなるように熱処理を行い、その後に電極層7
およびセグメント15.17を形成する。Using the above-mentioned selective partial mixing technique, the optical gain generation region 19 in FIG. 1 has an absorption characteristic as shown in curve e in FIG. Heat treatment is performed so that the characteristic becomes f in FIG. 2, and then the electrode layer 7 is
and forming segment 15.17.
セグメント15の下の活性層3の光学利得発生領域19
に多数のキャリアを注入することにより、レーザ発振の
ための光学利得を生じさせる領域として使用し、セグメ
ント17の下の活性層3の可飽和吸収領域21は、以下
で述べる原理によって、制御可能な可飽和吸収の領域と
して使用する。Optical gain generation region 19 of active layer 3 below segment 15
The saturable absorption region 21 of the active layer 3 below the segment 17 is controllable by the principle described below. Used as a region of saturable absorption.
すでに述べたように、光学利得発生領域I9によリレー
ザ発振する波長は、第5図のeの曲線のピークEになる
。その波長に対し、可飽和吸収領域2Iの吸収は数百C
IN ’程度であり、かつ電界によって第5図のrの曲
線のピークFは、Eの波長よりも長波長までシフトでき
、電界により制御し得る可飽和吸収領域として機能し、
広い範囲で制御可能な双安定レーザが実現する。As already mentioned, the wavelength of laser oscillation by the optical gain generation region I9 is the peak E of the curve e in FIG. For that wavelength, the absorption in the saturable absorption region 2I is several hundred C.
IN ', and the peak F of the curve r in FIG. 5 can be shifted to a longer wavelength than the wavelength E by the electric field, and functions as a saturable absorption region that can be controlled by the electric field
A bistable laser that can be controlled over a wide range will be realized.
(発明の効果)
以−に説明したように、本発明の半導体レーザ装置は、
ダブルへテロ接合を具える半導体レーザ装置において、
上記装置の活性層が超格子構造を有し、かつ抵抗領域に
よって相互に電気的に分離された複数のセグメント電極
を具え、一つまたはそれ以上のセグメント電極より電流
を注入し、これと異なるセグメント電極端子にバイアス
電圧を印加し、バイアス電圧を印加する部分を超格子の
部分的混晶化によって、量子化準位を短波長側にシフト
させることができ、バイアス点を適当に設定すれば、メ
モリー動作やオン、オフ比がとれるので、多段化も可能
であることなど、光情報処理や光通信における光演算、
光交換、光パルス整形等を行う機能素子として、極めて
有用である。(Effects of the Invention) As explained above, the semiconductor laser device of the present invention has the following effects:
In a semiconductor laser device equipped with a double heterojunction,
The active layer of the above device has a superlattice structure and comprises a plurality of segment electrodes electrically separated from each other by a resistive region, and current is injected from one or more of the segment electrodes, and a segment different from the active layer has a superlattice structure. By applying a bias voltage to the electrode terminal and partially mixing the superlattice in the area where the bias voltage is applied, the quantization level can be shifted to the short wavelength side, and if the bias point is set appropriately, Optical calculations in optical information processing and optical communication, such as memory operation and on/off ratio, making multistage possible,
It is extremely useful as a functional element that performs optical exchange, optical pulse shaping, etc.
第1図は本発明の双安定の半導体レーザ装置の構造を示
す図、
第2図は本発明の実施例の領域21.領域19の吸収効
率を示す図、
第3図は従来の技術による電界制御型の双安定レーザ装
置の構造図、
第4図は光吸収領域の吸収効率の波長特性と印加電圧の
関係を示す図、
第5図は超格子構造の可飽和吸収特性図である。
1・・・単結晶GaAsよりなるN型の半導体基板2・
・・クラッド層、例えば単結晶A1.Ga+−、As(
0<x<1)よりなるN型の半導体層
3・・・活性層、例えばGaAs/AlzGa+1As
(0<z<1)超格子構造層
4・・・クラット層、例えば単結晶Al工Ga+−,A
s(0<x<]、)よりなるP型の半導体層
5・・・コンタクト層、例えば単結晶GaAsよりなる
P型で高導電性を有し、かつ金属とオーミックな合金層
を形成し得る半導体層
3
4
6・・・1. 2. 3. 4. 5が積層されてなる
半導体積層体
7・・・N型半導体基板1に接合する電極層8・・・P
型半導体層5に接合する電極金属層15、17・・・電
極金属層8を電気的に分離したセグメント
16・・・定電流源
19・・・レーザ発振のための光学利得発生領域20・
・・電圧により制御可能な可飽和吸収領域21・・・超
格子の部分混晶化により励起子ピークを数@−m e
V短波長側にシフトした電圧により制御可能な可飽和吸
収領域
23・・・定電圧源FIG. 1 is a diagram showing the structure of a bistable semiconductor laser device according to the present invention, and FIG. 2 is a diagram showing a region 21 of an embodiment of the present invention. Figure 3 is a diagram showing the absorption efficiency of region 19. Figure 3 is a structural diagram of a conventional electric field controlled bistable laser device. Figure 4 is a diagram showing the relationship between the wavelength characteristics of the absorption efficiency of the light absorption region and the applied voltage. , FIG. 5 is a diagram of the saturable absorption characteristics of the superlattice structure. 1... N-type semiconductor substrate made of single crystal GaAs 2.
...Clad layer, for example single crystal A1. Ga+-, As(
N-type semiconductor layer 3 consisting of 0<x<1)...active layer, for example GaAs/AlzGa+1As
(0<z<1) superlattice structure layer 4...crat layer, for example, single crystal Al, Ga+-, A
P-type semiconductor layer 5 made of s (0<x<],)...Contact layer, for example, P-type made of single crystal GaAs, has high conductivity, and can form an ohmic alloy layer with metal. Semiconductor layer 3 4 6...1. 2. 3. 4. Semiconductor laminate 7 formed by laminating 5...electrode layer 8...P bonded to the N-type semiconductor substrate 1
Electrode metal layers 15 and 17 bonded to the type semiconductor layer 5... Segment 16 electrically separating the electrode metal layer 8... Constant current source 19... Optical gain generation region 20 for laser oscillation.
... Saturable absorption region 21 that can be controlled by voltage... Exciton peaks are increased by several @-m e due to partial mixed crystallization of the superlattice
V Saturable absorption region 23 that can be controlled by a voltage shifted to the short wavelength side...constant voltage source
Claims (1)
、前記装置の活性層が超格子構造を有し、かつ抵抗領域
によって相互に電気的に分離された複数のセグメント電
極を具え、一つまたはそれ以上のセグメント電極より電
流を注入し、これと異なるセグメント電極端子にバイア
ス電圧を印加する構造を有することを特徴とする半導体
レーザ装置。 2、特許請求の範囲第1項記載の半導体レーザ装置にお
いて、活性層はバンドギャップがより小さいInGaA
sまたはInGaAsP量子井戸層、バンドギャップが
より大きいInPバリアー層からなる超格子構造(以下
、これをInGaAs(P)/InP超格子構造と略記
する)およびInGaAs(P)/InGaAsP、I
nGaAs(P)/InAlAs超格子構造を有し、バ
イアス電圧を印加する部分を、超格子の部分的混晶化(
相互拡散(inter−diffusion))によっ
て、量子化準位を短波長側にシフトさせた構造を有する
ことを特徴とする半導体レーザ装置。 3、特許請求の範囲第1項記載の半導体レーザ装置にお
いて、前記バイアス電圧を固定し、注入電流を調整する
ことにより、レーザ発振による光出力強度が2値安定と
なることを特徴とする半導体レーザ装置。[Claims] 1. A semiconductor laser device including a dovetail junction, wherein the active layer of the device has a superlattice structure and includes a plurality of segment electrodes electrically separated from each other by a resistance region, A semiconductor laser device characterized by having a structure in which a current is injected from one or more segment electrodes and a bias voltage is applied to a different segment electrode terminal. 2. In the semiconductor laser device according to claim 1, the active layer is made of InGaA having a smaller band gap.
s or InGaAsP quantum well layer, a superlattice structure consisting of an InP barrier layer with a larger band gap (hereinafter abbreviated as InGaAs(P)/InP superlattice structure), and InGaAs(P)/InGaAsP, I
It has an nGaAs(P)/InAlAs superlattice structure, and the part to which a bias voltage is applied is partially mixed crystal of the superlattice (
1. A semiconductor laser device characterized by having a structure in which a quantization level is shifted to a shorter wavelength side by inter-diffusion. 3. The semiconductor laser device according to claim 1, wherein the bias voltage is fixed and the injection current is adjusted so that the optical output intensity due to laser oscillation becomes binary stable. Device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3398990A JPH03239385A (en) | 1990-02-16 | 1990-02-16 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3398990A JPH03239385A (en) | 1990-02-16 | 1990-02-16 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03239385A true JPH03239385A (en) | 1991-10-24 |
Family
ID=12401894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3398990A Pending JPH03239385A (en) | 1990-02-16 | 1990-02-16 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03239385A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61196592A (en) * | 1985-02-26 | 1986-08-30 | Mitsubishi Electric Corp | Manufacture of composite resonator type semiconductor laser device |
JPS6249684A (en) * | 1985-08-28 | 1987-03-04 | Nec Corp | Semiconductor laser device |
JPS62296573A (en) * | 1986-06-17 | 1987-12-23 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor laser device |
JPS63116489A (en) * | 1986-11-05 | 1988-05-20 | Mitsubishi Electric Corp | Optical integrated circuit |
JPS63280225A (en) * | 1987-05-12 | 1988-11-17 | Mitsubishi Electric Corp | Optical logic element |
JPH01216587A (en) * | 1988-02-25 | 1989-08-30 | Fujitsu Ltd | Optically bistable semiconductor laser |
-
1990
- 1990-02-16 JP JP3398990A patent/JPH03239385A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61196592A (en) * | 1985-02-26 | 1986-08-30 | Mitsubishi Electric Corp | Manufacture of composite resonator type semiconductor laser device |
JPS6249684A (en) * | 1985-08-28 | 1987-03-04 | Nec Corp | Semiconductor laser device |
JPS62296573A (en) * | 1986-06-17 | 1987-12-23 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor laser device |
JPS63116489A (en) * | 1986-11-05 | 1988-05-20 | Mitsubishi Electric Corp | Optical integrated circuit |
JPS63280225A (en) * | 1987-05-12 | 1988-11-17 | Mitsubishi Electric Corp | Optical logic element |
JPH01216587A (en) * | 1988-02-25 | 1989-08-30 | Fujitsu Ltd | Optically bistable semiconductor laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6218082A (en) | Semiconductor laser device | |
JPH06232503A (en) | Blue-green injection laser device | |
JPH05283791A (en) | Surface emission type semiconductor laser | |
JPS5936988A (en) | Vertical oscillation type semiconductor laser | |
JPS59208889A (en) | Semiconductor laser | |
JP4494721B2 (en) | Quantum cascade laser | |
JP2004179206A (en) | Optical semiconductor device, optical transmission module and optical amplification module | |
JPS58196088A (en) | Semiconductor laser element | |
JP3145718B2 (en) | Semiconductor laser | |
JP3566365B2 (en) | Optical semiconductor device | |
JPH03239385A (en) | Semiconductor laser device | |
JPH0377677B2 (en) | ||
JPH0563301A (en) | Semiconductor optical element and optical communication system | |
JP2003124574A (en) | Optical semiconductor device and its fabricating method | |
JPH0151074B2 (en) | ||
JP3149959B2 (en) | Semiconductor laser device and driving method thereof | |
JPS623221A (en) | Optical modulator | |
JP2556288B2 (en) | Semiconductor laser | |
JPH1012960A (en) | Semiconductor laser device | |
JPH04245493A (en) | Multiwavelength semiconductor laser element and driving method of that element | |
JPH09179237A (en) | Optical memory element | |
JPH07202348A (en) | Semiconductor light amplifier element | |
JPS6297386A (en) | Distributed feedback type bistable semiconductor laser | |
JPH10209572A (en) | Semiconductor light emitting element and manufacture thereof | |
JP3215531B2 (en) | Optical amplifier |