JPH03229839A - Manufacture of duplex stainless steel and its steel material - Google Patents
Manufacture of duplex stainless steel and its steel materialInfo
- Publication number
- JPH03229839A JPH03229839A JP2491490A JP2491490A JPH03229839A JP H03229839 A JPH03229839 A JP H03229839A JP 2491490 A JP2491490 A JP 2491490A JP 2491490 A JP2491490 A JP 2491490A JP H03229839 A JPH03229839 A JP H03229839A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- stainless steel
- duplex stainless
- corrosion resistance
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001039 duplex stainless steel Inorganic materials 0.000 title claims abstract description 35
- 239000000463 material Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 229910000831 Steel Inorganic materials 0.000 title abstract description 23
- 239000010959 steel Substances 0.000 title abstract description 23
- 238000005260 corrosion Methods 0.000 claims abstract description 46
- 230000007797 corrosion Effects 0.000 claims abstract description 46
- 238000010438 heat treatment Methods 0.000 claims abstract description 17
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 7
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 6
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 239000012535 impurity Substances 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 4
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 3
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 238000001816 cooling Methods 0.000 abstract description 26
- 229910052758 niobium Inorganic materials 0.000 abstract description 5
- 238000005098 hot rolling Methods 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 239000003129 oil well Substances 0.000 abstract description 2
- 230000009977 dual effect Effects 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 22
- 239000000243 solution Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 17
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 12
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 12
- 238000001556 precipitation Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 150000001247 metal acetylides Chemical class 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 238000005482 strain hardening Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000002436 steel type Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 241000406668 Loxodonta cyclotis Species 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- -1 containing 0.05% Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、オーステナイト−フェライト系の2相ステ
ンレス鋼であって、特に炭酸ガスや硫化水素に対して優
れた耐食性を有し、且つ高強度を備え、油井環境等で使
用するのに通した2相ステンレス鋼、およびその鋼を素
材とする鋼材の製造方法に関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention is an austenite-ferritic duplex stainless steel, which has excellent corrosion resistance, especially against carbon dioxide gas and hydrogen sulfide, and has high strength. The present invention relates to a duplex stainless steel that has been passed through for use in an oil well environment, etc., and a method for manufacturing steel materials made from the steel.
(従来の技術)
2相ステンレス鋼は、通常のオーステナイトステンレス
鋼やフェライトステンレス鋼に比べて溶体化のままでも
強度が高いという特徴があり、その優れた耐食性とあわ
せてラインパイプや油井管用としての用途が拡大しつつ
ある。これらの2相ステンレス鋼材の通常の製造プロセ
スでは、熱間成形後、冷却の過程で生成した炭窒化物、
金属間化合物を溶体化する熱処理を行い、これらを再固
溶させることによって耐食性を確保している。高強度が
望まれる場合には、さらに冷間加工を行うのが普通であ
る。このように、通常の2相ステンレス鋼材の製造方法
では、溶体化熱処理や冷間加工の工程を必要とするため
、その製造コストは著しく高い。(Conventional technology) Duplex stainless steel is characterized by its high strength even when it is in solution form compared to normal austenitic stainless steel and ferritic stainless steel, and along with its excellent corrosion resistance, it is suitable for line pipes and oil country tubular products. Its uses are expanding. In the normal manufacturing process of these duplex stainless steel materials, carbonitrides, which are generated during the cooling process after hot forming,
Corrosion resistance is ensured by performing heat treatment to solutionize intermetallic compounds and redissolving them into solid solution. If high strength is desired, additional cold working is usually performed. As described above, the normal manufacturing method for duplex stainless steel materials requires steps such as solution heat treatment and cold working, so the manufacturing cost is extremely high.
近年、溶体化熱処理を省略する製造方法として、高温で
十分析出物を固溶させた後に熱間成形を行い、直ちに急
冷するプロセス(直接溶体化)が提案されている。例え
ば、特開昭59−182918号公報および特開昭60
−89519号公報には、高温で十分材料を加熱して、
析出物を完全に固溶させた後に熱開成形を行い、導入さ
れた熱間加工歪が回復しないうちに象、冷し、耐食性を
低下させる炭窒化物や金属間化合物を析出させない製造
方法が提案されており、これらの方法によれば溶体化処
理が省略できるだけでなく、高い強度の鋼材が得られる
。In recent years, as a manufacturing method that omits solution heat treatment, a process (direct solution treatment) has been proposed in which ten analytes are dissolved in solid solution at high temperature, followed by hot forming and immediately quenched. For example, JP-A-59-182918 and JP-A-60
Publication No. 89519 discloses that by heating the material sufficiently at a high temperature,
There is a manufacturing method in which heat-opening is performed after the precipitates are completely dissolved, and carbonitrides and intermetallic compounds that reduce corrosion resistance are not precipitated by cooling before the introduced hot working strain has recovered. According to these methods, not only can solution treatment be omitted, but also high strength steel materials can be obtained.
(発明が解決しようとする課題)
これまでに提案された前記の各製造方法では、熱間成形
後、800℃以上から急冷するプロセスが必須であり、
この方法を実施するためには、圧延ラインに近い場所に
水冷等の急冷設備が必要となる。従って、この技術は急
冷設備を備えた限られた特定のラインでしか実施できな
いという問題がある。(Problems to be Solved by the Invention) In each of the above-mentioned manufacturing methods proposed so far, a process of rapid cooling from 800°C or higher after hot forming is essential.
In order to carry out this method, quenching equipment such as water cooling is required near the rolling line. Therefore, there is a problem in that this technique can only be implemented in a limited number of specific lines equipped with quenching equipment.
本発明の一つの目的は、鋼材製造後に別ラインでの特別
の溶体化熱処理を必要としないだけでなく、熱間加工後
の急冷も必須とせずに、高強度と高耐食性を発現し得る
2相ステンレス鋼を提供することにある。One object of the present invention is to be able to develop high strength and high corrosion resistance without requiring special solution heat treatment on a separate line after manufacturing steel materials, as well as without requiring rapid cooling after hot working. Our goal is to provide phase stainless steel.
本発明のもう一つの目的は、上記の2相ステンレス鋼を
用いて、簡単なプロセスで高強度、高耐食性の鋼材を製
造する方法を提供することにある。Another object of the present invention is to provide a method for manufacturing high-strength, high-corrosion-resistant steel materials by a simple process using the above-mentioned duplex stainless steel.
(課題を解決するための手段)
本発明者は、熱間加工後、特に2冷を行わなくても、例
えば空冷程度の冷却速度でも良好な耐食性と強度を有す
るに到る2相ステンレス鋼を、主にその化学組成の改良
によって得ようと志し、耐食性を低下させる炭窒化物、
σ相などの金属間化合物の析出に及ぼす2相ステンレス
鋼の添加元素の影響を詳細に調査した。その結果、次の
ような結論が得られた。(Means for Solving the Problems) The present inventor has developed a duplex stainless steel that has good corrosion resistance and strength even at a cooling rate of, for example, air cooling, without particularly performing two cooling after hot working. , mainly aimed at obtaining by improving its chemical composition, carbonitrides, which reduce corrosion resistance,
The influence of added elements in duplex stainless steel on the precipitation of intermetallic compounds such as σ phase was investigated in detail. As a result, the following conclusions were obtained.
■ Cr、 Mo、Niの添加はσ相析出を著しく促進
させるので、これらの含有量は必要最小限度の抑えるの
が望ましい。(2) Since the addition of Cr, Mo, and Ni significantly accelerates the precipitation of the σ phase, it is desirable to suppress the content of these to the minimum necessary level.
■CおよびNの増加は炭窒化物の析出を促進させる。(2) Increase in C and N promotes precipitation of carbonitrides.
■炭酸ガスと微量硫化水素を含む環境での耐食性を保持
するためには、NiとMoは重要であり、あまり低減で
きない。■Ni and Mo are important in order to maintain corrosion resistance in an environment containing carbon dioxide gas and trace amounts of hydrogen sulfide, and cannot be reduced much.
■炭化物の析出は炭酸ガスと微量硫化水素を含む環境で
の耐食性を低下させるが、窒化物の析出はほとんど悪影
響を及ぼさない。■Precipitation of carbides reduces corrosion resistance in environments containing carbon dioxide gas and trace amounts of hydrogen sulfide, but precipitation of nitrides has almost no negative effect.
■Nの添加は直接溶体化を行った後の強度を上昇させる
。(2) Addition of N increases the strength after direct solution treatment.
以上の知見を総合してなされた本発明は、下記の2相ス
テンレス鋼とこれを用いた鋼材の製造方法を要旨とする
。The present invention, which has been made by integrating the above knowledge, has the gist of the following duplex stainless steel and a method of manufacturing steel materials using the same.
(i)重量%で、C: 0.03%以下、Si : 2
.0%以下、Mn : 5.0%以下、Cr : 17
.0〜20.0%未満、Ni : 2.0〜7.0%、
Mo : 2.5〜4.0%、I/!:0.005〜0
.05%、N : 0.01〜0.2%を含み、残部が
Feおよび不可避不純物からなるオーステナイトとフェ
ライトの2相ステンレス鋼。(i) In weight%, C: 0.03% or less, Si: 2
.. 0% or less, Mn: 5.0% or less, Cr: 17
.. 0 to less than 20.0%, Ni: 2.0 to 7.0%,
Mo: 2.5-4.0%, I/! :0.005~0
.. A duplex stainless steel of austenite and ferrite, containing 0.05%, N: 0.01 to 0.2%, and the remainder consisting of Fe and unavoidable impurities.
(ii )上記(1)に記載した成分に加えて、Ti、
Nb、V、CuおよびWのうちの1種または2種以上
の合計量で3.0%以下、またはCa、 MgおよびB
のうちの1種または2種以上の合計量で0.001〜0
.05%含有する2相ステンレス鋼。(ii) In addition to the components described in (1) above, Ti,
The total amount of one or more of Nb, V, Cu and W is 3.0% or less, or Ca, Mg and B
The total amount of one or more of the following: 0.001 to 0
.. Duplex stainless steel containing 0.05%.
(iii )上記(1)に記載した成分に加えて、Ti
、 Nb、V、CuおよびWのうちの1種または2種以
上の合計量で3.0%以下、ならびにCa、 Mgおよ
びBのうちの1種または2種以上の合計量で0.001
〜0.05%含有する2相ステンレス鋼。(iii) In addition to the components described in (1) above, Ti
, the total amount of one or more of Nb, V, Cu and W is 3.0% or less, and the total amount of one or more of Ca, Mg and B is 0.001
Duplex stainless steel containing ~0.05%.
(1v)上記(11〜(3)のいずれかの2相ステンレ
ス鋼を素材として、加熱温度1100℃以上、仕上がり
温度900〜1100’Cの条件で熱間加工を行った後
、放冷することを特徴とする高強度と高耐食性を備える
2相ステンレス鋼材の製造方法。(1v) Using any of the two-phase stainless steels described in (11 to (3) above) as a material, hot working at a heating temperature of 1100°C or higher and a finishing temperature of 900 to 1100'C, followed by cooling. A method for producing a duplex stainless steel material having high strength and high corrosion resistance.
本発明の2相ステンレス鋼は、前記の各成分の総合的な
作用によって優れた特性を発現するのであるが、その主
要な特徴は下記のとおりである。The duplex stainless steel of the present invention exhibits excellent properties due to the comprehensive effects of the above-mentioned components, and its main characteristics are as follows.
すなわち、σ相の析出を促進するCr、 NiおよびM
oのうち、微量硫化水素に対する耐食性を高めるN1と
Moは通常の2相ステンレス鋼と同等はまたはそれ以上
添加し、C「はフェライト−オーステナイトの2相組織
とするための最小値の17%から20%未満の範囲とす
る。炭化物の析出は耐食性を大きく低下させるので、空
冷程度の直接溶体化プロセスであっても炭化物を析出さ
せないためにC量を低(制限する。窒化物の析出は、前
述のように耐食性、特に、微量硫化水素に対する耐食性
を低下させず、直接溶体化した後の強度を大きく上昇さ
せるので、Nを特に低く抑えることはしない。That is, Cr, Ni and M promote the precipitation of the σ phase.
Of O, N1 and Mo, which increase the corrosion resistance against trace amounts of hydrogen sulfide, are added at the same level or more than normal two-phase stainless steel, and C is added from 17%, the minimum value to form a ferrite-austenite two-phase structure. The range should be less than 20%.Since the precipitation of carbides greatly reduces corrosion resistance, the amount of C should be kept low (limited) to prevent carbide precipitation even in a direct solution treatment process such as air cooling. As mentioned above, N is not particularly kept low because it does not reduce the corrosion resistance, especially the corrosion resistance against trace amounts of hydrogen sulfide, and greatly increases the strength after direct solution treatment.
上記本発明の2相ステンレス鋼は、通常の熱間成形加工
、例えば、圧延、鍛造、押し出し、線弓き等を行った後
に、水冷等の急冷プロセスを経ずに放冷するだけで必要
な強度と耐食性を備えるに到る。従って、この2相ステ
ンレス鋼を素材として用いれば、オフラインでの溶体化
熱処理が不必要であるばかりでなく、熱間加工ラインに
急冷設備を付属させる必要もなく、経済的な方法で板、
棒、管その他の形状の鋼材を製造できる。The above-mentioned duplex stainless steel of the present invention can be produced by simply cooling it by normal hot forming processing such as rolling, forging, extrusion, wire bowing, etc. without going through a rapid cooling process such as water cooling. This results in strength and corrosion resistance. Therefore, if this duplex stainless steel is used as a material, not only is there no need for off-line solution heat treatment, but there is also no need to attach quenching equipment to the hot processing line, and it is possible to produce plates in an economical manner.
It can produce steel products in the form of rods, tubes, and other shapes.
なお、この2相ステンレス鋼を素材とする鋼材の加工方
法としては、前記(iv)の方法が適当である。Note that the method (iv) above is suitable as a method for processing a steel material made of duplex stainless steel.
(作用)
まず、本発明の2相ステンレス鋼を構成する成分につい
て説明する。なお、成分含有量に関する%は全て重量%
を意味する。(Function) First, the components constituting the duplex stainless steel of the present invention will be explained. All percentages regarding component content are by weight.
means.
第1図は、18χCr−5χNi−3χMo−0,1χ
Nの基本鋼において、C含有量を変えて腐食速度を調べ
た結果である。Figure 1 shows 18χCr-5χNi-3χMo-0,1χ
These are the results of investigating the corrosion rate of N basic steel by changing the C content.
試験片は、溶製材(厚さ60II1m)を、加熱温度+
200℃1仕上温度1000℃で厚さ15mmまで熱間
圧延し、空冷したものから切り出した第3図(a)に示
す2×10 X 75 (mm)で中央に0.25n+
mRのノツチを有するものである。この試験片1を、同
図(b)のように曲げ治具2によって同図(C)に示す
応力σが1σ。The test piece was made of melted lumber (thickness 60II 1m) heated at +
It was hot-rolled to a thickness of 15 mm at a finishing temperature of 1,000°C and air-cooled, and then cut into a 2 x 10 x 75 (mm) piece as shown in Fig. 3(a) with 0.25n+ in the center.
It has a notch of mR. The test piece 1 was bent by the bending jig 2 as shown in FIG. 2(b) until the stress σ shown in FIG. 1(c) was 1σ.
(σ、 : 0.2%耐力)になるように曲げ応力を負
荷した状態で、5%NaCj! +0.1atmHzS
+30atmCOzの環境(+20”C)に366時間
浸漬して行った。(σ, : 0.2% proof stress), 5% NaCj! +0.1atmHzS
The test was carried out by immersion in a +30 atm COz environment (+20"C) for 366 hours.
第1図から、C含有量が少なくなるほど腐食速度が小さ
くなることが明らかである。これは、Cが0.03%以
下というように低い場合は、熱間加工後に空冷程度の冷
却速度で冷却しても、耐食性を低下させる炭化物が析出
しないからである。かかる理由から、本発明ではC含有
量を0.03%以下とした。It is clear from FIG. 1 that the lower the C content, the lower the corrosion rate. This is because when the C content is as low as 0.03% or less, carbides that reduce corrosion resistance will not precipitate even if the steel is cooled at a cooling rate comparable to air cooling after hot working. For this reason, in the present invention, the C content is set to 0.03% or less.
Si: Siはσ相の析出を促進し、靭性を低下させる。Si: Si promotes precipitation of the σ phase and reduces toughness.
また、耐食性の面からも好ましくない成分である。It is also an unfavorable component from the viewpoint of corrosion resistance.
槌って、本発明では2.0%を許容上限値とした。Therefore, in the present invention, 2.0% is set as the allowable upper limit.
さらに、Siは1.0%以下に抑えるのが望ましい。Furthermore, it is desirable to suppress Si to 1.0% or less.
Mn:
Mnはオーステナイトを安定化し、マルテンサイトの生
成を抑える。また、強度を高めるという利点もある。し
かし、Mnの含有量が5.0%を超えると熱間加工性が
低下するので、5.0%を含有量の上限とする。Mn: Mn stabilizes austenite and suppresses the formation of martensite. It also has the advantage of increasing strength. However, if the Mn content exceeds 5.0%, hot workability decreases, so 5.0% is the upper limit of the content.
Cr:
σ相の析出にもっとも直接的に関係し、その含有量を減
らしていってσ相が析出しなくなるCr量は20.0%
未満である。Cr: It is most directly related to the precipitation of the σ phase, and the amount of Cr at which the σ phase no longer precipitates when its content is reduced is 20.0%.
less than
第2図は、0.01χC=5χNi−3χMo−0,1
5χNを基本組成としてCr含有量を変えた場合の、前
記第1図と同じ試験条件による腐食試験結果である。Figure 2 shows 0.01χC=5χNi-3χMo-0,1
These are the results of a corrosion test under the same test conditions as in FIG. 1 above, when the basic composition was 5χN and the Cr content was varied.
第2図に示されるとおり、Crが20%未満になれば割
れの発生がなく、腐食速度も急激に小さくなる。即ち、
Crを低減しても炭酸ガスと微量硫化水素を含む環境で
の耐食性は低下しないが、17.0%に満たないとマル
テンサイトが生成して耐食性が低下する。従って、Cr
含有量の範囲は17.0%から20.0%未満とした。As shown in FIG. 2, when the Cr content is less than 20%, no cracking occurs and the corrosion rate decreases rapidly. That is,
Even if Cr is reduced, corrosion resistance in an environment containing carbon dioxide gas and trace amounts of hydrogen sulfide will not deteriorate, but if it is less than 17.0%, martensite will be produced and corrosion resistance will be reduced. Therefore, Cr
The content range was from 17.0% to less than 20.0%.
Ni :
炭酸ガスと微量硫化水素を含む環境での耐食性を確保す
るために重要な元素である。微量硫化水素に対する割れ
感受性を小さくするために、2.0%以上の含有量が必
要である。しかし7.0%を超えて含有させても耐食性
の改善効果は飽和し、σ相が析出しやすくなるから、N
iの適正含有量は2.0〜7.0%である。Ni: An important element for ensuring corrosion resistance in an environment containing carbon dioxide gas and trace amounts of hydrogen sulfide. In order to reduce the cracking susceptibility to trace amounts of hydrogen sulfide, a content of 2.0% or more is required. However, even if the N content exceeds 7.0%, the corrosion resistance improvement effect is saturated and the σ phase tends to precipitate.
The appropriate content of i is 2.0 to 7.0%.
MO=
N1と同様に炭酸ガスと微量硫化水素を含む環境での耐
食性の改善に大きく寄与する元素である。MO= Like N1, it is an element that greatly contributes to improving corrosion resistance in environments containing carbon dioxide gas and trace amounts of hydrogen sulfide.
2.5%未満ではその効果が期待できず、4.0%を超
えるとσ相が析出しやすくなり、直接溶体化プロセスに
適さなくなる。If it is less than 2.5%, no effect can be expected, and if it exceeds 4.0%, the σ phase tends to precipitate, making it unsuitable for the direct solution treatment process.
N:
直接溶体化プロセスで析出する窒化物は、炭酸ガスと微
量硫化水素を含む環境での耐食性を低下させない。従っ
て、従来の直接溶体化プロセスを適用する2相ステンレ
ス鋼のようにNを極く低い含有量に抑える必要はない。N: Nitride precipitated in the direct solution treatment process does not reduce corrosion resistance in an environment containing carbon dioxide gas and trace amounts of hydrogen sulfide. Therefore, unlike duplex stainless steel to which the conventional direct solution treatment process is applied, it is not necessary to suppress the N content to an extremely low level.
むしろ、Nは直接溶体化後の強度を上昇させるという効
果が大きい。Rather, N has a great effect of increasing the strength after direct solution treatment.
0.01%以下ではその効果がなく、0.2%を紹える
と熱間加工性を低下させるので、Nの含有量は0.01
〜0.2%とした。If it is less than 0.01%, there is no effect, and if it is introduced to 0.2%, hot workability will decrease, so the N content should be 0.01%.
~0.2%.
八l :
脱酸のために添加されるもので、その効果を確かにする
には、含有量として0.005%以上が必要である。し
かし、Alの含有量が0.05%を超えるとAINが析
出して耐食性が低下する。8L: Added for deoxidation, and to ensure its effect, the content must be 0.005% or more. However, if the Al content exceeds 0.05%, AIN will precipitate and the corrosion resistance will decrease.
Ti、、Nb、 V、Cu、W:
いずれも強度を高める効果があるので、1種または2種
以上、必要に応じて含有させることができる。1種の場
合はそれぞれの含有量が、また2種以上用いる場合は合
計含有量が3.0%を超えると熱間加工性が低下する。Ti, Nb, V, Cu, and W: All have the effect of increasing strength, so one or more of them can be contained as needed. If the content of each component exceeds 3.0% when one type is used, or if the total content exceeds 3.0% when two or more types are used, hot workability deteriorates.
Ca、、Mg、 B :
苛酷な加工が施される場合に熱間加工性を改善するため
に添加してもよい。その目的のためには1種または2種
以上の合計で、0.001%以上含有させることが必要
である。また、1種または2種以上合計で0.05%を
超えると耐食性が低下する。Ca, Mg, B: May be added to improve hot workability when severe processing is performed. For that purpose, it is necessary to contain one or more types in a total amount of 0.001% or more. Moreover, if the total content of one or more types exceeds 0.05%, corrosion resistance will decrease.
Ti、 Nb、 V、CuおよびWのグループとCa、
MgおよびBのグループは、前記の範囲で両方を含有
させてもよい。Groups of Ti, Nb, V, Cu and W and Ca,
The Mg and B groups may contain both within the above range.
なお、SとPは、いずれも熱間加工性が低下させる好ま
しくない不純物である。Sは0.002%以下に、Pは
0.05%以下に、それぞれできるだけ少なくするのが
よい。Note that both S and P are undesirable impurities that reduce hot workability. It is preferable to reduce S to 0.002% or less and P to 0.05% or less, respectively, as much as possible.
次に、本発明の2相ステンレス鋼を使用して鋼材を製造
する望ましい方法について述べる。Next, a preferred method for producing steel products using the duplex stainless steel of the present invention will be described.
この方法は、前記のとおり、加熱温度1100℃以上、
仕上がり温度900〜1100℃の条件で熱間加工を行
い、加工終了後は放冷することを特徴とするものである
。As mentioned above, this method includes a heating temperature of 1100°C or higher,
It is characterized by performing hot working at a finishing temperature of 900 to 1100° C. and allowing it to cool after completion of the working.
加熱温度:
この加熱は、熱間加工を容品にするとともに、炭窒化物
およびσ相を完全に固溶させて、素材を均質化するため
に行う。これらの目的を達成するには1100℃以上の
加熱温度が必要である。加熱温度の上限は1350℃程
度とするのが望ましい、加熱時間は、素材のサイズと加
熱温度に依存するが、要するに素材の芯部まで完全に均
質化するに足りる時間にすればよい。Heating temperature: This heating is performed in order to make hot working acceptable and to completely dissolve carbonitrides and σ phase to homogenize the material. To achieve these objectives, a heating temperature of 1100° C. or higher is required. The upper limit of the heating temperature is desirably about 1350° C. The heating time depends on the size of the material and the heating temperature, but in short, it may be set to a time sufficient to completely homogenize the core of the material.
仕上がり温度:
この温度が低いほどが加工硬化しやすく、強度上昇が大
きいが、900℃よりも低温で加工すると炭化物とσ相
の析出が著しくなり耐食性が低下する。仕上がり温度が
1100℃を超えると再結晶回復により加工硬化しない
ので強度上昇が得られない。Finishing temperature: The lower the temperature, the easier the work hardening and the greater the increase in strength.However, if the temperature is lower than 900°C, the precipitation of carbides and σ phase will be significant, resulting in a decrease in corrosion resistance. If the finishing temperature exceeds 1100°C, work hardening will not occur due to recrystallization recovery, so no increase in strength will be obtained.
上記の条件で、圧延(マンネスマン穿孔圧延を含む)、
鍛造、押出し、引抜き等の加工を行った後、特別な象、
冷をしなくてもよいことが本発明の2相ステンレス鋼の
大きな利点である。即ち、前述した合金成分の調整によ
って、本発明の2相ステンレス鋼は、空冷程度の冷却速
度でも炭化物や金属間化合物が析出ルにくい。従って、
熱間加工の後は、加工終了温度から大気中放冷(いわゆ
る空冷)をすれば十分である。ただし、肉厚が50−を
超えるような部材では、中心部の冷却速度が遅くなり、
十分な耐食性を有しなくなるおそれがあるから、水冷の
ような強制冷却を行ってもよい。Under the above conditions, rolling (including Mannesmann piercing rolling),
After processing such as forging, extrusion, drawing, etc., the special elephant,
A major advantage of the duplex stainless steel of the present invention is that it does not require refrigeration. That is, by adjusting the alloy components as described above, the duplex stainless steel of the present invention is difficult to precipitate carbides and intermetallic compounds even at a cooling rate comparable to that of air cooling. Therefore,
After hot working, it is sufficient to allow the material to cool in the atmosphere (so-called air cooling) from the working end temperature. However, for members whose wall thickness exceeds 50 mm, the cooling rate at the center will be slow.
Since there is a risk that the material will not have sufficient corrosion resistance, forced cooling such as water cooling may be used.
(実施例)
高周波誘導加熱真空)容解炉を用いて第1表に示す成分
の鋼を溶製して、それぞれ100kgの鋼塊とした。こ
れらの鋼塊を鍛造して分塊し、厚さ75n+m×幅10
0mm X長さ200mmのブロックを作製した。(Example) Steels having the components shown in Table 1 were melted using a high-frequency induction heating (vacuum) melting furnace to obtain steel ingots weighing 100 kg each. These steel ingots were forged and bloomed to a thickness of 75n+m x width of 10mm.
A block of 0 mm x 200 mm in length was prepared.
次いで、第2表に示す加工条件で熱間圧延を行い、30
mm厚に仕上げた後、空冷直接溶体化または通常の再加
熱溶体化処理を行い、降伏強度と、微量硫化水素含有雰
囲気での応力腐食馴れ性を調査した。Next, hot rolling was performed under the processing conditions shown in Table 2, and 30
After finishing to a thickness of mm, air-cooled direct solution treatment or normal reheating solution treatment was performed, and the yield strength and stress corrosion resistance in an atmosphere containing a trace amount of hydrogen sulfide were investigated.
引張試験は直径4mm、平行部341の引張試験片を採
取して行った。腐食試験は、前記第1図および第2図の
試験の条件と同しであり、試験片は2個づつ作製した。The tensile test was conducted by taking a tensile test piece with a diameter of 4 mm and a parallel portion 341. The corrosion test was carried out under the same conditions as the tests shown in FIGS. 1 and 2, and two test pieces were prepared.
腐食試験の結果は366時間の浸漬試験後、試料を取り
出し、肉眼による外観観察および試験片断面の光学顕微
鏡観察によって割れの有無および選択腐食の有無を調査
して評価した。The results of the corrosion test were evaluated by taking out the sample after the 366-hour immersion test and observing the appearance with the naked eye and observing the cross section of the test piece with an optical microscope to check for cracks and selective corrosion.
これらの試験結果を第2表に併せて示す。耐食性の評価
で○○は試験片2個ともに割れがなく、また選択腐食も
ないもの、××は2個ともに割れまたは選択腐食が観察
されたことを示す。These test results are also shown in Table 2. In the evaluation of corrosion resistance, ○○ indicates that there was no cracking or selective corrosion in both test pieces, and XX indicates that cracking or selective corrosion was observed in both test pieces.
第1表の鋼種A、Bはそれぞれ通常よく用いられる22
%Cr、および25%Crの2相ステンレス鋼である。Steel types A and B in Table 1 are commonly used 22
% Cr, and 25% Cr duplex stainless steel.
鋼種C,D、EおよびFは本発明の18%Cr系の2相
ステンレス鋼である。Steel types C, D, E, and F are 18% Cr duplex stainless steels of the present invention.
第2表に示す比較例1.2.3は、加工後に再加熱して
溶体化を行う従来のプロセスの例である。Comparative Examples 1.2.3 shown in Table 2 are examples of conventional processes in which solution treatment is performed by reheating after processing.
この方法で得られた鋼材は、耐食性については問題ない
が、強度が著しく低くなっている。Steel materials obtained by this method have no problem with corrosion resistance, but have significantly low strength.
比較例4.5は、圧延後に直接溶体化するプロセスであ
るが、その冷却を空冷として第1表の従来@A、Bに適
用したものである。これらの鋼種はCr含有量が高いの
で、空冷途上にσ相が析出し、強度は高くなるものの耐
食性が甚だしく劣っている。比較例6は、本発明鋼を素
材としたものであるが、熱間圧延の仕上がり温度が高す
ぎたために加工硬化の効果がなく、強度が低い。Comparative Example 4.5 is a process in which solution treatment is performed directly after rolling, but air cooling is applied to the conventional methods @A and B in Table 1. Since these steel types have a high Cr content, the σ phase precipitates during air cooling, and although the strength is increased, the corrosion resistance is extremely poor. Comparative Example 6 was made of the steel of the present invention, but because the finishing temperature of hot rolling was too high, there was no work hardening effect and the strength was low.
これらの比較例に対して、本発明例1〜6では、直接溶
体化の冷却を放冷で行ったにもかかわらず、優れた耐食
性が得られている。しかも、従来の再加熱溶体化材(比
較例1〜3)
に比べて強度も高
(以下、
余白)
(発明の効果)
実施例に具体的に示したとおり、本発明の2相ステンレ
ス鋼は、熱間加工後に放冷するという簡単なプロセスで
処理しても高強度と高耐食性を備えた鋼材になる。従っ
て、本発明の2相ステンレス鋼を用いれば、急冷装置の
ような特別の設備を要さず、低い製造コストで厳しい環
境で使用できる鋼材を製造することが可能になる。In contrast to these comparative examples, in Examples 1 to 6 of the present invention, excellent corrosion resistance was obtained even though the cooling for direct solution treatment was performed by standing to cool. Furthermore, the strength is higher than that of conventional reheated solution-treated materials (Comparative Examples 1 to 3) (hereinafter referred to as the margin) (Effects of the invention) As specifically shown in the examples, the duplex stainless steel of the present invention has Even if treated through a simple process of cooling after hot working, it can be made into a steel material with high strength and high corrosion resistance. Therefore, by using the duplex stainless steel of the present invention, it becomes possible to produce a steel material that can be used in harsh environments at low production cost without requiring special equipment such as a quenching device.
第1図は、2相ステンレス鋼の微量硫化水素含有雰囲気
での腐食速度と、C含有量との関係を示す図、
第2図は、同しくCr含有量との関係を示す図、第3図
(a)は、腐食試験に使用した試験片の形状を示す図、
第3図(b)および(C)は、試験片の応力を負荷する
方法を説明する図、
である。Figure 1 is a diagram showing the relationship between the corrosion rate of duplex stainless steel in an atmosphere containing a trace amount of hydrogen sulfide and the C content, Figure 2 is a diagram showing the relationship with the Cr content, and Figure 3 Figure (a) is a diagram showing the shape of the test piece used in the corrosion test,
FIGS. 3(b) and 3(C) are diagrams illustrating a method of applying stress to a test piece.
Claims (5)
以下、Mn:5.0%以下、Cr:17.0〜20.0
%未満、Ni:2.0〜7.0%、Mo:2.5〜4.
0%、Al:0.005〜0.05%、N:0.01〜
0.2%を含み、残部がFeおよび不可避不純物からな
るオーステナイトとフェライトの2相ステンレス鋼。(1) In weight%, C: 0.03% or less, Si: 2.0%
Below, Mn: 5.0% or less, Cr: 17.0 to 20.0
%, Ni: 2.0-7.0%, Mo: 2.5-4.
0%, Al: 0.005~0.05%, N: 0.01~
A duplex stainless steel of austenite and ferrite containing 0.2% and the remainder consisting of Fe and unavoidable impurities.
b、V、CuおよびWのうちの1種または2種以上の合
計量で3.0%以下含有する2相ステンレス鋼。(2) In addition to the components described in claim (1), Ti, N
Duplex stainless steel containing one or more of V, Cu and W in a total amount of 3.0% or less.
gおよびBのうちの1種または2種以上の合計量で0.
001〜0.05%含有する2相ステンレス鋼。(3) In addition to the components described in claim (1), Ca, M
The total amount of one or more of g and B is 0.
Duplex stainless steel containing 0.001 to 0.05%.
b、V、CuおよびWのうちの1種または2種以上の合
計量で3.0%以下、さらにCa、MgおよびBのうち
の1種または2種以上の合計量で0.001〜0.05
%含有する2相ステンレス鋼。(4) In addition to the components described in claim (1), Ti, N
The total amount of one or more of b, V, Cu, and W is 3.0% or less, and the total amount of one or more of Ca, Mg, and B is 0.001 to 0. .05
Duplex stainless steel containing %.
た2相ステンレス鋼を、加熱温度1100℃以上、仕上
がり温度900〜1100℃の条件で熱間加工し、この
加工の終了後、放冷することを特徴とする高強度と優れ
た耐食性を備える2相ステンレス鋼材の製造方法。(5) The duplex stainless steel according to any one of claims (1) to (4) is hot worked at a heating temperature of 1100°C or higher and a finishing temperature of 900 to 1100°C, and after the completion of this working. , a method for producing a duplex stainless steel material having high strength and excellent corrosion resistance, characterized by allowing it to cool.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2491490A JP2952929B2 (en) | 1990-02-02 | 1990-02-02 | Duplex stainless steel and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2491490A JP2952929B2 (en) | 1990-02-02 | 1990-02-02 | Duplex stainless steel and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03229839A true JPH03229839A (en) | 1991-10-11 |
JP2952929B2 JP2952929B2 (en) | 1999-09-27 |
Family
ID=12151436
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2491490A Expired - Lifetime JP2952929B2 (en) | 1990-02-02 | 1990-02-02 | Duplex stainless steel and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2952929B2 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132741A (en) * | 1991-11-11 | 1993-05-28 | Sumitomo Metal Ind Ltd | High strength duplex stainless steel excellent in corrosion resistance |
JPH0681037A (en) * | 1992-08-31 | 1994-03-22 | Sumitomo Metal Ind Ltd | Production of hot rolled strip of dual phase stainless steel |
JPH0813093A (en) * | 1994-07-04 | 1996-01-16 | Nippon Yakin Kogyo Co Ltd | Superplastic duplex stainless steel small in deformation resistance and excellent in elongating property |
JPH0841600A (en) * | 1994-05-21 | 1996-02-13 | Yong Soo Park | Corrosion-resistant duplex stainless steel |
WO1996018751A1 (en) * | 1994-12-16 | 1996-06-20 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel excellent in corrosion resistance |
KR100417520B1 (en) * | 1999-12-14 | 2004-02-05 | 주식회사 포스코 | Reheating method for tungsten containing duplex stainless steel |
KR100444248B1 (en) * | 2001-04-27 | 2004-08-16 | 한국산업기술평가원 | High manganese duplex stainless steel having superior hot workabilities and method for manufacturing thereof |
KR100694312B1 (en) * | 2005-12-19 | 2007-03-14 | 포스코신기술연구조합 | A high ni duplex stainless steel improving hot-workability for welding rod |
EP1995341A1 (en) * | 2007-03-26 | 2008-11-26 | Sumitomo Metal Industries Limited | Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion |
JP2013199679A (en) * | 2012-03-26 | 2013-10-03 | Nippon Steel & Sumikin Stainless Steel Corp | Stainless steel having excellent corrosion resistance to high temperature lactic acid and method for using the same |
EP3102714A4 (en) * | 2014-02-03 | 2017-09-20 | Outokumpu Oyj | Duplex stainless steel |
CN114164373A (en) * | 2021-11-10 | 2022-03-11 | 中国兵器科学研究院宁波分院 | Nb microalloying duplex stainless steel and preparation method thereof |
US11932926B2 (en) | 2014-06-17 | 2024-03-19 | Outokumpu Oyj | Duplex ferritic austenitic stainless steel composition |
-
1990
- 1990-02-02 JP JP2491490A patent/JP2952929B2/en not_active Expired - Lifetime
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132741A (en) * | 1991-11-11 | 1993-05-28 | Sumitomo Metal Ind Ltd | High strength duplex stainless steel excellent in corrosion resistance |
JPH0681037A (en) * | 1992-08-31 | 1994-03-22 | Sumitomo Metal Ind Ltd | Production of hot rolled strip of dual phase stainless steel |
JPH0841600A (en) * | 1994-05-21 | 1996-02-13 | Yong Soo Park | Corrosion-resistant duplex stainless steel |
JPH0813093A (en) * | 1994-07-04 | 1996-01-16 | Nippon Yakin Kogyo Co Ltd | Superplastic duplex stainless steel small in deformation resistance and excellent in elongating property |
WO1996018751A1 (en) * | 1994-12-16 | 1996-06-20 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel excellent in corrosion resistance |
US5672215A (en) * | 1994-12-16 | 1997-09-30 | Sumitomo Metal Industries, Ltd. | Duplex stainless steel excellent in corrosion resistance |
KR100417520B1 (en) * | 1999-12-14 | 2004-02-05 | 주식회사 포스코 | Reheating method for tungsten containing duplex stainless steel |
US8043446B2 (en) | 2001-04-27 | 2011-10-25 | Research Institute Of Industrial Science And Technology | High manganese duplex stainless steel having superior hot workabilities and method manufacturing thereof |
KR100444248B1 (en) * | 2001-04-27 | 2004-08-16 | 한국산업기술평가원 | High manganese duplex stainless steel having superior hot workabilities and method for manufacturing thereof |
KR100694312B1 (en) * | 2005-12-19 | 2007-03-14 | 포스코신기술연구조합 | A high ni duplex stainless steel improving hot-workability for welding rod |
EP1995341A4 (en) * | 2007-03-26 | 2010-03-10 | Sumitomo Metal Ind | Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion |
EP1995341A1 (en) * | 2007-03-26 | 2008-11-26 | Sumitomo Metal Industries Limited | Oil well pipe for expansion in well and two-phase stainless steel for use as oil well pipe for expansion |
JP2013199679A (en) * | 2012-03-26 | 2013-10-03 | Nippon Steel & Sumikin Stainless Steel Corp | Stainless steel having excellent corrosion resistance to high temperature lactic acid and method for using the same |
EP3102714A4 (en) * | 2014-02-03 | 2017-09-20 | Outokumpu Oyj | Duplex stainless steel |
US11692253B2 (en) | 2014-02-03 | 2023-07-04 | Outokumpu Oyj | Duplex stainless steel |
US11932926B2 (en) | 2014-06-17 | 2024-03-19 | Outokumpu Oyj | Duplex ferritic austenitic stainless steel composition |
CN114164373A (en) * | 2021-11-10 | 2022-03-11 | 中国兵器科学研究院宁波分院 | Nb microalloying duplex stainless steel and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2952929B2 (en) | 1999-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102365376B (en) | Method for producing seamless steel pipe | |
US10287645B2 (en) | Method for producing high-strength steel material excellent in sulfide stress cracking resistance | |
US8617462B2 (en) | Steel for oil well pipe excellent in sulfide stress cracking resistance | |
JP3116156B2 (en) | Method for producing steel pipe with excellent corrosion resistance and weldability | |
CN101437973B (en) | Martensitic stainless seamless steel pipe for oil well pipe, and method for producing the same | |
JP5097017B2 (en) | Manufacturing method of high Cr ferritic heat resistant steel | |
JP5640762B2 (en) | High strength martensitic stainless steel seamless pipe for oil wells | |
JP2952929B2 (en) | Duplex stainless steel and method for producing the same | |
JP2018035381A (en) | Production method of stainless steel tube | |
JP2861024B2 (en) | Martensitic stainless steel for oil well and its production method | |
JP3241263B2 (en) | Manufacturing method of high strength duplex stainless steel pipe | |
JP3328967B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JPS6067623A (en) | Preparation of high strength low carbon seamless steel pipe by direct hardening method | |
JP2814528B2 (en) | Martensitic stainless steel for oil well and its production method | |
JPH09202921A (en) | Production of wire for cold forging | |
JP7498416B1 (en) | Cr-Ni alloy tube | |
JPH07110970B2 (en) | Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking | |
JP2002348610A (en) | Method for manufacturing martensitic stainless steel tube | |
JPS62120430A (en) | Manufacture of ultra-high-strength steel pipe | |
JPH01123029A (en) | Production of seamless stainless steel pipe | |
JP2580407B2 (en) | Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance | |
JPS63241117A (en) | Manufacture of seamless stainless steel tube | |
JPS613832A (en) | Manufacture of austenitic material | |
JPH01123028A (en) | Production of seamless stainless steel pipe | |
JPH1161267A (en) | Manufacture of high chromium martensitic seamless steel tube for line pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 11 |