JPH0318016A - Vapor growth apparatus for iii-v compound semiconductor crystal - Google Patents
Vapor growth apparatus for iii-v compound semiconductor crystalInfo
- Publication number
- JPH0318016A JPH0318016A JP15256189A JP15256189A JPH0318016A JP H0318016 A JPH0318016 A JP H0318016A JP 15256189 A JP15256189 A JP 15256189A JP 15256189 A JP15256189 A JP 15256189A JP H0318016 A JPH0318016 A JP H0318016A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- gas
- group iii
- iii
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 32
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 150000001875 compounds Chemical class 0.000 title claims description 13
- 239000002994 raw material Substances 0.000 claims abstract description 24
- 238000001947 vapour-phase growth Methods 0.000 claims description 11
- -1 alkyl compound Chemical class 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 150000004678 hydrides Chemical class 0.000 claims description 2
- 229910021478 group 5 element Inorganic materials 0.000 claims 1
- 238000004868 gas analysis Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 2
- 230000005587 bubbling Effects 0.000 description 2
- 238000002109 crystal growth method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、m−v族化合物半導体の結晶を気相成長させ
る装置に関する.
〔従来の技術〕
微細な構造をもつ半導体レーザ素子などに用いる化合物
半導体の結晶を作製するに当たり、エビタキシアル結晶
成長は、極めて重要な過程の一つである.エビタキシア
ル結晶成長方法には、気相成長法.液相威長法および分
子線エビタキシー法などが用いられているが、気相成長
法は気相成長層の厚さ、不純物添加によるキャリア濃度
,もしくは組成などの制御が、比較的容易に可能である
などの長所をもっているために、GaAsやInP等の
二元素■−v族化合物半導体結晶はもとより、三元素も
しくは四元素化合物半導体の結晶成長法として、広く普
及している.
第2図は、一般的な例えばGaAs結晶の気相成長装置
を模式的な系統図として示したものである.第2図にお
いて、■族液体原料であるアルキル化合物のトリメチル
ガリウム (以下TMGとする)1を収納するバプラー
2は、温度制御された恒温N3の中で、図示してないボ
ンベから送られるH,輸送ガスによってTMCIをパブ
リングし、これをガスボンベ4に入っているV族原料と
なる水素化物であるアルシン(AiHi)ガス5,H8
稀釈ガスと共に、エアバルブ6を開いて反応容器7に供
給する.それぞれのガス流量は流量調節計8. 9.
10により制御している.反応容器7内には、結晶基板
11をサセプタ−12上に載置してあり、反応容器7の
外周に設けた高周波(RF)コイルl3により結晶成長
温度を調節できるようにしてある.反応容器7に送られ
てきた原料ガスは、反応容器7内の基板結晶ll上、ま
たはその近傍において化合反応を起こし、結晶基板11
上にエビタキシアル成長ずる.余剰のガスはエアバルブ
14を通って外部に放出させる.
以上の過程を通して、エビタキシアル結晶層の厚さと&
l1戒については、■族の原料であるTMGlの供給量
に強く依存しているため、輸送ガス量,蒸気圧,パブリ
ング圧力などを流量調節計8,恒温層3.図示してない
圧力調節針などを用いてこれを制御している.
〔発明が解決しようとする課題〕
しかしながら、気相威長法でm−v族化合物半導体の結
晶威長を行うとき、なお次のような問題がある.
それは゜、アルキル化合物の供給量を、以上のようにし
て制御しても、原料の減少が引き起こすバブラー2の液
面高さの低下による原料供給量の減少,もしくは各種調
節針の制御精度から生ずる原料供給量の変動等による結
晶成長層の厚さや、組威の短期または長期に亘る変動を
避けることができず、このことは、化合物半導体結晶を
量産する装置としては好ましくないということである.
本発明は、上述の点に鑑みてなされたものであり、その
目的は、原料ガスの流量を確実に制御して、原料ガスの
供給量を再現性よく定めることにより、桔晶成長層の厚
奈や&l或を、常に安定な状態に維持することが可能な
気相成長装直を提供することにある.
〔課題を解決するための手段〕
上記の111111を解決するために、本発明のm−v
族化合物半導体の気相威長装置は、この装置系に用いて
いる■族原料ガスの流量調節計と反応容器の間に接続し
、■族原料の流量を一定に保つフィードバック可能な、
アンプと分析装置からなる経路を有するものである.
〔作用〕
本発明装置を上記の如く構威したことにより、反応容器
に送られるガスを、バルブ操作により分析計で随時サン
プリングして&Il威分析し、その結果を■族原料ガス
の流量調節計に直ちにフィードバックすることが可能で
あるから、常に■族原料ガスの供給量が一定に保たれて
変動することなく、結晶成長層の厚さ.m威などを再現
性よく所定の値に制御することができる.
〔実施例〕
以下、本発明を実施例に基づき説明する.第1図は、本
発明のm−v族化合物半導体の気相威長装置を、各構威
部と共に示した系統図であり、第2図と共通する部分を
同一符号で表わしてある.第1図が第2図と異なる所は
、本発明の装直では、流量調節計8と反応容器7の間に
設けた、アンプ15,質量分析計16により、ガス分析
結果を流量調節計8にフィードバックすることが可能な
経路をもっていることである.
次に、第1図の装置を用いて、例えばGa^3結晶を気
相成長させる手順について述べる.恒温層3によって温
度が−8℃に保たれているTMG 1をバブルするH8
ガスの流量を約15cc/分,アルシンガス5の流量を
350cc/分,稀釈Itガス流量を41/分とし、ま
た基板結晶1lの温度を700℃に設定し、GaA’a
の結晶成長を行なうが、・結晶成長前にエアバルブ14
.6をそれぞれ開,閉の状態にした後、流量調節計8の
流量設定値を15.0cc/分としてTMG lをバプ
リングし、・質量分析計16に属するエアバルブ17を
開け、所定量のガスをサンプリングする.そして質量分
析計16でTMG lの濃度を測定し、設定値通りのT
MG 1の供給量が得られるように、アンプ10を介し
て流量調節計8にフィードバックすることにより、TM
G 1の流量の真値を決定する.この後結晶成長過程に
入るが、このときバルブ操作は前と逆になり、エアバル
ブl4,6はそれぞれ閉,開の状態とする.ここで、バ
ブラー2の底面からのTMG 1の液面高さを100m
,50mとしたとき、それぞれTMClの流量が一定と
2るように流量調節計8にフィードバンクした本発明装
置の場合と、これをしない従来装置の場合との比較につ
いて、各装置で得られるGaAsの結晶威長速度を求め
た結果を第1表に示す.何れも流1t)1節計8の設定
値は15.0cc/分とした.
第1表
第1表から、TMG 1の流量を一定に制御するフィー
ドバック可能な本発明装置ではGaAsの結晶成長速度
は、TMG 1の液面高さに依存することなく、ほぼ一
定の値を保っていることがわかる.以上のことから、T
MG 1の液面高さが減少することは、パブリングによ
るTMG 1の輸送量の減少を意味するものであり、原
料としてTMG 1を使用するときは、微少ではあるが
GaAsの結晶威長連度が徐々に低下し、これに伴いエ
ビタキシアル成長層の厚さも徐々に減少して行くことが
わかる.このような点からも、本発明装置によるフィー
ドバック作用が有効であるのは明らかである.ここでは
、例としてTMG 1の液面高さの変化が、GaAsの
結晶成長速度に与える影響を示したが、三元素または四
元素など■族元素が多元素となるAj G,IA3系+
InGaAsP系, InGaAjP系などその他の
混晶化合物半導体においても、結晶成長速度の変動のみ
ならず、組戒変化などの問題があり、これらに対しても
本発明の装置を使用するのが効果的である.また■族元
素の原料液面高さとは別の原料供給量の変動要因に対し
ても、本発明装置が有効に働くことは勿論である.
〔発明の効果〕
Iff−V族化合物半導体の気相成長装置は、従来、種
々の原因で生ずる■族元素の原料供給量の変動により、
得られるエビタキシアル成長層の厚さや&ll或が不安
定であったが本発明では、実施例で述べた如く、装置系
に■族原料の供給量を一定に保9ことが可能な経路を付
加したことにより、エビタキシアル威長層の厚さや組威
を、再現性よく所定の値に制御することができる.DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for vapor phase growth of crystals of m-v group compound semiconductors. [Prior Art] Ebitaxial crystal growth is one of the extremely important processes in producing compound semiconductor crystals used in semiconductor laser devices with fine structures. The epitaxial crystal growth method is the vapor phase growth method. The liquid phase growth method and the molecular beam epitaxy method are used, but with the vapor phase growth method, it is relatively easy to control the thickness of the vapor growth layer, the carrier concentration by adding impurities, or the composition. Because of these advantages, it has become widely used as a crystal growth method not only for two-element ■-V group compound semiconductor crystals such as GaAs and InP, but also for three-element or four-element compound semiconductor crystals. FIG. 2 is a schematic system diagram of a typical vapor phase growth apparatus for, for example, GaAs crystal. In FIG. 2, a bubbler 2 houses trimethyl gallium (hereinafter referred to as TMG) 1, an alkyl compound, which is a group II liquid raw material. TMCI is bubbled using the transport gas, and then arsine (AiHi) gas 5, H8, which is a hydride that becomes the group V raw material, is contained in gas cylinder 4.
The diluting gas is supplied to the reaction vessel 7 by opening the air valve 6. Each gas flow rate is determined by a flow rate controller 8. 9.
It is controlled by 10. Inside the reaction vessel 7, a crystal substrate 11 is placed on a susceptor 12, and the crystal growth temperature can be adjusted by a radio frequency (RF) coil l3 provided around the outer periphery of the reaction vessel 7. The raw material gas sent to the reaction vessel 7 causes a combination reaction on or near the substrate crystal 11 in the reaction vessel 7, and the crystal substrate 11
Ebitaxial growth on top. Excess gas is discharged to the outside through the air valve 14. Through the above process, the thickness of the epitaxial crystal layer and
As for the l1 precept, it is strongly dependent on the supply amount of TMGl, which is the raw material of group Ⅰ, so the amount of transport gas, vapor pressure, bubbling pressure, etc. are controlled by flow rate controller 8, constant temperature layer 3. This is controlled using a pressure adjustment needle (not shown). [Problems to be Solved by the Invention] However, when crystal lengthening of an m-v group compound semiconductor is performed using the vapor phase lengthening method, the following problems still occur. Even if the supply amount of the alkyl compound is controlled in the above manner, the amount of raw material supplied may decrease due to a drop in the liquid level of the bubbler 2 caused by a decrease in the amount of raw material, or it may occur due to the control accuracy of various adjustment needles. Short-term or long-term fluctuations in the thickness of the crystal growth layer and the strength of the crystal growth layer due to fluctuations in the amount of raw material supplied cannot be avoided, and this is undesirable as an apparatus for mass-producing compound semiconductor crystals.
The present invention has been made in view of the above points, and an object thereof is to reliably control the flow rate of the raw material gas and determine the supply amount of the raw material gas with good reproducibility, thereby increasing the thickness of the crystal growth layer. The purpose of this invention is to provide a vapor phase growth modification that can always maintain a stable state. [Means for Solving the Problem] In order to solve the above-mentioned problem 111111, m-v of the present invention
The gas phase lengthening device for group compound semiconductors is connected between the flow rate controller of the group II raw material gas used in this device system and the reaction vessel, and is capable of feedback to keep the flow rate of the group III raw material constant.
It has a path consisting of an amplifier and an analyzer. [Function] By arranging the apparatus of the present invention as described above, the gas sent to the reaction vessel is sampled at any time by the analyzer by operating the valve, and analyzed by the analyzer, and the results are sent to the flow rate controller for the group material gas. Since it is possible to immediately feed back the amount of Group I raw material gas, it is always kept constant and does not fluctuate, and the thickness of the crystal growth layer can be adjusted. It is possible to control parameters such as power to predetermined values with good reproducibility. [Examples] The present invention will be explained below based on Examples. FIG. 1 is a system diagram showing the vapor phase lengthening device for m-v group compound semiconductors of the present invention together with each component, and parts common to those in FIG. 2 are indicated by the same symbols. The difference between FIG. 1 and FIG. 2 is that in the reinstallation of the present invention, an amplifier 15 and a mass spectrometer 16 provided between the flow rate controller 8 and the reaction vessel 7 transmit the gas analysis results to the flow rate controller 8. It is important to have a route through which feedback can be provided. Next, the procedure for vapor phase growth of, for example, Ga^3 crystal using the apparatus shown in Fig. 1 will be described. H8 bubbles TMG 1 whose temperature is kept at -8℃ by constant temperature layer 3
GaA'a
However, before the crystal growth, the air valve 14 is
.. 6 are opened and closed, respectively, the flow rate setting value of the flow rate controller 8 is set to 15.0 cc/min, and TMG l is bubbled.・The air valve 17 belonging to the mass spectrometer 16 is opened, and a predetermined amount of gas is introduced. Sample. Then, the concentration of TMG 1 is measured using the mass spectrometer 16, and T
By feeding back to the flow rate controller 8 via the amplifier 10 so that the supply amount of MG1 is obtained,
Determine the true value of the flow rate of G1. After this, the crystal growth process begins, but at this time the valve operation is reversed and the air valves 14 and 6 are closed and opened, respectively. Here, the liquid level height of TMG 1 from the bottom of bubbler 2 is 100 m.
, 50 m, the GaAs obtained with each device is compared between the device of the present invention in which the flow rate controller 8 is fed with a feedbank so that the flow rate of TMCl is constant, and the conventional device in which this is not done. Table 1 shows the results of determining the crystal growth speed of . In both cases, the flow rate was 1t) The setting value for the 1st meter 8 was 15.0cc/min. Table 1 From Table 1, it can be seen that in the device of the present invention capable of feedback that controls the flow rate of TMG 1 at a constant level, the crystal growth rate of GaAs maintains an almost constant value without depending on the liquid level height of TMG 1. It can be seen that From the above, T
A decrease in the liquid level height of MG 1 means a decrease in the transport amount of TMG 1 due to bubbling, and when TMG 1 is used as a raw material, the GaAs crystal length chain is It can be seen that the thickness of the epitaxial growth layer gradually decreases along with this. From this point of view as well, it is clear that the feedback effect provided by the device of the present invention is effective. Here, as an example, we have shown the influence of changes in the liquid level height of TMG 1 on the crystal growth rate of GaAs.
Other mixed crystal compound semiconductors such as InGaAsP and InGaAjP systems also have problems such as fluctuations in crystal growth rate and changes in composition, and the use of the device of the present invention is effective for these problems as well. be. In addition, it goes without saying that the apparatus of the present invention works effectively against fluctuation factors in the raw material supply amount other than the raw material liquid level of group (I) elements. [Effects of the Invention] Conventionally, vapor phase growth equipment for Iff-V group compound semiconductors has been used for
Although the thickness of the obtained epitaxial growth layer was unstable, in the present invention, as described in the examples, a path was added to the equipment system that could keep the supply amount of the group (III) raw material constant9. By doing this, the thickness and strength of the ebitaxial stratum can be controlled to predetermined values with good reproducibility.
第1図は、本発明の気相成長装置を各構威部と共に示し
た系統図、第2図+.1、従来の気相成長装置を各構戒
部と共に示した系統図である.1 :TMG,2 :バ
ブラー 3:恒八層、4:ガスボンベ、5:アルシンガ
ス、6.14.17 :エアバルブ、7:反応容器、
a,9,to:流f調節計、1l二基板結晶、12:サ
セブター、l3:高周波コイル、15:アンプ、l6:
質量分析計.第1図
第2図FIG. 1 is a system diagram showing the vapor phase growth apparatus of the present invention together with each component, and FIG. 1. It is a system diagram showing a conventional vapor phase growth apparatus along with each structural part. 1: TMG, 2: Bubbler 3: Tsunehachi layer, 4: Gas cylinder, 5: Arsine gas, 6.14.17: Air valve, 7: Reaction vessel,
a, 9, to: flow f controller, 1l two-substrate crystal, 12: susceptor, l3: high frequency coil, 15: amplifier, l6:
Mass spectrometer. Figure 1 Figure 2
Claims (1)
節したIII族元素のアルキル化合物原料とV族元素の水
素化物原料を輸送ガスによって供給し、前記基板結晶の
上にIII−V族化合物半導体を気相成長させる装置であ
って、この装置系の前記アルキル化合物原料の流量調節
計と前記反応容器との間に接続したアンプと前記アルキ
ル化合物の濃度を測定する質量分析計とからなる、前記
アルキル化合物原料の供給量を一定とするフィードバッ
ク可能な経路を有することを特徴とするIII−V族化合
物半導体結晶の気相成長装置。1) A group III element alkyl compound raw material and a group V element hydride raw material, whose flow rates are adjusted respectively, are supplied by a transport gas into a reaction vessel in which a substrate crystal is placed, and the III-V group compound is placed on the substrate crystal. An apparatus for vapor phase growth of a semiconductor, comprising an amplifier connected between a flow rate controller for the alkyl compound raw material of this apparatus system and the reaction vessel, and a mass spectrometer for measuring the concentration of the alkyl compound. A vapor phase growth apparatus for III-V compound semiconductor crystal, characterized in that it has a feedback path that keeps the supply amount of the alkyl compound raw material constant.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15256189A JPH0318016A (en) | 1989-06-15 | 1989-06-15 | Vapor growth apparatus for iii-v compound semiconductor crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15256189A JPH0318016A (en) | 1989-06-15 | 1989-06-15 | Vapor growth apparatus for iii-v compound semiconductor crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0318016A true JPH0318016A (en) | 1991-01-25 |
Family
ID=15543170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15256189A Pending JPH0318016A (en) | 1989-06-15 | 1989-06-15 | Vapor growth apparatus for iii-v compound semiconductor crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0318016A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5401316A (en) * | 1992-10-15 | 1995-03-28 | Tokyo Electron Limited | Method and apparatus for hydrophobic treatment |
WO2003021649A1 (en) * | 2001-08-31 | 2003-03-13 | Kabushiki Kaisha Toshiba | Apparatus and method for producing semiconductor device, and method for cleaning semiconductor producing apparatus |
JP2006222133A (en) * | 2005-02-08 | 2006-08-24 | Hitachi Cable Ltd | Method of supplying material gas, and apparatus thereof |
-
1989
- 1989-06-15 JP JP15256189A patent/JPH0318016A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5401316A (en) * | 1992-10-15 | 1995-03-28 | Tokyo Electron Limited | Method and apparatus for hydrophobic treatment |
WO2003021649A1 (en) * | 2001-08-31 | 2003-03-13 | Kabushiki Kaisha Toshiba | Apparatus and method for producing semiconductor device, and method for cleaning semiconductor producing apparatus |
US6946304B2 (en) | 2001-08-31 | 2005-09-20 | Kabushiki Kaisha Toshiba | Apparatus for and method of manufacturing a semiconductor device, and cleaning method for use in the apparatus for manufacturing a semiconductor device |
US7195930B2 (en) | 2001-08-31 | 2007-03-27 | Kabushiki Kaisha Toshiba | Cleaning method for use in an apparatus for manufacturing a semiconductor device |
CN100380591C (en) * | 2001-08-31 | 2008-04-09 | 株式会社东芝 | Manufacturing apparatus and method for a semiconductor device, and cleaning method for a semiconductor manufacturing device |
JP2006222133A (en) * | 2005-02-08 | 2006-08-24 | Hitachi Cable Ltd | Method of supplying material gas, and apparatus thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4911101A (en) | Metal organic molecular beam epitaxy (MOMBE) apparatus | |
US4783343A (en) | Method for supplying metal organic gas and an apparatus for realizing same | |
US4980204A (en) | Metal organic chemical vapor deposition method with controlled gas flow rate | |
US5483919A (en) | Atomic layer epitaxy method and apparatus | |
JP2006222133A (en) | Method of supplying material gas, and apparatus thereof | |
JPH0318016A (en) | Vapor growth apparatus for iii-v compound semiconductor crystal | |
JPH0963965A (en) | Organic metal feeding device and organic metal vapor growth device | |
US4407694A (en) | Multi-range doping of epitaxial III-V layers from a single source | |
JPH0699230B2 (en) | Metalorganic pyrolysis vapor phase growth equipment | |
US5098857A (en) | Method of making semi-insulating gallium arsenide by oxygen doping in metal-organic vapor phase epitaxy | |
KR920009652B1 (en) | Compound semiconductor manufacturing apparatus | |
JPH0510317B2 (en) | ||
US5296088A (en) | Compound semiconductor crystal growing method | |
EP0212910A2 (en) | Method and apparatus for the chemical vapour deposition of III-V semiconductors utilizing organometallic and elemental pnictide sources | |
JPH06314659A (en) | Crystal growing method for gallium nitride compound semiconductor film | |
WO2005052222A1 (en) | Growth of dilute nitride compounds | |
JPS6272116A (en) | Doping method | |
JPH04233725A (en) | Manufacture of dilute gas | |
JPH01261818A (en) | Method of vapor growth of high-resistance algaas mixed crystal | |
JPH08288226A (en) | Metal organic vapor growth apparatus | |
JP3381587B2 (en) | Method for manufacturing compound semiconductor wafer | |
JPS63319292A (en) | Crystal growth device by vapor-phase thermal decomposition | |
JPH0196922A (en) | Semiconductor manufacture equipment | |
JPS60133721A (en) | Vapor growth method for semiconductor | |
JPH0594949A (en) | Semiconductor vapor growth device |