JPH03166803A - Microstrip antenna for separately feeding two-frequency circular polarized wave - Google Patents

Microstrip antenna for separately feeding two-frequency circular polarized wave

Info

Publication number
JPH03166803A
JPH03166803A JP30725889A JP30725889A JPH03166803A JP H03166803 A JPH03166803 A JP H03166803A JP 30725889 A JP30725889 A JP 30725889A JP 30725889 A JP30725889 A JP 30725889A JP H03166803 A JPH03166803 A JP H03166803A
Authority
JP
Japan
Prior art keywords
conductors
conductor
short
radiation
microstrip antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30725889A
Other languages
Japanese (ja)
Inventor
Kazunori Takeuchi
和則 竹内
Masayuki Yasunaga
安永 正幸
Takayasu Shiokawa
塩川 孝泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP30725889A priority Critical patent/JPH03166803A/en
Priority to CA 2030886 priority patent/CA2030886C/en
Priority to GB9025672A priority patent/GB2238665B/en
Publication of JPH03166803A publication Critical patent/JPH03166803A/en
Priority to US07/906,030 priority patent/US5173711A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/42Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To reduce the size and weight and facilitate the manufacture and to transmit and receive two circular polarized waves at the same time by arranging two different-size one-side short-circuited microstrip antennas in pairs, i.e., four antennas in total on the same plane. CONSTITUTION:Four radiation conductors 111-114 are provided on a dielectric plate 15 and short-circuited to a ground conductor 14 by short-circuiting conductors 121-124. Feed points 131-134 of the respective radiation conductors are fed from behind. The conductors 111 and 112 are of the same size and has their resonance frequency is adjusted to a transmission frequency, and the conductors 113 and 114 are of the same size and have their resonance frequency is adjusted to a reception frequency. The conductors 111 and 113 are therefore different in size. Further, signals fed to the conductors 111 and 112 in in-phase relation at the time of transmitting are put together by the conductors 111 and 112 into a circular polarized wave, and the constitution of the conductors 113 and 114 for receiving the circular polarized wave is provided for the reception.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種無線通信に用いられる、二周波分離給電
円偏波川マイクロストリップアンテナに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a two-frequency separated feed circularly polarized river microstrip antenna used in various wireless communications.

(従来技術) マイクロストリップアンテナは、使用される波長に比べ
て十分に薄い平面構造であり、かつ軽量であることから
各種通信用アンテナとして用途が広い。また、これを複
数個用いたフェーズドアレイアンテナの形をとることで
、各素子に接続された位相器の位相量を制御して電気的
に電波のビームを変えることができるようになる。この
ようにして製作されたフェーズドアレイアンテナは、薄
形、小型、軽量の特徴があり移動体通信用等に適用が3
1J]待されている。
(Prior Art) A microstrip antenna has a planar structure that is sufficiently thin compared to the wavelength used, and is lightweight, so it has a wide range of uses as an antenna for various communications. Furthermore, by forming a phased array antenna using a plurality of these antennas, it becomes possible to electrically change the radio wave beam by controlling the phase amount of the phase shifter connected to each element. The phased array antenna manufactured in this way has the characteristics of being thin, small, and lightweight, making it suitable for applications such as mobile communications.
1J] I am waiting.

このような、マイクロストリップアンテナはよく知られ
ているように狭帯域である。たとえば、アンテナとして
実用に供せられると考えられる基準である電圧定在波比
を2以下とすると、それを満足するマイクロストリンブ
アンテナの帯域幅は、誘電体板の特性にもよるが、中心
周波数に対して高々数%である。従って、送信周波数及
び受信周波数がこの帯域幅を超えている通信には、通常
のマイクロストリップアンテナは使用できないこととな
る。これを解決するため、種々の構成のマイクロストリ
ップアンテナが提案されている。
As is well known, such a microstrip antenna has a narrow band. For example, if the voltage standing wave ratio is 2 or less, which is a standard that is considered to be practically usable as an antenna, the bandwidth of a microstrinbu antenna that satisfies this standard will depend on the characteristics of the dielectric plate, but It is at most a few percent of the frequency. Therefore, a normal microstrip antenna cannot be used for communications where the transmission frequency and reception frequency exceed this bandwidth. To solve this problem, microstrip antennas with various configurations have been proposed.

第5図は広帯域化を図った従来のマイクロストリップア
ンテナの構成例であり、同図(a)は平面図、同図(b
)は同図(a)のB−B ’における側面図をそれぞれ
示す。図において、5】は放射導体、52は無給電の放
射導体、53及び53′は給電点、54は接地導体、5
5は誘電体、56は給電線である。給電点53は接地導
体54に設けられたコネクタを用いて給電され給電線5
6へ接続されている。この構成例では、放射導体51及
び無給電の放射導体52の大きさを調整することにより
送信周波数帯又は受信周波数帯で共振するアンテナが得
られる。
Figure 5 shows an example of the configuration of a conventional microstrip antenna designed to widen the band.
) shows a side view taken along line BB' in FIG. In the figure, 5] is a radiation conductor, 52 is a parasitic radiation conductor, 53 and 53' are feeding points, 54 is a ground conductor, 5
5 is a dielectric, and 56 is a power supply line. The feed point 53 is fed with power using a connector provided on the ground conductor 54 and connected to the feed line 5.
Connected to 6. In this configuration example, by adjusting the sizes of the radiation conductor 51 and the parasitic radiation conductor 52, an antenna that resonates in the transmission frequency band or the reception frequency band can be obtained.

第8図は、第5図に示したマイクロストリップアンテナ
を用いた従来のフェーズドアレイアンテナの構戒図であ
る。図において、81は各アンテナ素子、82は円偏波
合威用の方向性結合器、83は位相制′4lU器、84
は電力分配器、85はグイブレクサ、86は送信装置、
87は受信装置、88は擬似負荷である。位相制御器8
3で位相を各アンテナ素子81ごとに変化させることに
より、ビームの方向を電気的に制御することができる。
FIG. 8 is a configuration diagram of a conventional phased array antenna using the microstrip antenna shown in FIG. In the figure, 81 is each antenna element, 82 is a directional coupler for combining circularly polarized waves, 83 is a phase control unit, and 84 is a directional coupler for combining circularly polarized waves.
85 is a power divider, 86 is a transmitting device,
87 is a receiving device, and 88 is a pseudo load. Phase controller 8
By changing the phase for each antenna element 81 in step 3, the direction of the beam can be electrically controlled.

また、第6図は従来の送受信同時使用可能な別の構成例
であり、同図(a)は平面図、同図(b)は側面図であ
る。図において、61は円環マイクロストリップアンテ
ナ(受信用放射導体)、62は円形のマイクロストリッ
プアンテナ(送信用放射導体)であり、両アンテナは背
面より各々独立に給電される。この構成では円環マイク
ロストリップアンテナ61とマイクロストリップアンテ
ナ62が受信および送信周波数帯域でそれぞれ共振する
こととなる。
Further, FIG. 6 shows another example of a conventional configuration capable of simultaneous transmission and reception, in which FIG. 6(a) is a plan view and FIG. 6(b) is a side view. In the figure, 61 is an annular microstrip antenna (receiving radiation conductor), 62 is a circular microstrip antenna (transmission radiation conductor), and both antennas are independently fed with power from the back side. In this configuration, the annular microstrip antenna 61 and the microstrip antenna 62 resonate in the reception and transmission frequency bands, respectively.

一方、移動体通信において通常用いられる円偏波アンテ
ナは上述した第5図や第6図のように2点で給電するこ
とで実現することができるが、第7図に示すような1つ
の給電点で円偏波を発生する一点給電円偏波アンテナも
従来から良く知られている。第7図において、放射導体
71の上に凸部72を付加することにより、ただ1つの
給電点73のみで円偏波のアンテナとして機能する。
On the other hand, circularly polarized antennas commonly used in mobile communications can be realized by feeding power at two points as shown in Figures 5 and 6 above, but they can be realized by feeding power at two points as shown in Figure 7. A point-fed circularly polarized antenna that generates circularly polarized waves at a point is also well known. In FIG. 7, by adding a convex portion 72 on a radiation conductor 71, only one feeding point 73 functions as a circularly polarized antenna.

(発明が解決しようとする課題) 上記従来技術を用いてフェーズドアレイアンテナを構成
しようとする場合、まず、第5図に示した、広帯域化マ
イクロストリップアンテナや二共振型マイクロストリッ
プアンテナは設計や構造が複雑であるという問題点があ
った。
(Problems to be Solved by the Invention) When attempting to configure a phased array antenna using the above-mentioned conventional technology, first, the broadband microstrip antenna and dual-resonance microstrip antenna shown in FIG. The problem was that it was complicated.

加えて、第8図に示すように、送信と受信で給電部分を
共用しており、送受の位相を同一の位相制御器83で制
御するため周波数の違いから送信と受信のビームが一致
しないという問題点や、位相制御器83と送信装置86
及び受信装置87の間に送信と受信の信号を分離するた
めのグイプレクサ85が不可欠であり、給電部が大型に
なってしまうという問題点があった。
In addition, as shown in Fig. 8, since the power supply part is shared between transmitting and receiving, and the transmitting and receiving phases are controlled by the same phase controller 83, the transmitting and receiving beams do not match due to the difference in frequency. Problems, phase controller 83 and transmitter 86
A guiplexer 85 for separating transmitting and receiving signals is essential between the receiving device 87 and the receiving device 87, and there is a problem that the power feeding section becomes large.

次に、第6図に示した円環マイクロストリップアンテナ
と円形のマイクロストリンプアンテナを上下2層に重ね
合わせたものは、送信給電点63と受信給電点67が電
気的に十分に分離されておりダイプレクサないしサーキ
ュレータは必要がない。しかし、2Nであるため1層構
造のものに比べ構造は複雑であって重量が増加し、多く
の製作過程と高い工作精度を要するという問題点があっ
た。
Next, the structure in which the annular microstrip antenna and the circular microstrip antenna shown in FIG. No diplexer or circulator is required. However, since it is made of 2N, the structure is more complex and heavier than that of a single layer structure, and there are problems in that it requires many manufacturing steps and high precision machining.

また、第7図の一点給電円偏波アンテナは通常のマイク
ロストリップアンテナに比べてもさらに狭帯域であり、
また軸比が周波数に対して依存性をもつことから、広帯
域通信用アンテナとしては不適当である。
Furthermore, the single-point fed circularly polarized antenna shown in Figure 7 has a narrower band than a normal microstrip antenna.
Furthermore, since the axial ratio has dependence on frequency, it is unsuitable as an antenna for wideband communication.

本発明は、上述した従来技術の問題点を解決するために
なされたもので、小型で製作が容易でかつ二周波分離の
マイクロストリップアンテナを提供することを目的とす
る。
The present invention was made to solve the problems of the prior art described above, and an object of the present invention is to provide a microstrip antenna that is small, easy to manufacture, and can separate two frequencies.

(課題を解決するための手段) 本発明の特徴は、以上のような問題点を解決するもので
あって、接地導体上に配置された誘電体板上に四個の放
射導体が配置され、該四個の放射導体のおのおのの周縁
の一部が対応する短絡導体により該接地導体に短絡され
るとともに、前記接地導体と該誘電体板とを貫通して前
記放射導体のそれぞれの給電点に給電されるように構成
されるとともに、 前記四個の放射導体は、所望の2種の周波数の電波を、
1波を送信用として別の1波を受信用として、同時に使
用できるように調整された2種類の大きさの異なる放射
導体を各々2個ずつ、円偏波を発生できるように配列さ
れた構成を有することを特徴とするものである。
(Means for Solving the Problems) A feature of the present invention is to solve the above-mentioned problems, and is characterized in that four radiating conductors are arranged on a dielectric plate arranged on a ground conductor, A portion of the periphery of each of the four radiating conductors is short-circuited to the grounding conductor by a corresponding shorting conductor, and passing through the grounding conductor and the dielectric plate to the respective feeding points of the radiating conductor. The four radiation conductors transmit radio waves of two desired frequencies.
A configuration in which two radiation conductors of two different sizes are arranged so that they can generate circularly polarized waves, each of which is adjusted so that one wave can be used for transmission and the other wave can be used for reception. It is characterized by having the following.

(実施例1) 第1図は本発明による第1の実施例である。ここでは一
辺を短絡した長方形のマイクロストリップアンテナを例
として示す。第1図(a)は平面図、同図(b)は(a
)図のA−A ’を切口とした断面図である。図におい
て、誘電体板15の上に4枚の放射導体111〜114
を設け、各放射導体を短絡導体121〜124で接地導
体14と短絡する。131〜134は各放射導体111
〜114の給電点であり背面から給電される。放射導体
111及び112は同一の大きさであり共振周波数を送
信周波数に合わせてあり、放射導体113及び114は
同一の大きさであり共振周波数を受信周波数に合わせて
ある。従って、放射導体111及び113は相異なる大
きさとなっている。
(Example 1) FIG. 1 shows a first example according to the present invention. Here, a rectangular microstrip antenna with one side short-circuited is shown as an example. Figure 1 (a) is a plan view, and Figure 1 (b) is (a
) is a cross-sectional view taken along line AA' in the figure. In the figure, four radiation conductors 111 to 114 are placed on a dielectric plate 15.
are provided, and each radiation conductor is short-circuited to the ground conductor 14 by short-circuit conductors 121 to 124. 131 to 134 are each radiation conductor 111
~114 power supply points, and power is supplied from the back. Radiation conductors 111 and 112 have the same size and have their resonant frequencies matched to the transmission frequency, and radiation conductors 113 and 114 have the same size and have their resonant frequencies matched to the reception frequency. Therefore, the radiation conductors 111 and 113 have different sizes.

また、送信について、同相で放射導体111及び112
に給電された信号は、放射導体111及び112により
円偏波に合威されるが、一般にこれは使用周波数の半波
長以内で構成しなければならないことが知られている。
Regarding transmission, the radiation conductors 111 and 112 are in the same phase.
The signals fed to the antenna are combined into a circularly polarized wave by the radiation conductors 111 and 112, and it is generally known that this must be within a half wavelength of the frequency used.

受信についてもアンテナの可逆性から同様であり、円偏
波を受信するための放射導体113及び114から構成
されている。送信用の放射導体111.112と受信用
の放射導体113,114とは互いに干渉しないように
配置されている。これらの条件を満足するように、放射
導体111,112,113.114が第1図のように
配置されており、個々の放射導体について各給電点を通
るその短絡導体に対する直交面(例えば111について
A−A’面)により誘電体5上に矩形又は正方形が形威
される。
The same applies to reception due to the reversibility of the antenna, and it is composed of radiation conductors 113 and 114 for receiving circularly polarized waves. The transmitting radiation conductors 111 and 112 and the receiving radiation conductors 113 and 114 are arranged so as not to interfere with each other. In order to satisfy these conditions, the radiating conductors 111, 112, 113, and 114 are arranged as shown in FIG. A rectangular or square shape is formed on the dielectric 5 by the A-A' plane).

なお、送信・受信に必要な帯域幅に放射導体1l1〜1
14の大きさを制限することにより、送信受信間の結合
は通信に支障がないようにすることができる。給電点1
31及び132は接地導体14の背面から給電線を経て
方向性結合器を介して送信装置へ接続される。放射導体
111及び112は各々互いに直交する直線偏波を発生
するので、第4図(a)の構成で示すように、方向性結
合器で給電する位相を90度ずらして給電することによ
り円偏波を合或することができる。右旋、左旋の偏波は
方向性結合器の接続方向により選択する。
In addition, the radiation conductor 1l1~1 is used for the bandwidth required for transmission and reception.
By limiting the size of 14, the coupling between transmitting and receiving can be ensured without interfering with communication. Feeding point 1
31 and 132 are connected from the back side of the ground conductor 14 to the transmitter via a feeder line and a directional coupler. Since the radiation conductors 111 and 112 each generate linearly polarized waves orthogonal to each other, as shown in the configuration of FIG. Waves can be combined. Right-handed or left-handed polarization is selected depending on the connection direction of the directional coupler.

受信も同じ原理で方向性結合器を介すことにより円偏波
を受信する。また、このアンテナを第4図(b)のよう
に複数個並べてフエーズドプレイアンテナとしたものは
、放射特性が広角にわたり、またグイプレクサ、サーキ
ュレークは不要であり、送信受信のビームの不一致も生
じないものとなる。
For reception, circularly polarized waves are received using the same principle through a directional coupler. In addition, when multiple antennas are arranged to form a phased play antenna as shown in Figure 4(b), the radiation characteristics cover a wide angle, and there is no need for a guiplexer or circular rake, and there is no mismatch between the transmitting and receiving beams. It becomes something that does not exist.

なお、本発明で用いる一辺短絡マイクロストリップアン
テナに関しては、既に提案されており(昭和58年度電
子通信学会総合全国大会講演論文集分冊3・昭和58年
3月5日発行・発行所電子通信学会・羽石他「片側短絡
形マイクロストリップアンテナの放射特性について」7
43ページ等)、通常のマイクロストリップアンテナに
比べ必要とする放射導体の大きさを約二分の一に縮小で
き、これにより小型化が可能になる。
Note that the one-sided short-circuited microstrip antenna used in the present invention has already been proposed (IEICE 1988 Comprehensive National Conference Lecture Proceedings Volume 3, Published March 5, 1980, Published by: Institute of Electronics and Communication Engineers, Haneishi et al. “On the radiation characteristics of short-circuited microstrip antenna on one side” 7
(page 43, etc.), the size of the required radiation conductor can be reduced to about half compared to a normal microstrip antenna, thereby making it possible to downsize.

(実施例2) 第2図は本発明の第二の実施例を示す構成図である。長
方形の一辺短絡マイクロストリップ放射導体211〜2
14と接地導体24の間に、短絡導体221〜224と
は別に、短絡手段として短絡導体281〜284を設け
たものである。短絡ピン以外にも短絡板、半田、電解メ
ッキでもよい。
(Embodiment 2) FIG. 2 is a block diagram showing a second embodiment of the present invention. Rectangular one-side short-circuited microstrip radiation conductor 211-2
In addition to the shorting conductors 221 to 224, shorting conductors 281 to 284 are provided as shorting means between the shorting conductor 14 and the grounding conductor 24. In addition to the shorting pin, a shorting plate, solder, or electrolytic plating may be used.

短絡ピンを設けることによりインピーダンス整合のよい
マイクロストリップアンテナを容易に実現することがで
きる。また、相互結合の影響がある場合は軸比の劣化を
招くことがあるが、この短絡ピンを設けることにより位
相の矯正が可能であり、良好な軸比をもつマイクロスト
リップアンテナを得ることができる。
By providing a shorting pin, a microstrip antenna with good impedance matching can be easily realized. Also, if there is an effect of mutual coupling, the axial ratio may deteriorate, but by providing this shorting pin, it is possible to correct the phase, and it is possible to obtain a microstrip antenna with a good axial ratio. .

(実施例3) 第3図(a)は、実施例1の場合の放射導体を円の一部
を切り落とした形状としたものであるが、このような形
状の放射導体に対しても本発明は有効である。
(Example 3) FIG. 3(a) shows the radiation conductor in Example 1 in a shape where a part of the circle is cut off, but the present invention can also be applied to a radiation conductor with such a shape. is valid.

(実施例4) 第3図(b)は、実施例3に短絡手段として短絡ピン3
81〜384を設けたものである。このような構成であ
っても、本発明は有効である。
(Embodiment 4) FIG. 3(b) shows a short circuit pin 3 as a short circuit means in Embodiment 3.
81 to 384 are provided. Even with such a configuration, the present invention is effective.

(発明の効果) 以上のように、本発明によれば、一辺短絡マイクロスト
リップアンテナの大きさの異なるもの2つずつ計4つを
呵一平面上に並べることにより、小型、軽量かつ製作の
容易な、同時に2つの周波数の円偏波を送信・受信でき
るマイクロストリップアンテナを実現することができる
(Effects of the Invention) As described above, according to the present invention, by arranging a total of four short-circuited microstrip antennas, two of which have different sizes, on one plane, the antennas are small, lightweight, and easy to manufacture. Furthermore, it is possible to realize a microstrip antenna that can transmit and receive circularly polarized waves of two frequencies at the same time.

さらに、これをフエーズドアレイアンテナの1素子とし
て用いることにより小型で、放射特性が広角な二周波分
離給電型円偏波用アンテナを、同一平面状に実現するこ
とができる。
Furthermore, by using this as one element of a phased array antenna, it is possible to realize a small-sized, two-frequency separated feeding type circularly polarized wave antenna with wide-angle radiation characteristics on the same plane.

なお、このマイクロストリップアンテナの短絡辺を電解
メッキ等で形或することにより、本発明は従来のプリン
ト基板製造工程の中で容易に製作することができるもの
である。
By forming the short-circuited side of the microstrip antenna by electrolytic plating or the like, the present invention can be easily manufactured in the conventional printed circuit board manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)(b)は本発明の一実施例を示す平面図及
びA−A ′を切口とした断面図、第2図、第3図(a
)及び第3図(b)はこの発明の他の実施例を示す平面
図、第4図(a)は第l図、第2図、第3図(a)もし
くは第3図(b)で示された本発明による二周波分離給
電円偏波用マイクロストリップアンテナに送信装置及び
受信装置を接続した場合の構成図、第4図(b)は第1
図、第2図、第3図(a)もしくは第3図(b)で示さ
れた本発明による二周波分離給電円偏波用マイクロスト
リップアンテナを素子としたフエーズドアレイアンテナ
の構造図、第5図(a)(b)は従来の広帯域化を図っ
た円偏波用マイクロストリップアンテナを示す平面図及
びB−B ”を切口とした断面図、第6図(a)(b)
は従来の二周波分離給電円偏波用マイクロストリップア
ンテナを示す平面図及びc−c ’を切口とした断面図
、第7図(a)(b)は従来の一点給電円偏波用マイク
ロストリップアンテナの平面図及びD−D ’を切口と
した断面図、第8図は第3図で示された従来の広帯域円
偏波用マイクロストリップアンテナを素子としたフェー
ズドアレイアンテナの構造図である。 111〜114・・・放射導体、 121〜124・・
・短絡導体、  131〜134・・・給電点、14・
・・接地導体、  15・・・誘電体、  181〜1
84・・・短絡ピン、 211〜214・・・放射導体
、 221〜224・・・短絡導体、 231〜234
・・・給電点、 24・・・接地導体、 25・・・誘
電体、 281〜284・・・短絡導体、311〜31
4・・・放射導体、 32T・・・送信側方向性結合器
、 32R・・・受信側方向性結合器、361〜364
・・・給電線、 41・・・アンテナ素子、 42・・
・方向性結合器、 43・・・位相制御器、 44a・
・・電力合或器、 44b・・・電力分配器、 46・
・・受信装置、 47・・・送信装置、411〜414
・・・放射導体、 420・・・受信側方向性結合器、
 421・・・送信側方向結合器、461〜464・・
・給電線、 51・・・放射導体、52・・・無給電の
放射導体、 53.53’・・・給電点、 54・・・
接地導体、 55・・・誘電体、56・・・給電線、 
61・・・受信用マイクロストリップアンテナの放射導
体、 62・・・送信用マイクロストリップアンテナの
放射導体、63・・・送信給電点、 64・・・接地導
体、 65・・・誘電体、66・・・送信用給電線、 
67・・・受信用給電点、68・・・受信用給電線、 
71・・・放射導体、72・・・凸部、 73・・・給
電点、 74・・・接地導体、 75・・・誘電体、 
76・・・給電線、 81・・・アンテナ素子、 82
・・・方向性結合器、83・・・位相制御器、 84・
・・電力合威分配器、85・・・ダイプレクサ、 86
・・・送信装置、87・・・受信装置、 88・・・擬
似負荷。 蛸 1 図 (Q) 蛸2図 ′443図 (b) 菌4図 (酌 蛸4(2)(b) 第5あ (肘で捧冫 vIG■ ¥17目 (絵業a) 蛸8図
FIGS. 1(a) and 3(b) are a plan view showing one embodiment of the present invention, a sectional view taken along line A-A', FIGS.
) and FIG. 3(b) are plan views showing other embodiments of the present invention, and FIG. 4(a) is a plan view showing another embodiment of the present invention. FIG. 4(b) is a configuration diagram when a transmitting device and a receiving device are connected to the two-frequency separated feeding circularly polarized wave microstrip antenna according to the present invention.
2, 3(a) or 3(b), a structural diagram of a phased array antenna using the two-frequency separated feeding circularly polarized microstrip antenna according to the present invention as an element. Figures 5(a) and (b) are a plan view and a cross-sectional view taken along line B-B'' of a conventional circularly polarized microstrip antenna designed to widen the band; Figures 6(a) and (b)
7(a) and 7(b) are a plan view and a cross-sectional view taken along c-c' of a conventional two-frequency separated feeding circularly polarized wave microstrip antenna, and FIGS. 7(a) and 7(b) are a conventional single point feeding circularly polarized wave microstrip antenna. FIG. 8 is a plan view of the antenna, a cross-sectional view taken along line D-D', and a structural diagram of a phased array antenna using the conventional broadband circularly polarized microstrip antenna shown in FIG. 3 as an element. 111-114... Radiation conductor, 121-124...
・Short-circuit conductor, 131-134... Feeding point, 14・
...Grounding conductor, 15...Dielectric material, 181-1
84... Shorting pin, 211-214... Radiation conductor, 221-224... Shorting conductor, 231-234
... Feeding point, 24... Grounding conductor, 25... Dielectric, 281-284... Shorting conductor, 311-31
4... Radiation conductor, 32T... Transmission side directional coupler, 32R... Receiving side directional coupler, 361 to 364
...Feeding line, 41...Antenna element, 42...
・Directional coupler, 43...phase controller, 44a・
...Power combiner, 44b...Power divider, 46.
...Receiving device, 47... Transmitting device, 411 to 414
... Radiation conductor, 420 ... Receiving side directional coupler,
421...Transmission side directional coupler, 461-464...
・Feeding line, 51... Radiation conductor, 52... Parasitic radiation conductor, 53.53'... Feeding point, 54...
Grounding conductor, 55... dielectric, 56... power supply line,
61... Radiation conductor of the receiving microstrip antenna, 62... Radiation conductor of the transmitting microstrip antenna, 63... Transmission feed point, 64... Ground conductor, 65... Dielectric material, 66...・・Transmission feeder line,
67... Reception power supply point, 68... Reception power supply line,
71... Radiation conductor, 72... Convex portion, 73... Feeding point, 74... Grounding conductor, 75... Dielectric material,
76... Feeding line, 81... Antenna element, 82
... directional coupler, 83 ... phase controller, 84.
...Power distributor, 85...Diplexer, 86
... Transmitting device, 87... Receiving device, 88... Pseudo load. Octopus 1 figure (Q) Octopus 2 figure '443 figure (b) Bacteria figure 4 (cup octopus 4 (2) (b)) 5th A (offering with the elbow vIG ■ ¥17 (illustration a) Octopus figure 8

Claims (4)

【特許請求の範囲】[Claims] (1)接地導体上に配置された誘電体板上に四個の放射
導体が配置され、該四個の放射導体のおのおのの周縁の
一部が対応する短絡導体により該接地導体に短絡される
とともに、前記接地導体と該誘電体板とを貫通して前記
放射導体のそれぞれの給電点に給電されるように構成さ
れるとともに、前記四個の放射導体は、所望の2種の周
波数の電波を、1波を送信用として別の1波を受信用と
して、同時に使用できるように調整された2種類の大き
さの異なる放射導体を各々2個ずつ、円偏波を発生でき
るように配列された構成を有することを特徴とする二周
波分離給電円偏波用マイクロストリップアンテナ。
(1) Four radiating conductors are placed on a dielectric plate placed on a grounding conductor, and a portion of the periphery of each of the four radiating conductors is short-circuited to the grounding conductor by a corresponding shorting conductor. In addition, the four radiation conductors are configured to pass through the ground conductor and the dielectric plate to be supplied with power to the respective feed points of the radiation conductors, and the four radiation conductors transmit radio waves of two desired frequencies. Two radiating conductors of two different sizes are arranged so that they can generate circularly polarized waves, and are arranged so that one wave can be used for transmitting and the other wave can be used for receiving at the same time. What is claimed is: 1. A microstrip antenna for circularly polarized wave feeding with dual frequency separation, characterized in that the antenna has a configuration in which:
(2)前記四個の放射導体のおのおのは、前記短絡導体
により短絡されている前記放射導体の一部に隣接する他
の一部と前記接地導体とを前記短絡導体とは異なる位置
で短絡する短絡手段を備えたことを特徴とする特許請求
の範囲第1項記載の二周波分離給電円偏波用マイクロス
トリップアンテナ。
(2) Each of the four radiation conductors short-circuits the ground conductor and another part adjacent to the part of the radiation conductor short-circuited by the short-circuit conductor at a position different from the short-circuit conductor. A microstrip antenna for two-frequency separated feeding circularly polarized wave according to claim 1, characterized in that the antenna is provided with a short-circuiting means.
(3)前記短絡手段として一本もしくは複数の短絡ピン
で構成されていることを特徴とする特許請求の範囲第2
項記載の二周波分離給電円偏波用マイクロストリップア
ンテナ。
(3) Claim 2, characterized in that the shorting means is composed of one or more shorting pins.
A microstrip antenna for dual-frequency separated feeding circularly polarized waves as described in 2.
(4)前記短絡手段が放射導体と接地導体との間に設け
られた複数の貫通穴に半田もしくは電解めっきを施して
構成されることを特徴とする特許請求の範囲第2項記載
の二周波分離給電円偏波用マイクロストリップアンテナ
(4) The dual frequency circuit according to claim 2, wherein the short circuit means is constructed by applying solder or electrolytic plating to a plurality of through holes provided between the radiation conductor and the ground conductor. Microstrip antenna for separately fed circularly polarized waves.
JP30725889A 1989-11-27 1989-11-27 Microstrip antenna for separately feeding two-frequency circular polarized wave Pending JPH03166803A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP30725889A JPH03166803A (en) 1989-11-27 1989-11-27 Microstrip antenna for separately feeding two-frequency circular polarized wave
CA 2030886 CA2030886C (en) 1989-11-27 1990-11-26 Microstrip antenna of two-frequency separate-feeding type for circularly polarized waves
GB9025672A GB2238665B (en) 1989-11-27 1990-11-26 Microstrip antenna of two frequency separate-feeding type for circularly polarized waves
US07/906,030 US5173711A (en) 1989-11-27 1992-06-26 Microstrip antenna for two-frequency separate-feeding type for circularly polarized waves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30725889A JPH03166803A (en) 1989-11-27 1989-11-27 Microstrip antenna for separately feeding two-frequency circular polarized wave

Publications (1)

Publication Number Publication Date
JPH03166803A true JPH03166803A (en) 1991-07-18

Family

ID=17966941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30725889A Pending JPH03166803A (en) 1989-11-27 1989-11-27 Microstrip antenna for separately feeding two-frequency circular polarized wave

Country Status (3)

Country Link
JP (1) JPH03166803A (en)
CA (1) CA2030886C (en)
GB (1) GB2238665B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177615A (en) * 1992-12-08 1994-06-24 Denki Kogyo Co Ltd Microwave power distributing circuit
JPH11312923A (en) * 1998-02-24 1999-11-09 Murata Mfg Co Ltd Antenna system and radio to device using the same
JP2003332840A (en) * 2002-05-13 2003-11-21 Toshiba Corp Antenna device and radio equipment the same
JP2004289332A (en) * 2003-03-20 2004-10-14 Clarion Co Ltd Planar antenna
JP2005278220A (en) * 2005-05-20 2005-10-06 Fec Inc Antenna element for mobile communication terminal
JP2005539415A (en) * 2002-07-15 2005-12-22 カトライン−ベルケ・カーゲー Low structural dual frequency band or multiple frequency band antenna especially for automobiles
JP2008141273A (en) * 2006-11-30 2008-06-19 Japan Radio Co Ltd 2-frequency double crossed polarization slotted waveguide array antenna and double crossed polarization communication system
JP2009088625A (en) * 2007-09-27 2009-04-23 Dx Antenna Co Ltd Antenna
JP2011120240A (en) * 2009-11-30 2011-06-16 Korea Electronics Telecommun Circularly polarized antenna in wireless communication system and method for manufacturing the same
JP2014027417A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna
JP2014027418A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna device
JP2016226056A (en) * 2016-10-04 2016-12-28 株式会社デンソーウェーブ Antenna device
JP2018074345A (en) * 2016-10-28 2018-05-10 株式会社デンソーウェーブ antenna
JP2020108028A (en) * 2018-12-27 2020-07-09 アルパイン株式会社 Antenna device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4135828A1 (en) * 1991-10-30 1993-05-06 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V., 5300 Bonn, De ANTENNA ARRANGEMENT
JPH08510622A (en) * 1994-03-08 1996-11-05 セテルコ セルラー テレフォーン カンパニー アー/エス Handy transmitter / receiver
CA2164669C (en) 1994-12-28 2000-01-18 Martin Victor Schneider Multi-branch miniature patch antenna having polarization and share diversity
JPH11239020A (en) * 1997-04-18 1999-08-31 Murata Mfg Co Ltd Circular polarizing antenna and radio device using same
US6314275B1 (en) 1997-08-19 2001-11-06 Telit Mobile Terminals, S.P.A. Hand-held transmitting and/or receiving apparatus
GB2385467B (en) * 2002-02-19 2005-09-14 Harada Ind Integrated vehicular antenna system with selectable feedline positioning
EP1622221A1 (en) * 2004-02-11 2006-02-01 Sony Deutschland GmbH Circular polarised array antenna
EP1564843A1 (en) * 2004-02-11 2005-08-17 Sony International (Europe) GmbH Circular polarised array antenna
EP2159878A1 (en) * 2008-08-28 2010-03-03 ERA Technology Limited Stacked patch antenna array
CN103975485B (en) 2013-12-02 2015-11-25 广东通宇通讯股份有限公司 Antenna for base station feeding network

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2198290B (en) * 1986-11-29 1990-05-09 Stc Plc Dual band circularly polarised antenna with hemispherical coverage
GB2229319B (en) * 1989-01-20 1993-10-20 Antenna Products Ltd Antenna

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06177615A (en) * 1992-12-08 1994-06-24 Denki Kogyo Co Ltd Microwave power distributing circuit
JPH11312923A (en) * 1998-02-24 1999-11-09 Murata Mfg Co Ltd Antenna system and radio to device using the same
JP2003332840A (en) * 2002-05-13 2003-11-21 Toshiba Corp Antenna device and radio equipment the same
JP2005539415A (en) * 2002-07-15 2005-12-22 カトライン−ベルケ・カーゲー Low structural dual frequency band or multiple frequency band antenna especially for automobiles
JP2004289332A (en) * 2003-03-20 2004-10-14 Clarion Co Ltd Planar antenna
JP2005278220A (en) * 2005-05-20 2005-10-06 Fec Inc Antenna element for mobile communication terminal
JP2008141273A (en) * 2006-11-30 2008-06-19 Japan Radio Co Ltd 2-frequency double crossed polarization slotted waveguide array antenna and double crossed polarization communication system
JP2009088625A (en) * 2007-09-27 2009-04-23 Dx Antenna Co Ltd Antenna
JP2011120240A (en) * 2009-11-30 2011-06-16 Korea Electronics Telecommun Circularly polarized antenna in wireless communication system and method for manufacturing the same
JP2014027417A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna
JP2014027418A (en) * 2012-07-25 2014-02-06 Denso Wave Inc Antenna device
JP2016226056A (en) * 2016-10-04 2016-12-28 株式会社デンソーウェーブ Antenna device
JP2018074345A (en) * 2016-10-28 2018-05-10 株式会社デンソーウェーブ antenna
JP2020108028A (en) * 2018-12-27 2020-07-09 アルパイン株式会社 Antenna device

Also Published As

Publication number Publication date
CA2030886C (en) 1998-04-14
CA2030886A1 (en) 1991-05-28
GB2238665A (en) 1991-06-05
GB9025672D0 (en) 1991-01-09
GB2238665B (en) 1993-12-22

Similar Documents

Publication Publication Date Title
JPH03166803A (en) Microstrip antenna for separately feeding two-frequency circular polarized wave
US5173711A (en) Microstrip antenna for two-frequency separate-feeding type for circularly polarized waves
US4978965A (en) Broadband dual-polarized frameless radiating element
US5835063A (en) Monopole wideband antenna in uniplanar printed circuit technology, and transmission and/or recreption device incorporating such an antenna
US3971032A (en) Dual frequency microstrip antenna structure
EP2201646B1 (en) Dual polarized low profile antenna
US20090140943A1 (en) Slot antenna for mm-wave signals
US10148009B2 (en) Sparse phase-mode planar feed for circular arrays
US10727555B2 (en) Multi-filtenna system
US10978812B2 (en) Single layer shared aperture dual band antenna
US6335710B1 (en) Tuneable spiral antenna
CN110289483A (en) Dual-band dual-circular polarization navigation TT&C antenna feed
US20190089057A1 (en) Concentric, co-located and interleaved dual band antenna array
US20220384951A1 (en) Multiband resonator element for making filters, polarizers and frequency-selective surfaces
JP3167342B2 (en) Transmitting and receiving circularly polarized antenna
WO2016113779A1 (en) Dual-band inverted-f antenna with multiple wave traps for wireless electronic devices
CN112688057B (en) Broadband circularly polarized microstrip antenna based on crossed dipole
JP2004221964A (en) Antenna module
US20240063547A1 (en) Enhanced antenna module and antenna array for wireless communication systems
JP3181326B2 (en) Microstrip and array antennas
KR100618653B1 (en) Circular Polarized Microstrip Patch Antenna for Transmitting/Receiving and Array Antenna Arraying it for Sequential Rotation Feeding
JP3292487B2 (en) Array antenna
TWI831286B (en) Satellite communication antenna module
JPH02105704A (en) Circularly polarized wave micro-strip antenna
Ghosh et al. Advancing 5G Connectivity: Design and Analysis of a 4 x 4 Butler Matrix Integrated MM-wave Beam-steerable Antenna Array