JPH03121064A - Robot for operation - Google Patents
Robot for operationInfo
- Publication number
- JPH03121064A JPH03121064A JP1257907A JP25790789A JPH03121064A JP H03121064 A JPH03121064 A JP H03121064A JP 1257907 A JP1257907 A JP 1257907A JP 25790789 A JP25790789 A JP 25790789A JP H03121064 A JPH03121064 A JP H03121064A
- Authority
- JP
- Japan
- Prior art keywords
- link
- biopsy needle
- jig
- axis
- needle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001574 biopsy Methods 0.000 abstract description 41
- 230000010355 oscillation Effects 0.000 abstract 1
- 238000001356 surgical procedure Methods 0.000 description 20
- 230000003902 lesion Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 16
- 210000004556 brain Anatomy 0.000 description 15
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 210000003625 skull Anatomy 0.000 description 7
- 238000000034 method Methods 0.000 description 3
- 208000003174 Brain Neoplasms Diseases 0.000 description 2
- 230000001936 parietal effect Effects 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 210000001835 viscera Anatomy 0.000 description 2
- FMFKNGWZEQOWNK-UHFFFAOYSA-N 1-butoxypropan-2-yl 2-(2,4,5-trichlorophenoxy)propanoate Chemical compound CCCCOCC(C)OC(=O)C(C)OC1=CC(Cl)=C(Cl)C=C1Cl FMFKNGWZEQOWNK-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 230000009278 visceral effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B2010/0208—Biopsy devices with actuators, e.g. with triggered spring mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
- A61B2090/506—Supports for surgical instruments, e.g. articulated arms using a parallelogram linkage, e.g. panthograph
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/70—Manipulators specially adapted for use in surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
Landscapes
- Surgical Instruments (AREA)
- Manipulator (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、定位脳手術、耳の鍋牛殻への電極埋込み手術
、深さを制御した背骨の切削手術、内蔵手術等に使用す
る医療機器に係わり、特に術中のX線CT画像情報を得
なからCTガントリー内で生検あるいは手術を行うのに
適した手術用ロボットに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to medical applications such as stereotactic brain surgery, implantation of electrodes into the ear pot and cow's shell, depth-controlled spinal cutting surgery, and visceral surgery. The present invention relates to equipment, and particularly to a surgical robot suitable for performing a biopsy or surgery within a CT gantry without obtaining intraoperative X-ray CT image information.
〔従来の技術及び発明が解決しようとする課題]従来、
脳神経外科医療において、脳血管障害や脳腫瘍等の治療
あるいは生検(バイオプシー)等を行うために定位脳手
術が行われている。この定位脳手術は、脳がほとんど動
かない臓器であることから、脳の病変部位をX線CT等
で確認した後、頭蓋を固定した状態で針状の治具を病変
部位に到達させて治療を行うようにしたものである。[Prior art and problems to be solved by the invention] Conventionally,
In neurosurgical medicine, stereotactic brain surgery is performed to treat cerebrovascular disorders, brain tumors, etc., or perform biopsies. Since the brain is an organ that hardly moves, this stereotaxic brain surgery is performed by confirming the lesion site in the brain using X-ray CT, etc., and then using a needle-like jig to reach the lesion site while the skull is fixed. It was designed to do this.
例えば、生検とは腫瘍組織等の一部を採取して病理組織
学的検査をすることであり、一般に、原点(マーカ)が
設定されている固定リングに頭部を固定し、X線CTで
得られる画像情報に基づいて原点を基準にした病変部位
の3次元座標を求めて頭蓋に直径10胴程度の小孔を開
け、バイオプシー針を支持する定位脳手術装置を固定リ
ングに接続してバイオプシー針の方向を定位脳手術装置
に固定し、手動により、病変部位の位置座標から求めた
深さだけバイオプシー針を小孔から刺入して組織片の採
取が行われる。For example, a biopsy is the collection of a portion of tumor tissue, etc., for histopathological examination. Generally, the head is fixed to a fixation ring with an origin (marker) set, and X-ray CT Based on the image information obtained, the three-dimensional coordinates of the lesion site with respect to the origin are determined, a small hole with a diameter of about 10 cm is made in the skull, and a stereotactic neurosurgical device that supports the biopsy needle is connected to the fixation ring. The direction of the biopsy needle is fixed to the stereotactic neurosurgery device, and the biopsy needle is manually inserted through the small hole to a depth determined from the positional coordinates of the lesion site to collect a tissue piece.
しかしながら、上記のような方法では、病変部位の位置
はX線CTによって正確に計測できるにしても、実際に
バイオプシー針を刺入しているときは脳内の状態を直接
知ることができないため、術者への負担が大きくなると
いう問題がある。However, with the above method, even though the location of the lesion site can be accurately measured using X-ray CT, it is not possible to directly know the state inside the brain when the biopsy needle is actually inserted. There is a problem that the burden on the operator increases.
これに対し、X線C7画像情報を得ながら定位脳手術を
行って術中に脳内の状態を知ることができれば、−回の
刺入で病変部位まで正確に到達させることが容易になる
など、正確で適切な処置を行うことができる。また、脳
腫瘍の除去術などでは、術中に脳内の状態を知ることが
必要とされている。On the other hand, if stereotaxic brain surgery can be performed while obtaining X-ray C7 image information and the state inside the brain can be known during the surgery, it will be easier to accurately reach the lesion site with -1 insertion. Able to perform accurate and appropriate treatment. Furthermore, in procedures such as brain tumor removal, it is necessary to know the state of the brain during the procedure.
しかしながら、従来の定位脳手術装置は手動でバイオプ
シー針などを操作するようになっているため、術者への
X線の弊害を考慮すると術中にX線C7画像情報を得る
ことができなかった。However, since conventional stereotactic neurosurgery devices manually operate the biopsy needle, etc., it has not been possible to obtain X-ray C7 image information during surgery, considering the harmful effects of X-rays on the operator.
このため、CTガントリー内でバイオプシー針等を自動
操作してX線C7画像を得ながら定位脳手術を行なえる
ような装置が要求されている。Therefore, there is a need for an apparatus that can perform stereotactic brain surgery while automatically operating a biopsy needle or the like within a CT gantry to obtain an X-ray C7 image.
また、バイオプシー針を通す小孔を開ける位置は、脳内
組織等を考慮して最も安全な経路でできるだけ短距離で
病変部位まで到達できるように、術者の判断によって決
められるため、自動操作できるようにするためには、バ
イオプシー針を症例に合わせた自由な方向に設定できる
ようにする必要がある。In addition, the position of making the small hole through which the biopsy needle is inserted is determined by the operator's judgment in order to take the safest route to the lesion site in the shortest possible distance, taking into account the brain tissue, etc., so it can be operated automatically. In order to do this, it is necessary to be able to set the biopsy needle in any direction that suits the case.
本発明は、特にX線C7画像情報を得ながら定位脳手術
ができるように、CTガントリー内でバイオプシー針等
を自動操作できる手術用ロボットを提供することを課題
とする。An object of the present invention is to provide a surgical robot that can automatically operate a biopsy needle and the like within a CT gantry so that stereotactic brain surgery can be performed while obtaining X-ray C7 image information.
上記の課題を解決するためになした本発明の手術用ロボ
ットは、従節の先端部が一点を中心にして円弧軌道を描
くリンク機構と、このリンク機構を回動軸回りに回動す
る回動機構と、針状の治具をその軸方向に往復移動させ
る治具送り機構と、前記従節の先端部に取り付けられる
とともに上記治具の軸方向を前記円弧軌道の中心を含む
予め決められた角度範囲になるように前記治具送り機構
を回動させる首振り機構とを備えてなることを特徴とす
る。The surgical robot of the present invention, which was made to solve the above problems, has a link mechanism in which the distal end of a follower draws an arcuate trajectory around one point, and a rotation mechanism that rotates this link mechanism around a rotation axis. a moving mechanism, a jig feeding mechanism that reciprocates a needle-shaped jig in its axial direction, and a jig feeding mechanism that is attached to the tip of the follower and that moves the jig's axial direction in a predetermined direction including the center of the arcuate trajectory. and an oscillating mechanism that rotates the jig feeding mechanism so that the jig feeding mechanism is within a certain angular range.
本発明の手術用ロボットにおいて、従節の先端部が一点
を中心にして円弧軌道を描くリンク機構は、回動機構に
よって回動されるので、このリンク機構の従節の先端部
は一点を中心にした仮想球面上を移動可能になる。また
、治具送り機構は、上記従節の先端部に取り付けられた
首振り機構によって、針状の治具の軸方向が仮想球面の
仮想中心を含む一定角度範囲内になるように回動される
。In the surgical robot of the present invention, the link mechanism in which the distal end of the follower draws an arcuate trajectory with one point as the center is rotated by the rotation mechanism, so the distal end of the follower of this link mechanism is centered on the one point. It becomes possible to move on the virtual spherical surface. In addition, the jig feeding mechanism is rotated by a swinging mechanism attached to the tip of the follower so that the axial direction of the needle-like jig is within a certain angle range including the virtual center of the virtual spherical surface. Ru.
このため、針状の治具は、治具送り機構によって、仮想
中心を囲む仮想球面の任意の位置から仮想中心側に向け
て一定角度範囲内の角度を持って往復移動できるように
なる。Therefore, the needle-like jig can be reciprocated by the jig feeding mechanism from any position on the virtual spherical surface surrounding the virtual center toward the virtual center at an angle within a certain range of angles.
したがって、例えば、定位脳手術で頭蓋を固定する固定
装置などに対して予め決められた位置に当該手術用ロボ
ットを連結すると、治具送り機構に取り付けられた針状
の治具は、該固定装置に対して予め決められた頭蓋中心
などの仮想中心点から等距離の仮想球面上から一定範囲
の角度幅で仮想中心側に向けて往復移動できる。Therefore, for example, when the surgical robot is connected to a predetermined position with respect to a fixation device that fixes the cranium in stereotactic neurosurgery, the needle-shaped jig attached to the jig feeding mechanism It is possible to reciprocate toward the virtual center within a certain range of angles from a virtual spherical surface that is equidistant from a virtual center point such as the cranial center determined in advance.
(実施例)
第1図は本発明実施例の手術用ロボットを示す図であり
、例えば定位脳手術において、第8図に示したように頭
部を球面と仮定し、その外側に同心の仮想球面を設定し
て、この仮想球面上で例えばバイオプシー針を操作する
ようにしたものである。なお、第1図(b)は同図(a
)におけるA−A断面を示している。また、この装置は
、第5図に示したように頭頂部側の体軸上に配設され、
頭蓋を固定する図示しない固定装置などに対して予め決
められた位置に連結される。(Embodiment) FIG. 1 is a diagram showing a surgical robot according to an embodiment of the present invention. For example, in stereotactic brain surgery, the head is assumed to be a spherical surface as shown in FIG. 8, and a concentric virtual A spherical surface is set, and a biopsy needle, for example, is operated on this virtual spherical surface. Note that Figure 1(b) is similar to Figure 1(a).
) is shown. Moreover, this device is arranged on the body axis on the parietal side as shown in FIG.
It is connected at a predetermined position to a fixing device (not shown) that fixes the skull.
第1図において、1はリンク機構と回動機構を有する本
体部、2はバイオプシー針が装着された刺入部であり、
後述説明するように、刺入部2は本体部1によって所定
半径の仮想球面上を移動され、バイオプシー針は、刺入
部2によって上記仮想球面の半径方向に対して所定の角
度範囲内で軸方向が変化され、さらに、バイオプシー針
はその軸方向に平行移動される。In FIG. 1, 1 is a main body having a link mechanism and a rotation mechanism, 2 is an insertion part to which a biopsy needle is attached,
As will be explained later, the insertion part 2 is moved by the main body part 1 on a virtual spherical surface of a predetermined radius, and the biopsy needle is axially moved by the insertion part 2 within a predetermined angular range with respect to the radial direction of the virtual spherical surface. The direction is changed and the biopsy needle is also translated in its axial direction.
本体部1において、基盤11上に立設された軸受板12
1.12□には「コjの字状の回動テーブル13が軸支
され、この回動テーブル13は、固定部材11aによっ
て基盤11に固定されたステッピングモータ14の動力
軸14aに連結部材13aを介して連結されている。そ
して、ステッピングモータ14が駆動されると、回動テ
ーブル13は回動軸りを軸として回動される。例えば、
左右方向にそれぞれ90°つづ、すなわち、180°の
範囲で回動される。In the main body 1, a bearing plate 12 is installed upright on a base 11.
In 1.12□, a U-shaped rotating table 13 is pivotally supported. When the stepping motor 14 is driven, the rotation table 13 is rotated about the rotation axis.For example,
It is rotated in the left and right directions by 90 degrees each, that is, within a range of 180 degrees.
回動テーブル13上には、上記軸受板12112□の軸
と直交する方向を軸とする軸受15□、I5□が配設さ
れ、この軸受15..15□を固定支点A、Bとして駆
動されるリンク機構16が配設されている。Bearings 15□ and I5□ whose axes are perpendicular to the axis of the bearing plate 12112□ are arranged on the rotary table 13, and these bearings 15. .. A link mechanism 16 is provided which is driven using fixed fulcrums A and B at 15□.
リンク機構16は、5本のリンク161〜165および
軸受1.5..15□間の固定間隔によって、デュロン
機構と称する6節リンク機構を構成している。リンク1
61とリンク162はそれぞれ軸受15+ 、15z
によってそれぞれ支点A。The link mechanism 16 includes five links 161 to 165 and bearings 1.5. .. The fixed spacing of 15□ constitutes a six-bar linkage mechanism called a Duron mechanism. Link 1
61 and link 162 are bearings 15+ and 15z, respectively.
fulcrum A respectively.
Bで一端を軸支され、リンク161の自由端Cとリンク
162はリンク163によって連結されている。また、
リンク161 、1.63の連結点Cに一端を連結され
たリンク164の他端りとリンク162の自由端Eには
、従節となるリンク165が連結されている。そして、
リンク161には軸受15、で軸支されたウオームギア
17が固定されており、このウオームギア17は、回動
テーブル13に固定されたサーボモータ18の駆動によ
ってウオーム19を介して図の矢印■のように回転され
る。また、軸受け15..15□における各支点A、B
は、回動テーブル13の回動軸り上になるように設定さ
れている。The free end C of the link 161 and the link 162 are connected by a link 163. Also,
A follower link 165 is connected to the other end of the link 164 whose one end is connected to the connection point C of the links 161 and 1.63 and to the free end E of the link 162. and,
A worm gear 17 supported by a bearing 15 is fixed to the link 161, and the worm gear 17 is driven by a servo motor 18 fixed to the rotary table 13 through a worm 19 as shown by the arrow ■ in the figure. is rotated to Also, bearing 15. .. Each fulcrum A and B at 15□
is set to be on the rotation axis of the rotation table 13.
第3図はリンク機構の動作を説明する図であり、前記の
ようにウオームギア17が回転されるとリンク161は
回動され、リンク165の先端部Pは、回動テーブル1
3の回動軸り上の一点(仮想中心)0を中心として、回
動軸りを含む一定面内の円弧軌道上を移動する。FIG. 3 is a diagram illustrating the operation of the link mechanism. When the worm gear 17 is rotated as described above, the link 161 is rotated, and the tip P of the link 165 is connected to the rotary table 1.
The robot moves on a circular arc trajectory in a fixed plane including the rotation axis, centering on a point (virtual center) 0 on the rotation axis of No. 3.
一方、リンク機構16は、回動テーブル13とともに前
記ステッピングモータ14の駆動によって回動軸りを軸
として回動される。On the other hand, the link mechanism 16 is rotated about a rotation axis together with the rotation table 13 by the driving of the stepping motor 14 .
したがって、ステッピングモータ14とサーボモータ1
8との所定位置からの回転量を制御することにより、回
動輪り上の一点(仮想中心)を中心とする仮想球面内で
リンク165の先端部Pの位置を制御でき、例えば、回
動テーブル13を左右それぞれ90°の範囲で回動制御
すると、先端部Pを仮想球面の略A球面上の任意の位置
に移動させることができる。Therefore, the stepping motor 14 and the servo motor 1
By controlling the amount of rotation from a predetermined position with respect to the rotating table 8, the position of the tip P of the link 165 can be controlled within a virtual spherical surface centered on one point (virtual center) on the rotating wheel. By controlling the rotation of 13 within a range of 90 degrees to the left and right, the tip P can be moved to an arbitrary position on substantially the A-spherical surface of the virtual spherical surface.
第2図は刺入部2を示す図であり、この刺入部2はリン
ク165の先端部Pに取り付けられている。FIG. 2 is a diagram showing the insertion part 2, which is attached to the tip P of the link 165.
取付は板21は2木の腕部21 a+ 、 21 a
Zを先端部Pより先に出してリンク165に固定され、
腕部21 a+ + 2132にそれぞれ形成され軸
受片21b+ 、211)zによって矩形リング状の
第1回動枠22が軸ρ1で軸支されている。また、一方
の軸受片21a、には超音波モータ23が固定されてお
り、第1回動枠22は、超音波モータ23の駆動によっ
て回動軸で1回りに回動される。For installation, the board 21 has two wooden arms 21 a+ and 21 a.
It is fixed to the link 165 with Z coming out ahead of the tip P,
A rectangular ring-shaped first rotating frame 22 is pivotally supported on an axis ρ1 by bearing pieces 21b+ and 211)z formed on the arm portions 21a+ + 2132, respectively. Further, an ultrasonic motor 23 is fixed to one of the bearing pieces 21a, and the first rotation frame 22 is rotated around the rotation shaft by driving of the ultrasonic motor 23.
上記第1回動枠22内には、回動軸λ1と交11↑する
ように矩形リング状の第2回動枠24が配設されており
、この第2回動枠24は、第1回動枠22の回動軸lI
と直角な方向に対向する対辺22a、22bによって軸
支され、この対辺の一辺22aに固定された超音波モー
タ25の駆動によって、第1回動枠22に対して回動軸
12回りに回動される。A rectangular ring-shaped second rotation frame 24 is disposed within the first rotation frame 22 so as to intersect 11↑ with the rotation axis λ1. Rotation axis lI of rotation frame 22
The ultrasonic motor 25 is pivotally supported by opposite sides 22a and 22b facing in a direction perpendicular to the first rotation frame 22, and rotates around the rotation axis 12 with respect to the first rotation frame 22 by driving an ultrasonic motor 25 fixed to one side 22a of the opposite sides. be done.
第2回動枠24の回動軸I!、2 と直角な方向に対向
する対辺24a、24bの一辺24aには、この第2回
動枠24の外側に向けて回動軸j1!2と直角な方向に
2本の平行なガイドレール26..26□が取り付けら
れ、このガイドレール261 。Rotation axis I of the second rotation frame 24! . .. .. 26□ is attached to this guide rail 261.
26□の先端は固定板26aによって固定されている。The tip of 26□ is fixed by a fixing plate 26a.
また、第2回動枠24内にはDCコアレスモータ27が
配設され、ガイドレール26..26□と平行なボール
ネジ28が、第2回動枠24の一辺24aを貫通して一
端をDCCコアレスモーフ2フ動力軸に連結され、他端
を固定板26aで軸支されている。Further, a DC coreless motor 27 is disposed within the second rotation frame 24, and a guide rail 26. .. A ball screw 28 parallel to 26□ passes through one side 24a of the second rotating frame 24, has one end connected to the DCC coreless morph 2 power shaft, and has the other end pivotally supported by a fixed plate 26a.
ガイドレール26..26□には、溝部29a1.29
a2を嵌合したナツト部材29が摺動自在に配され、こ
のナツト部材29はボールネジ28に螺合されている。Guide rail 26. .. 26□ has a groove 29a1.29
A nut member 29 fitted with a2 is slidably arranged, and this nut member 29 is screwed onto the ball screw 28.
ナツト部材29上には、バイオプシー針3を取り付ける
ためのホルダ29bが固定され、このホルダ29bに取
り付けられたバイオプシー針3は、DCコアレスモータ
27とボールネジ28およびナツト部材29の送り機構
によって、図の矢印■のように針の軸方向に往復移動さ
れる。なお、第2回動枠24にはバイオプシー針3を通
すバイブ状のガイド24cが形成され、バイオプシー針
3は、このガイド24cによってガイドレール26..
26□およびポールネジ2日と常に平行になるように保
持される。A holder 29b for attaching the biopsy needle 3 is fixed on the nut member 29, and the biopsy needle 3 attached to the holder 29b is moved by the feeding mechanism of the DC coreless motor 27, the ball screw 28, and the nut member 29 as shown in the figure. The needle is reciprocated in the axial direction as shown by the arrow ■. A vibrator-shaped guide 24c through which the biopsy needle 3 is passed is formed in the second rotation frame 24, and the biopsy needle 3 is guided along the guide rail 26 by this guide 24c. ..
It is always held parallel to 26□ and pole screw 2.
上記のように、第1回動枠22の回動運動と第2回動枠
24の回動運動によって、バイオプシー針3の軸の方向
は、リンク165を基準にした座標系に対してリンク1
65の先端部Pを略中心にして予め設定された角度範囲
内で自由な方向に向けることができる。As described above, due to the rotational movement of the first rotational frame 22 and the rotational movement of the second rotational frame 24, the direction of the axis of the biopsy needle 3 is determined by the link 1 with respect to the coordinate system based on the link 165.
It can be oriented in any direction within a preset angular range with the tip P of 65 approximately at the center.
第4図はリンク165に対するバイオプシー針3の角度
範囲を説明する図であり、同図は簡単のために筒略化し
である。FIG. 4 is a diagram for explaining the angular range of the biopsy needle 3 with respect to the link 165, and the diagram is simplified for simplicity.
同図(a)はリンク165に対して側面から見た図であ
り、第1回動枠22が回動軸2.を軸に回動することに
よって、バイオプシー針3は先端が下げられ、このバイ
オプシー針3とリンク165の軸方向との角度は95°
まで変化できるようになっている。FIG. 5A is a side view of the link 165, in which the first rotation frame 22 is connected to the rotation shaft 2. By rotating around the axis, the tip of the biopsy needle 3 is lowered, and the angle between the biopsy needle 3 and the axial direction of the link 165 is 95°.
It is possible to change up to.
同図(b)はリンク165の先端部P側正面から見た図
であり、第1回動枠22が第2図の状態から90°回動
された状態を示し、第2回動枠24が回動軸2□を軸に
回動することによって、バイオプシー針3は先端を下に
向けて少なくとも左右45°の範囲で変化できるように
なっている。FIG. 2B is a front view of the tip end P side of the link 165, showing a state in which the first rotation frame 22 has been rotated 90 degrees from the state shown in FIG. By rotating around the rotation axis 2 □, the biopsy needle 3 can be moved with its tip facing downward within a range of at least 45 degrees left and right.
同図(C)はリンク165の上から見た図であり、第1
回動枠22が第2図の状態のときを示し、第2回動枠2
4は少なくとも左右に45°の範囲で変化できるように
なっている。(C) is a diagram seen from above the link 165, and the first
The rotating frame 22 is in the state shown in FIG. 2, and the second rotating frame 2
4 is designed to be able to change within a range of at least 45 degrees left and right.
ところで、定位脳手術のときバイオプシー針を侵入させ
る小孔は、一般に病変部位の位置が頭蓋外表面から30
皿程度までの場合には病変部位置上の最短距離になる位
置に開けられるが、病変部位が深部の場合は脳内の血管
や神経等を考慮してバイオプシー針等の侵入路が決めら
れるため、小孔は一般に最短距離の位置とは限らず、第
7図に示したように、頭蓋表面Sを球面と仮定した場合
の中心0から病変部位Xを通る半径方向Rを中心にして
、病変部位Xからの立体が略90°になる範囲内で開け
られる。By the way, the small hole through which the biopsy needle is inserted during stereotactic neurosurgery is generally located 30 minutes from the external surface of the skull where the lesion is located.
If the biopsy is up to the size of a dish, the biopsy needle will be inserted at the shortest distance above the lesion, but if the lesion is deep, the path of entry for the biopsy needle will be determined by taking into consideration the blood vessels and nerves in the brain. , the foramen is generally not located at the shortest distance, but as shown in Figure 7, the lesion is located in the radial direction R, which passes from the center 0 to the lesion site X, assuming that the cranial surface S is spherical. It can be opened within a range where the solid from part X is approximately 90°.
第6図は、実施例における仮想球面F、頭蓋表面S、病
変部位Xおよび小孔Hの位置関係を示す図である。FIG. 6 is a diagram showing the positional relationship among the virtual spherical surface F, cranial surface S, lesion site X, and small hole H in the example.
ここで、頭蓋表面Sから病変部位Xまでの深さをY、仮
想中心0から刺入部2に取り付けられたバイオプシー針
3の回動支点P′までの距離を150mm、仮想中心O
から頭蓋表面Sまでの距離を100mmとし、小孔Hが
病変部位Xを通る半径方向Rから最も離れた位置に開け
られた場合について、バイオプシー針3の回動支点P′
、小孔Hおよび病変部位Xを通る直線(バイオプシー針
3の侵入方向)と回動支点P′から仮想中心0に向かう
直線との成す角度(針支点の傾き角度)θを計算すると
、数表のようになった。Here, the depth from the skull surface S to the lesion site X is Y, the distance from the virtual center 0 to the pivot point P' of the biopsy needle 3 attached to the insertion part 2 is 150 mm, and the virtual center O
When the distance from to the cranial surface S is 100 mm, and the small hole H is opened at the farthest position from the radial direction R passing through the lesion site X, the pivot point P' of the biopsy needle 3 is
, the angle θ formed by the straight line passing through the small hole H and the lesion site X (intrusion direction of the biopsy needle 3) and the straight line from the rotational fulcrum P' toward the virtual center 0 (the angle of inclination of the needle fulcrum) is calculated as follows. It became like this.
前記のように、頭蓋外表面から30mm程度までに病変
部位がある場合は病変部位置上の最短距離に小孔Hが開
けられるため、30髄より浅い場合にはθを考慮する必
要がないので、上表かられかるように、θの最大値は2
0°程度にすることができる。As mentioned above, if the lesion site is within 30 mm from the outer surface of the skull, the small hole H will be drilled at the shortest distance above the lesion position, so if it is shallower than 30 spinal cords, there is no need to consider θ. , as seen from the table above, the maximum value of θ is 2
It can be set to about 0°.
実施例の装置は、リンク機構16のリンク165の移動
位置と角度、および刺入部2におけるバイオプシー針3
の回動範囲は、上記の範囲をカバーできるように設定さ
れている。The device of the embodiment has the following characteristics: the movement position and angle of the link 165 of the link mechanism 16, and the biopsy needle 3 in the insertion section 2.
The rotation range is set to cover the above range.
なお、上記の実施例では、定位脳手術用のロボットとし
て説明したが、本ロボットを、耳の鍋牛殻への電極埋込
み手術、深さを制御した背骨の切削手術、内蔵手術への
応用ができる。In the above example, the robot was explained as a robot for stereotactic brain surgery, but this robot can also be applied to surgery for implanting electrodes into the ear pot and cow shell, surgery for cutting the spine with controlled depth, and surgery for internal organs. can.
以上説明したように本発明によれば、従節の先端部が頭
頂部側延長上の一点を中心にして円弧軌道を描くリンク
機構と、このリンク機構を回動軸回りに回動する回動機
構と、バイオプシー針などの針状の治具をその軸方向に
往復移動させる治具送り機構と、この治具送り機構を回
動させる首振り機構とによって手術用ロボットを構成す
るようにしたので、治具送り機構を、頭蓋の中心点など
を仮想中心として仮想球面上を移動可能にするとともに
、首振り機構によって仮想中心側に向けて一定範囲の角
度幅内で往復移動させることができる。As explained above, according to the present invention, there is provided a link mechanism in which the tip of the follower draws an arcuate trajectory around a point on the extension of the top of the head, and a rotation mechanism that rotates this link mechanism around a rotation axis. A surgical robot is constructed by a mechanism, a jig feeding mechanism that reciprocates a needle-like jig such as a biopsy needle in its axial direction, and a swinging mechanism that rotates this jig feeding mechanism. The jig feeding mechanism can be moved on a virtual spherical surface with the center point of the skull as the virtual center, and can be moved back and forth within a certain range of angles toward the virtual center by the swinging mechanism.
したがって、定位脳手術における固定装置に対して予め
決められた頭頂部側の体軸上の位置に連結することによ
り、バイオプシー針などを症例に合わせた自由な方向に
設定できるようになり、CTガントリー内でバイオプシ
ー針等を自動操作できる定位脳手術用ロボット装置を得
ることができ、X線CT画像情報を得ながら定位脳手術
を行う場合などに利用することができる。Therefore, by connecting the fixation device in stereotactic neurosurgery to a predetermined position on the body axis on the parietal side, it becomes possible to set the biopsy needle etc. in a free direction according to the case, and the CT gantry It is possible to obtain a stereotactic neurosurgery robot device that can automatically operate a biopsy needle, etc. within the device, and it can be used when performing stereotactic neurosurgery while obtaining X-ray CT image information.
また、耳の鍋牛殻への電極埋込み手術、深さを制御した
背骨の切削手術、内蔵手術などにも応用することができ
る。It can also be applied to surgery for implanting electrodes into the cow's shell for ear pots, spinal cutting surgery with controlled depth, and internal organ surgery.
第1図は本発明実施例の手術用ロボットを示す図、
第2図は実施例における刺入部を示す図、第3図は実施
例におけるリンク機構の動作を説明する図、
第4図は実施例におけるバイオプシー針の角度範囲を説
明する図、
第5図は実施例における使用状態の一例を示す図、
第6図は実施例における仮想球面、頭蓋表面、病変部位
および小孔の位置関係を示す図、第7図は実施例に係わ
る定位脳手術における小孔の位置を説明する図、
第8図実施例に係わる頭部の形状を概念的に示す図であ
る。
1・・・本体部、2・・・刺入部、3・・・バイオプシ
ー針、13・・・回動テーブル、16・・・リンク機構
、22・・・第1回動枠、24・・・第2回動枠、0・
・・仮想中心、P・・・従節の先端部。
(0)
(C)
第4
図
477−Fig. 1 is a diagram showing a surgical robot according to an embodiment of the present invention, Fig. 2 is a diagram showing an insertion section in the embodiment, Fig. 3 is a diagram illustrating the operation of the link mechanism in the embodiment, and Fig. 4 is a diagram showing the operation of the link mechanism in the embodiment. Figure 5 is a diagram illustrating the angular range of the biopsy needle in the example. Figure 5 is a diagram showing an example of the usage state in the example. Figure 6 is a diagram showing the positional relationship between the virtual spherical surface, the cranial surface, the lesion site, and the small hole in the example. FIG. 7 is a diagram explaining the position of the small hole in stereotactic brain surgery according to the embodiment, and FIG. 8 is a diagram conceptually showing the shape of the head according to the embodiment. DESCRIPTION OF SYMBOLS 1... Main body part, 2... Insertion part, 3... Biopsy needle, 13... Rotating table, 16... Link mechanism, 22... First rotating frame, 24...・Second rotation frame, 0・
... virtual center, P... tip of follower. (0) (C) 4th Figure 477-
Claims (1)
機構と、 このリンク機構を回動軸回りに回動する回動機構と、 針状の治具をその軸方向に往復移動させる治具送り機構
と、 前記従節の先端部に取り付けられるとともに前記治具の
軸方向を前記円弧軌道の中心を含む予め決められた角度
範囲になるように前記治具送り機構を回動させる首振り
機構と、 を備えてなることを特徴とする手術用ロボット。[Scope of Claims] A link mechanism in which the distal end of a follower draws an arcuate trajectory with one point as the center, a rotation mechanism that rotates this link mechanism around a rotation axis, and a needle-like jig that rotates around the rotation axis. a jig feeding mechanism that is attached to the tip of the follower and moves the axial direction of the jig within a predetermined angular range including the center of the arcuate trajectory; A surgical robot comprising: a swinging mechanism for rotating; and a surgical robot.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1257907A JPH03121064A (en) | 1989-10-04 | 1989-10-04 | Robot for operation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1257907A JPH03121064A (en) | 1989-10-04 | 1989-10-04 | Robot for operation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03121064A true JPH03121064A (en) | 1991-05-23 |
Family
ID=17312849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1257907A Pending JPH03121064A (en) | 1989-10-04 | 1989-10-04 | Robot for operation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03121064A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06261911A (en) * | 1992-10-30 | 1994-09-20 | Internatl Business Mach Corp <Ibm> | Manipulator device |
US5855553A (en) * | 1995-02-16 | 1999-01-05 | Hitchi, Ltd. | Remote surgery support system and method thereof |
US6120433A (en) * | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US6468226B1 (en) * | 2000-11-22 | 2002-10-22 | Mcintyre, Iv John J. | Remote tissue biopsy apparatus and associated methods |
EP1862124A3 (en) * | 1995-06-07 | 2011-03-16 | SRI International | Surgical manipulator for a telerobotic system |
JP2012139816A (en) * | 2006-01-25 | 2012-07-26 | Intuitive Surgical Inc | Robotic arm with five-bar spherical linkage |
JP2013135862A (en) * | 1996-12-12 | 2013-07-11 | Intuitive Surgical Inc | Multi-component telepresence system and its method |
US8840628B2 (en) | 1995-06-07 | 2014-09-23 | Intuitive Surgical Operations, Inc. | Surgical manipulator for a telerobotic system |
US8998799B2 (en) | 1996-12-12 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Sterile surgical adaptor |
US8998930B2 (en) | 2005-12-20 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
US9320568B2 (en) | 1997-11-21 | 2016-04-26 | Intuitive Surgical Operations, Inc. | Sterile surgical drape |
US9439732B2 (en) | 1996-12-12 | 2016-09-13 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
US9532849B2 (en) | 1997-11-21 | 2017-01-03 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and system |
US9795453B2 (en) | 1996-12-12 | 2017-10-24 | Intuitive Surgical Operations, Inc. | Surgical robotic tools, data architecture, and use |
-
1989
- 1989-10-04 JP JP1257907A patent/JPH03121064A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06261911A (en) * | 1992-10-30 | 1994-09-20 | Internatl Business Mach Corp <Ibm> | Manipulator device |
US6120433A (en) * | 1994-09-01 | 2000-09-19 | Olympus Optical Co., Ltd. | Surgical manipulator system |
US5855553A (en) * | 1995-02-16 | 1999-01-05 | Hitchi, Ltd. | Remote surgery support system and method thereof |
US8840628B2 (en) | 1995-06-07 | 2014-09-23 | Intuitive Surgical Operations, Inc. | Surgical manipulator for a telerobotic system |
EP1862124A3 (en) * | 1995-06-07 | 2011-03-16 | SRI International | Surgical manipulator for a telerobotic system |
US8998799B2 (en) | 1996-12-12 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Sterile surgical adaptor |
JP2013135862A (en) * | 1996-12-12 | 2013-07-11 | Intuitive Surgical Inc | Multi-component telepresence system and its method |
US9439732B2 (en) | 1996-12-12 | 2016-09-13 | Intuitive Surgical Operations, Inc. | Instrument interface of a robotic surgical system |
US9724163B2 (en) | 1996-12-12 | 2017-08-08 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
US9795453B2 (en) | 1996-12-12 | 2017-10-24 | Intuitive Surgical Operations, Inc. | Surgical robotic tools, data architecture, and use |
US9949802B2 (en) | 1996-12-12 | 2018-04-24 | Intuitive Surgical Operations, Inc. | Multi-component telepresence system and method |
US9320568B2 (en) | 1997-11-21 | 2016-04-26 | Intuitive Surgical Operations, Inc. | Sterile surgical drape |
US9532849B2 (en) | 1997-11-21 | 2017-01-03 | Intuitive Surgical Operations, Inc. | Surgical accessory clamp and system |
US6468226B1 (en) * | 2000-11-22 | 2002-10-22 | Mcintyre, Iv John J. | Remote tissue biopsy apparatus and associated methods |
US8998930B2 (en) | 2005-12-20 | 2015-04-07 | Intuitive Surgical Operations, Inc. | Disposable sterile surgical adaptor |
JP2012139816A (en) * | 2006-01-25 | 2012-07-26 | Intuitive Surgical Inc | Robotic arm with five-bar spherical linkage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kwoh et al. | A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery | |
US9649168B2 (en) | Systems and methods for frameless image-guided biopsy and therapeutic intervention | |
US9554779B2 (en) | Method and device for MRI-guided breast interventions | |
US9125676B2 (en) | Image guided whole body stereotactic needle placement device with falling arc | |
EP1510182B1 (en) | Apparatus for performing stereotactic surgery | |
JPH03121064A (en) | Robot for operation | |
CN112370647A (en) | Ultrasonic-guided multi-degree-of-freedom radioactive particle implantation robot | |
CN111936047B (en) | Neurosurgical systems and related methods | |
CN1522671A (en) | Mechanical arm type automatic tridimensional positioning system | |
WO2017007875A1 (en) | Transperineal needle guidance | |
WO2022199123A1 (en) | Auxiliary guiding and positioning apparatus for ct-guided puncture | |
CN105852939A (en) | Automatic real-time positioning and puncturing robot arm for CT | |
WO2017050201A1 (en) | Minimally invasive medical robot system | |
CN212521854U (en) | Medical instrument | |
CN105193478A (en) | Puncture device with RCM (remote center of motion) based on wire driving | |
Li et al. | A fully actuated robotic assistant for MRI-guided precision conformal ablation of brain tumors | |
JP2002248098A (en) | Method and apparatus for specifying position in subject | |
CN109674519A (en) | A kind of artificial guidance automatic puncturing device | |
EP3254731A1 (en) | Multi-purpose robotic system for mri guided focused ultrasound treatment | |
CN115607288A (en) | Minimally invasive surgery robot compatible with MRI and CT environments | |
AU4438799A (en) | Method and device for determining access to a subsurface target | |
CN101947135B (en) | Remote-control puncturing and positioning system under C arm machine introduction | |
CN113893036B (en) | Interventional robot device under magnetic resonance environment | |
CN206303971U (en) | For the end-of-arm tooling of operating robot | |
JP7244909B2 (en) | Puncture robot and program for puncture control |