JPH0273689A - Copper plating method for printed board - Google Patents

Copper plating method for printed board

Info

Publication number
JPH0273689A
JPH0273689A JP22454988A JP22454988A JPH0273689A JP H0273689 A JPH0273689 A JP H0273689A JP 22454988 A JP22454988 A JP 22454988A JP 22454988 A JP22454988 A JP 22454988A JP H0273689 A JPH0273689 A JP H0273689A
Authority
JP
Japan
Prior art keywords
anode
copper
additive
plating
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22454988A
Other languages
Japanese (ja)
Other versions
JPH0673393B2 (en
Inventor
Kazuhiro Hirao
和宏 平尾
Kenichi Ueno
賢一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP63224549A priority Critical patent/JPH0673393B2/en
Publication of JPH0273689A publication Critical patent/JPH0273689A/en
Publication of JPH0673393B2 publication Critical patent/JPH0673393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To prevent the exhaustion of the additive of electrolyte simply and steadily by forming a necessary covering layer at the surface of an insoluble anode which is used at copper plating. CONSTITUTION:When electrolyzing electrolyte which contains copper ions and additives using an insoluble anode so as to do copper plating to a printed board being a cathode, an electrochemically inert film such as fluoroion exchanging resin, TiO2, Ta2O5, ZrO2, SnO2, WO2, HfO2, these compound oxide, or the like is overlaid on the surface of the insoluble anode. And the consumption of the additive of electrolyte can be prevented simply and steadily without using a partition film to isolate the anode and the cathode, and the printed board can be plated with copper inclusive of a through hole.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、不溶性電極を使用してプリント基板及びその
スルーホールへ銅メッキを行うだめの方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for copper plating printed circuit boards and their through-holes using insoluble electrodes.

(従来技術とその問題点) 両面に銅箔層を形成したプリント基板の表面及び裏面の
回路部分を接続するには、必要な部分に貫通孔つまりス
ルーホールを形成し、該スルーホールの内面に銅メッキ
を施して前記両回路部分を接続するようにしている。該
スルーホールメッキを行う場合には、前記プリント基板
に前記スルーホールを形成した後、パラジウム含有浴を
使用して活性化を行い、次いで無電解銅メッキをプリン
ト基板全体に行いメッキ薄層を付着させた後、更に電解
銅メッキを行うようにする。無電解銅メッキのみで全体
のメッキを行わず電解銅メッキを併用する理由は、第1
に無電解メッキは析出速度が遅く無電解メッキのみでは
長時間を要すること、第2に無電解銅メッキ液が高価だ
からである。
(Prior art and its problems) In order to connect the circuit parts on the front and back sides of a printed circuit board with copper foil layers formed on both sides, through holes, or through holes, are formed in the necessary parts, and the inner surface of the through holes is The two circuit parts are connected by copper plating. When performing through-hole plating, after forming the through-holes on the printed circuit board, activation is performed using a palladium-containing bath, and then electroless copper plating is performed on the entire printed circuit board to attach a thin plating layer. After this, electrolytic copper plating is further performed. The reason why electroless copper plating is used in conjunction with electrolytic copper plating without plating the entire body is as follows:
This is because electroless plating has a slow deposition rate and requires a long time with electroless plating alone, and secondly, electroless copper plating solution is expensive.

該電解銅メッキは、エツチングを均一に行うこと及び直
径0.3ma+以下のスルーホール内に均一にメッキす
る必要があるため極めて厳しい管理が、つまり直径0.
3mm以下のスルーホール内に均一に銅が入り込むよう
つきまわりが良好であること、銅メッキが適度の硬さを
有すること、ひび割れ等が生じないこと、光沢があリャ
ケ等が起こらないこと等が要求される。これらの多種の
要求を満足させるために通常は多種類の添加剤をメッキ
液中に含有させるようにしている。
The electrolytic copper plating requires extremely strict control because it is necessary to uniformly perform etching and uniformly plate the inside of a through hole with a diameter of 0.3 mm or less.
Thickness must be good so that copper can be uniformly inserted into through-holes of 3 mm or less, copper plating must have appropriate hardness, no cracks, etc., and no fading due to gloss. required. In order to satisfy these various demands, a wide variety of additives are usually included in the plating solution.

該添加剤としては、1,3−ジオキソラン重合体又はポ
リプロピレングリコール、ポリプロピレンプロパノール
等のポリエーテル類及び有機硫黄化合物、有機窒素化合
物等が使用されているが、いずれも陽分極によって酸化
分解され易いという問題点を有し、該添加剤の分解は陽
極の平衡電位が高いほど生じ易い。従って従来の銅メッ
キ方法では陽極として銅又は銅合金の溶性陽極を使用し
て平衡電位を下げ前記添加剤の分解を防止するようにし
ている。即ち銅や銅合金を使用した場合の陽極(Cu−
”Cu”+ ’l e)の平衡電位は0.345V(v
sNHE)と極めて低いのに対し、不溶性金属電極を使
用した場合の陽極反応は通常の酸素発生反応(20H−
+2 e−*%O2+HzO)となりその平衡電位が1
.24VvsNHE (pH=o)となり、1■近く高
くなってしまう。
The additives used include 1,3-dioxolane polymers, polyethers such as polypropylene glycol and polypropylene propanol, organic sulfur compounds, and organic nitrogen compounds, but all of them are said to be easily oxidized and decomposed by anodic polarization. The problem is that the decomposition of the additive is more likely to occur as the equilibrium potential of the anode is higher. Therefore, in conventional copper plating methods, a soluble anode of copper or a copper alloy is used as an anode to lower the equilibrium potential and prevent decomposition of the additive. In other words, when copper or copper alloy is used, the anode (Cu-
The equilibrium potential of “Cu”+’le) is 0.345V (v
sNHE), which is extremely low, whereas the anodic reaction when using an insoluble metal electrode is a normal oxygen evolution reaction (20H-
+2 e-*%O2+HzO), and its equilibrium potential is 1
.. 24V vs NHE (pH=o), which becomes nearly 1■ high.

しかしながら陽極が純銅の溶性電極の場合はこのような
低い電位においても前記添加剤の分解が生じるため、常
に該添加剤を補給して該添加剤量をほぼ一定に維持する
必要があるとともに、溶性電極の常としてメッキ量と該
溶性電極の溶出量のアンバランスを回避し電解浴中の銅
イオン濃度の変化を最小限に抑制し更に溶解した溶性陽
極を交換する等の電解液や電極の保守管理が必要となる
という問題点がある。
However, when the anode is a soluble electrode made of pure copper, the additive decomposes even at such a low potential, so it is necessary to constantly replenish the additive to maintain the amount of the additive almost constant. Maintenance of the electrolyte and electrodes, such as avoiding imbalance between the amount of plating and the amount of elution of the soluble electrode, minimizing changes in the copper ion concentration in the electrolytic bath, and replacing the dissolved soluble anode, as usual for electrodes. The problem is that it requires management.

通常の硫酸銅浴による銅メッキでは、前記問題点を解消
するために含すン洞を袋状体に収容して電解を行うメッ
キ法が採用されている。該メ・ツキ法では、溶性陽極で
ある銅の表面にリン酸塩の被膜が形成され該被膜が前記
添加剤の前記銅陽極への接触度を減少させて前記添加剤
分解を抑制するとともに銅の過剰溶出を抑えると考えら
れている。
In order to solve the above-mentioned problems in copper plating using a normal copper sulfate bath, a plating method is adopted in which the cavity is housed in a bag-like body and electrolysis is carried out. In this method, a phosphate film is formed on the surface of copper, which is a soluble anode. It is believed that this suppresses excessive elution of

しかし該方法では前記含リン銅が高価であること及びス
ラッジが生成する等の問題点を有するとともに、前記添
加剤分解防止及び銅の過剰溶出防止も完全ではないため
保守作業の軽減化に直接は繋がらないという大きな問題
点を有している。
However, this method has problems such as the phosphorous-containing copper being expensive and the formation of sludge, and it is not completely effective in preventing additive decomposition and excessive elution of copper, so it is not directly effective in reducing maintenance work. The big problem is that it doesn't connect.

上記各方法の問題点を克服するためにビロリン酸銅浴を
使用する方法が堤写されている。この方法では添加剤分
解が比較的少なく又陽極として純銅を使用した場合でも
比較的安定した電解を行うことができる等の利点を有し
ているが、ビロリン酸の価格が極めて高価であり、経済
的ではないという問題点がある。
A method using a copper birophosphate bath has been proposed to overcome the problems of each of the above methods. This method has the advantages of relatively little additive decomposition and the ability to perform relatively stable electrolysis even when pure copper is used as the anode, but the cost of birophosphoric acid is extremely high and it is not economical. The problem is that it is not the target.

そのため最近では、電解液の銅イオンを別個の銅溶解槽
を使用して補給し、該電解液を不溶性陽極を設置した銅
メッキ槽に供給する方法が提案されている。該方法によ
ると前記した溶性陽極を使用する場合の問題点は解消さ
れるが依然として前記添加剤の分解の問題が残り、これ
を解消するために前記添加剤を耐酸化性の化合物に換え
ることが試みられているが、前記スルーホールメッキの
ような特殊な条件下で安定な添加剤は未だ見出されてい
ないのが現状であり、工業的に使用されるには至ってい
ない。
Therefore, recently, a method has been proposed in which copper ions in an electrolytic solution are replenished using a separate copper dissolving tank, and the electrolytic solution is supplied to a copper plating tank in which an insoluble anode is installed. According to this method, the problems described above when using a soluble anode are solved, but the problem of decomposition of the additive still remains, and in order to solve this problem, it is necessary to replace the additive with an oxidation-resistant compound. Although attempts have been made, no additive has yet been found that is stable under special conditions such as through-hole plating, and has not yet been used industrially.

本発明者らは、不溶性金属電極から成る陽極を隔膜によ
り被メッキ材から成る陰極から分離することにより、添
加剤を含有する電解液の大部分が前記陽極に接触するこ
とを防止し、これにより前記添加剤の分解を防止し、該
添加剤の極く僅かな補給で継続して前記被メッキ材であ
るプリント基板のスルーホールに銅メッキを施す方法を
提案した(特願昭63−128078号)。
The present inventors have realized that by separating an anode made of an insoluble metal electrode from a cathode made of a material to be plated by a diaphragm, most of the electrolyte containing the additive is prevented from coming into contact with the anode. We have proposed a method of preventing the additive from decomposing and continuously applying copper plating to the through-holes of the printed circuit board, which is the material to be plated, with a very small amount of replenishment of the additive (Japanese Patent Application No. 128078/1983). ).

本発明者らは、該方法を更に改良し、前記隔膜を使用し
なくとも前記添加剤の消耗をほぼ完全に抑制できる方法
を種々検討した結果、本発明に到達したものである。
The present inventors have arrived at the present invention as a result of further improving this method and investigating various methods that can almost completely suppress the consumption of the additive without using the diaphragm.

(発明の目的) 本発明は、前記隔膜による添加剤分解抑制と、同等もし
くはそれ以上の該添加剤分解抑制効果を有するスルーホ
ールを有するプリント基板等に銅メッキを施す方法を提
供することを目的とする。
(Object of the Invention) The object of the present invention is to provide a method for copper plating a printed circuit board or the like having a through hole that has an effect of suppressing additive decomposition that is equal to or greater than that of the diaphragm. shall be.

(問題点を解決するための手段) 本発明は、銅イオン及び添加剤を含有する電解液を不溶
性陽極を使用して電解しプリント基板のメッキを行う方
法において、前記不溶性陽極の表面に電気化学的に不活
性な被覆層を形成した陽極を使用することを特徴とする
方法である。
(Means for Solving the Problems) The present invention provides a method for plating a printed circuit board by electrolyzing an electrolytic solution containing copper ions and additives using an insoluble anode. This method is characterized by using an anode on which a coating layer that is inert is formed.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明方法により、その表面に被覆層を形成した陽極を
使用してプリント基板のスルーホール等のメッキを行う
と、陽極と陰極を隔膜で分離する前記方法と同等以上の
効果を得ることができる。
By using the method of the present invention to plate through-holes in printed circuit boards using an anode with a coating layer formed on its surface, it is possible to obtain effects equal to or greater than the above-mentioned method in which the anode and cathode are separated by a diaphragm. .

本発明方法の陽極を使用して電解を行うと、陽極表面に
形成された前記被覆層が添加剤を含む電解液の該被覆層
を通しての前記陽極表面の電極活性物質への拡散を抑制
し前記添加剤の前記陽極への接触を防止することにより
、該添加剤の分解を抑制する。しかしながら後述する通
り、前記被覆層の厚みは0,5〜10μ程度であり、通
常の隔膜の厚みである数百μ〜数關のレベルと比較する
と著しく薄いものであり、単に前記電解液の拡散速度の
低下だけで本発明方法による添加剤分解抑制を説明する
には無理がある0本発明方法の被覆層処理を施した前記
不溶性陽極は、単に前記電解液の拡散を抑制するだけで
なく、該拡散抑制効果と前記陽極表面に形成される安定
なガス層のバリア効果が相乗的に寄与して前記添加剤の
分解を抑制するものと考えられ、該ガス層の形成及びそ
の機能は次のように理解することができる。前記陽極の
被覆層は発生ガスに対して易付着性と考えられ、その表
面において発生するガスの再結合を促進して該陽極表面
にかなりの厚みのガス層を形成し、該ガスが陽極表面か
ら離脱する時にはかなりの気泡サイズとなり、その付加
された浮力によりガス上昇が速やかに起こり、通常の不
溶性陽極を用いて電解した際に問題となる、陽極より発
生する細かい気泡による電解液の白濁、メッキ対象物(
陰極)の表面への気泡の付着によるメッキネ良の発生、
電解浴表面からの激しいミスト発生による作業環境の著
しい悪化といった問題点が解消される。これによりあた
かも隔膜を使用して陽極から発生するガスを分離するこ
とと同様な挙動を呈し、電解液中の添加剤の消耗を抑制
するものと推測される。
When electrolysis is performed using the anode of the method of the present invention, the coating layer formed on the anode surface suppresses the diffusion of the electrolytic solution containing additives into the electrode active material on the anode surface through the coating layer. By preventing the additive from coming into contact with the anode, decomposition of the additive is suppressed. However, as will be described later, the thickness of the coating layer is about 0.5 to 10 μm, which is extremely thin compared to the thickness of a normal diaphragm, which is several hundred μ to several hundred μ, and is simply due to the diffusion of the electrolyte. It is impossible to explain the suppression of additive decomposition by the method of the present invention solely by a decrease in speed. It is thought that the diffusion suppressing effect and the barrier effect of the stable gas layer formed on the anode surface contribute synergistically to suppress the decomposition of the additive, and the formation and function of the gas layer are as follows. can be understood as such. The coating layer of the anode is considered to be easily attached to the generated gas, and promotes the recombination of the generated gas on its surface to form a considerably thick gas layer on the anode surface, and the gas adheres to the anode surface. When it leaves the anode, the bubble size becomes quite large, and the gas rises quickly due to the added buoyancy, which causes clouding of the electrolyte due to fine bubbles generated from the anode, which is a problem when electrolysis is performed using a normal insoluble anode. Object to be plated (
The occurrence of plating defects due to the adhesion of air bubbles to the surface of the cathode,
This eliminates the problem of severe deterioration of the working environment due to the generation of intense mist from the surface of the electrolytic bath. It is presumed that this behavior is similar to that of using a diaphragm to separate the gas generated from the anode, and that the consumption of additives in the electrolyte is suppressed.

勿論陽極から発生するガスの分離、及び電解液中の添加
剤の消耗を完全に防止するため、隔膜を使用して前記被
覆層が形成された陽極を陰瓶から分離するようにしても
よい。
Of course, in order to completely prevent the separation of the gas generated from the anode and the consumption of additives in the electrolyte, the anode on which the coating layer is formed may be separated from the negative bottle using a diaphragm.

本発明に係わる銅メッキ方法では、陽極として例えば白
金族金属酸化物をチタン基材に被覆して成る不溶性陽極
いわゆるDSE電極を使用する。
In the copper plating method according to the present invention, an insoluble anode, so-called DSE electrode, which is formed by coating a titanium base material with, for example, a platinum group metal oxide, is used as the anode.

該DSE電極は、溶性陽極と比較すると陽極電位(酸素
発生電位)が約10100O高いが、白金族金属を基材
に被覆した電極や鉛電極と比較すると陽極電位が300
〜600mV低いため添加剤分解を有効に防止すること
ができる。しかし該白金族金属被覆電極や鉛電極を本発
明方法で使用しても差し支えない、該不溶性陽極の形状
は、多孔状、板状、棒状、上部が開口するボックス状等
任意とすることができる。
The DSE electrode has an anode potential (oxygen evolution potential) approximately 10,100 O higher than a soluble anode, but an anode potential of 300 O higher than an electrode whose base material is coated with a platinum group metal or a lead electrode.
Since the voltage is low by ~600 mV, additive decomposition can be effectively prevented. However, the platinum group metal coated electrode or the lead electrode may be used in the method of the present invention, and the shape of the insoluble anode may be any shape such as porous, plate, rod, or box shape with an open top. .

本発明では、該陽極表面に電気化学的に不活性な被覆層
を形成した陽極を使用する。該被覆層を形成する材料は
、ある程度の電気伝導性と液浸透性を有する材料から選
択され、有機材料としては例えば、スルホン酸基、カル
ボン酸基、第四アンモニウム塩基等のイオン交換性官能
基を導入したポリマー樹脂いわゆるイオン交換樹脂を挙
げることができ、該陽極表面が電気化学的に高い酸化電
位におかれることを考慮すると、ペースポリマーとして
フッ素系炭化水素樹脂を使用することが耐久性の面から
望ましい。更に無機材料としては、化学的及び電気化学
的に安定で電気的には絶縁半導体的特性を有するTi0
z、Ta2es 、ZrO2,5n02、WO’、 、
HfO□又はこれらの複合酸化物を挙げることができ、
該無機材料は前記有機材料と複合して使用することもで
きる。
In the present invention, an anode having an electrochemically inactive coating layer formed on the anode surface is used. The material forming the coating layer is selected from materials having a certain degree of electrical conductivity and liquid permeability, and examples of organic materials include ion exchange functional groups such as sulfonic acid groups, carboxylic acid groups, and quaternary ammonium bases. Examples of polymer resins in which ion exchange resins are introduced include so-called ion exchange resins. Considering that the anode surface is electrochemically exposed to a high oxidation potential, it is recommended to use fluorocarbon resins as the pace polymer in order to improve durability. Desirable from all aspects. Furthermore, as an inorganic material, Ti0, which is chemically and electrochemically stable and has electrically insulating semiconductor properties, is used.
z, Ta2es, ZrO2,5n02, WO', ,
Examples include HfO□ or composite oxides thereof,
The inorganic material can also be used in combination with the organic material.

これらの材料を前記陽極表面に付着させる方法としては
、例えば第1に材料粉末を有機溶媒や水中に分散させて
エマルジョン液とし酸液を陽極表面に塗布乾燥させ、適
当な熱処理により前記陽極表面に結合させる方法、第2
に無機材料については、酸化物に変換できる出発材料例
えば塩化物、硝酸化合物、アルコキシド化合物等を、塩
酸溶液、硝酸溶液、アルコール溶液等とした後、前記陽
極表面に塗布乾燥し、電気炉中で熱分解反応を行わせ目
的化合物の合成と該化合物の陽極表面への結合を同時に
行う方法、第3に化学蒸着法等の乾式法等がある。
As a method for attaching these materials to the anode surface, for example, firstly, material powder is dispersed in an organic solvent or water to form an emulsion liquid, an acid solution is applied to the anode surface and dried, and an appropriate heat treatment is applied to the anode surface. How to combine, 2nd
For inorganic materials, starting materials that can be converted into oxides, such as chlorides, nitric acid compounds, alkoxide compounds, etc., are made into a hydrochloric acid solution, nitric acid solution, alcohol solution, etc., and then applied to the anode surface and dried, and then heated in an electric furnace. There is a method in which a thermal decomposition reaction is carried out to simultaneously synthesize the target compound and the bonding of the compound to the anode surface, and a third method is a dry method such as a chemical vapor deposition method.

これらの材料の陽極表面への被覆厚は0.5〜10μの
範囲が望ましく、0.5μ未満であると被覆層形成の効
果が不十分であり、逆に10μを越えると前記材料の性
質上、電気抵抗が増加し連続操業が困難になるという不
都合が生ずる。
The coating thickness of these materials on the anode surface is preferably in the range of 0.5 to 10μ; if it is less than 0.5μ, the effect of forming the coating layer will be insufficient, and if it exceeds 10μ, the properties of the materials , the disadvantage is that electrical resistance increases and continuous operation becomes difficult.

このような陽極を電解槽内に設置するには、通常の食塩
電解槽のように底部から給電棒を立設し該給電体に連結
するようにしても、電解槽の上縁間にビームを架設し、
該ビームに前記陽極に連結した例えば逆J字型の給電体
の上端を吊下げるようにしてもよい。
In order to install such an anode in an electrolytic cell, it is necessary to install a beam between the upper edges of the electrolytic cell, even if a power supply rod is erected from the bottom and connected to the power supply as in a normal salt electrolytic cell. erected,
For example, the upper end of an inverted J-shaped power supply body connected to the anode may be suspended from the beam.

又陰極は、メッキすべきプリント基板等の被メッキ材と
し、該被メッキ材は例えば合成樹脂上に銅箔を薄く被覆
しかつ所定位置に多数の貫通孔つまりスルーホールを穿
設した複合板である。該被メッキ材は、本発明方法によ
り電気メッキする前に該電気メッキを円滑に行うために
その表面に化学メッキにより薄い銅メッキ層を形成して
おくことが望ましい、該被メッキ材は通常30cm X
 30cm程度の板であるが、本発明方法では一度の操
業で多数の被メッキ材を処理できるよう多数の被メッキ
材を上下及び左右方向に並べ合わせて1枚の大きな平板
状とし所定の治具で電解槽内に設置することが好ましい
The cathode is a material to be plated such as a printed circuit board, and the material to be plated is, for example, a composite plate in which a synthetic resin is coated with a thin layer of copper foil and a large number of through holes are bored at predetermined positions. be. Before the material to be plated is electroplated by the method of the present invention, it is desirable to form a thin copper plating layer on the surface of the material by chemical plating in order to perform the electroplating smoothly.The material to be plated is usually 30 cm thick. X
Although the plate is approximately 30 cm long, in the method of the present invention, in order to process a large number of plated materials in one operation, a large number of plated materials are arranged vertically and horizontally to form one large flat plate, and a predetermined jig is used. It is preferable to install it in an electrolytic cell.

前記陽極及び陰極を分離するために隔膜を使用する場合
、該隔膜は添加剤の通過をほぼ完全に抑止するものであ
ることが望ましい。該添加剤は液中でイオンではなくコ
ロイド状態で存在することが多く、該添加剤の粒径は互
いに凝集しあるいは周囲に水分子を伴って数μ〜数十μ
となっていると考えられるので、前記隔膜の目開きは1
0μ以下とすることが望ましい。
When a diaphragm is used to separate the anode and cathode, it is desirable that the diaphragm substantially completely prevents the passage of additives. The additives often exist in a colloidal state rather than ions in the liquid, and the particle size of the additives is from several microns to several tens of microns when they aggregate with each other or are surrounded by water molecules.
Therefore, the opening of the diaphragm is 1
It is desirable that it be 0μ or less.

特に該隔膜を使用する場合に、被メッキ材表面に十分銅
イオンを送り込みかつ陰極室内で発生するガスを除去す
るため空気を送って液撹拌を行うと、液の流通が極めて
良好になる。前記隔膜は該流通メッキ液の陽極への接触
をほぼ完全に防止するためのもので、陽極室と陰極室を
区画し前記メッキ液の浸透を防止できれば電解槽にどの
ように設置してもよいが、袋状として前記陽極に近接さ
せ該陽極を包み込む形状でかつ発生ガスの放出のため上
部が開口していることが好ましく、この他に複数の陽極
室及び陰極室を平面状の隔膜が区画している所謂フィル
タプレス型の電解槽を構成するようにしてもよい。
Particularly when using the diaphragm, if the liquid is stirred by sending air to sufficiently feed copper ions to the surface of the material to be plated and remove gas generated in the cathode chamber, the flow of the liquid will be extremely good. The diaphragm is intended to almost completely prevent the flowing plating solution from coming into contact with the anode, and can be installed in any way in the electrolytic cell as long as it can separate the anode chamber and the cathode chamber and prevent the plating solution from penetrating. However, it is preferable that the bag-like shape is placed close to the anode and encloses the anode, and that the upper part is open for releasing the generated gas.In addition, a planar diaphragm partitions the plurality of anode chambers and cathode chambers. A so-called filter press type electrolytic cell may be configured.

又該隔膜の材質は特に限定されないが、液の不透過性及
び抵抗損の観点からイオン交換膜が最適である。
The material of the diaphragm is not particularly limited, but an ion exchange membrane is most suitable from the viewpoint of liquid impermeability and resistance loss.

本発明方法に使用する電解槽は、新規なものを製造して
もよいが、従来の溶性陽極用として使用されてきた電解
槽を転換して使用することが好ましく、該転換は前記溶
性陽極を前記表面被覆層が形成された不溶性陽極と交換
し、必要に応じて該陽極及び陰極を隔膜で区画し、かつ
銅イオンを外部から供給するラインを設置するという比
較的筒中な作業で行うことができる。
The electrolytic cell used in the method of the present invention may be a new one, but it is preferable to use a converted electrolytic cell that has been used for a conventional soluble anode. This can be carried out by a relatively simple process of replacing the insoluble anode on which the surface coating layer has been formed, dividing the anode and cathode with a diaphragm as necessary, and installing a line to supply copper ions from the outside. can.

使用する電解液は、陰極液は銅イオンを含みかつ前述の
添加剤例えば1,3−ジオキソラン重合体又はポリプロ
ピレングリコール、ポリプロピレンプロパノール等のポ
リエーテル類及びN[硫黄化合物、窒素化合物(フェナ
ジン染料等)を含有する電解液とし、陽極液は任意の導
電性物質を含む電解液とする。
The electrolyte used includes a catholyte containing copper ions, and the above-mentioned additives, such as 1,3-dioxolane polymer or polyethers such as polypropylene glycol and polypropylene propanol, and N [sulfur compounds, nitrogen compounds (phenazine dyes, etc.)]. The anolyte is an electrolytic solution containing an arbitrary conductive substance.

電流濃度、印加電圧、電流密度、液温等の電解条件自体
は従来の溶性陽極を使用する銅メッキ方法と同様で良く
、例えば電流濃度は0.5〜10.0A/1、印加電圧
は2.5〜3.5V、陽極電流密度は1〜10A/dI
II!、陰極電流密度ハ1〜6A/d111!液温は1
5〜35℃程度とする。
Electrolytic conditions such as current concentration, applied voltage, current density, and liquid temperature may be the same as those for conventional copper plating methods using soluble anodes; for example, the current concentration is 0.5 to 10.0 A/1, and the applied voltage is 2. .5-3.5V, anode current density 1-10A/dI
II! , cathode current density 1~6A/d111! The liquid temperature is 1
The temperature should be about 5-35°C.

銅イオンの供給は電解液に適宜の銅化合物、例えば炭酸
銅を溶解して電解槽の陰極室に加え、該電解液を循環さ
せて、被メッキ材にメッキされて減少した分の銅を該電
解液に再溶解して陰極室内の銅イオン濃度がほぼ一定に
維持されるようにすることが好ましい。
Copper ions are supplied by dissolving an appropriate copper compound, such as copper carbonate, in an electrolytic solution and adding it to the cathode chamber of the electrolytic cell, and circulating the electrolytic solution to remove the amount of copper that has been reduced by plating the material to be plated. Preferably, the copper ion concentration in the cathode chamber is maintained approximately constant by redissolving it in the electrolyte.

なお隔膜を使用する場合には、陽極室側を僅かに加圧す
ると、前記隔膜を通しての陰極液の液拡散による前記添
加剤の陽極室への浸透が完全に抑えられ、該添加剤の分
解をより有効に防止することができる。該加圧は、例え
ば陽極室側に廃ガス放散用のバルブを設け、該バルブに
より廃ガス放散量を調節することにより行うことができ
る。
When using a diaphragm, slightly pressurizing the anode chamber side will completely prevent the additive from penetrating into the anode chamber due to catholyte diffusion through the diaphragm, thereby preventing decomposition of the additive. This can be more effectively prevented. The pressurization can be performed, for example, by providing a valve for dissipating waste gas on the anode chamber side and adjusting the amount of dissipated gas using the valve.

本発明方法によると、表面及びスルーホール内にほぼ均
一厚の銅メッキ層が形成された複合板が製造され、該複
合板は洗浄等の処理の後、プリント基板等の製造のだめ
の後続の工程に送られる。
According to the method of the present invention, a composite board is manufactured in which a copper plating layer of approximately uniform thickness is formed on the surface and in the through holes, and after processing such as cleaning, the composite board is processed in subsequent steps for manufacturing printed circuit boards, etc. sent to.

又本発明はプリント基板以外の電子材料の銅メ、7キに
応用することも可能である。
Further, the present invention can also be applied to electronic materials other than printed circuit boards such as copper metal and 7 metal.

(実施例) 以下本発明方法の実施例を記載するが、該実施例は本発
明を限定するものではない。
(Example) Examples of the method of the present invention will be described below, but the examples do not limit the present invention.

実施例1 市販のCu5O<、5t[zo 70g/ l 、II
ZSO410容量%、CI−50ppmから成る硫酸銅
型メッキ浴に添加剤として荏原ニーシライト株式会社製
商品名キュブライトT Hを5a+I/j!となるよう
に加え連続ハルセル試験を行った。
Example 1 Commercially available Cu5O<, 5t[zo 70g/l, II
A copper sulfate type plating bath consisting of 10% by volume of ZSO4 and 50ppm of CI was added with 5a+I/j of Cubrite TH (trade name, manufactured by Ebara Nishilight Co., Ltd.) as an additive. In addition, a continuous Hull cell test was conducted so that

該試験は、ハルセル容ff1267m1 、電流値2A
(平均陰極電流密度4A/d+n2)、温度25℃とし
、空気による液攪拌を行いながら、電解時間を10分/
回とし陰極を交換しながら12回繰り返して行った。陰
極として純銅板を使用し、液浸透性かつ電気化学的に不
活性な陽極表面処理材料としてナフィオン液(米国アル
トリフチ・ケミカル社製)を選び、白金メッキチタン類
の陽極基材表面に繰り返し塗布乾燥し、最後に230℃
で10分間熱処理して前記陽極表面に7.50μ厚の被
覆層を形成した。
The test was conducted using a Hull cell capacity of 1267 m1 and a current value of 2 A.
(average cathode current density 4A/d+n2), temperature 25℃, electrolysis time 10 minutes/while stirring the liquid with air.
The test was repeated 12 times while changing the cathode. A pure copper plate was used as the cathode, and Nafion liquid (manufactured by Altrift Chemical Co., USA) was selected as the liquid-permeable and electrochemically inert anode surface treatment material, which was repeatedly applied and dried on the surface of the platinum-plated titanium anode substrate. and finally 230℃
A coating layer having a thickness of 7.50 μm was formed on the surface of the anode by heat treatment for 10 minutes.

試験中、メッキ浴中の添加剤の追加は一切行わず、メッ
キ世に相当する炭酸銅粉末を添加溶解することにより、
銅イオンの補給を行った。摺電圧及びメッキ状況に関す
る結果を第1表に示す。
During the test, no additives were added to the plating bath, but by adding and dissolving copper carbonate powder equivalent to the plating bath,
Copper ions were replenished. Table 1 shows the results regarding the sliding voltage and plating condition.

実施例2 陽極基材を、主成分が酸化イリジウムである複合酸化物
をコーティングしたチタン材(酸化イリジウム電橋)と
したこと以外は実施例1と同一条件で純銅板に銅メッキ
を行った。結果を第1表に示す。
Example 2 A pure copper plate was plated with copper under the same conditions as in Example 1, except that the anode base material was a titanium material (iridium oxide bridge) coated with a composite oxide whose main component was iridium oxide. The results are shown in Table 1.

大立聞ユ 陽極表面処理材料として、チタンアルコキシド−タンク
ルアルコキシド−ナフィオン混合アルコール溶液を使用
し、該溶液を陽極表面に塗布乾燥後、300℃で15分
間の熱分解処理を繰り返し行って8.0μ厚の酸化チタ
ン−酸化タンクルーナフィオン薄膜から成る被覆層を形
成したこと以外は実施例2と同一条件で純銅板に銅メッ
キを行った。
8. A mixed alcohol solution of titanium alkoxide, tank alkoxide, and Nafion was used as a material for surface treatment of the anode of the large scale anode, and after coating the solution on the anode surface and drying, thermal decomposition treatment was repeatedly performed at 300° C. for 15 minutes. Copper plating was carried out on a pure copper plate under the same conditions as in Example 2, except that a coating layer consisting of a titanium oxide-tank Lunafion thin film having a thickness of 0 μm was formed.

結果を第1表に示す。The results are shown in Table 1.

大止桝↓ 被覆層厚を3.0μとし、隔膜としてナフィオン#11
7(デュポン社製)を使用した以外は実施例1と同一条
件で純銅板に銅メッキを行った。結果を第1表に示す。
Odomemasu ↓ The coating layer thickness is 3.0μ, and the diaphragm is Nafion #11.
Copper plating was performed on a pure copper plate under the same conditions as in Example 1, except that Copper Plating No. 7 (manufactured by DuPont) was used. The results are shown in Table 1.

止較炎上二1 全ての場合に被覆層を形成せず、陽極としてそれぞれ酸
化イリジウム電極(比較例1)、含リン銅電極(比較例
2)及び酸化イリジウム電極(比較例3)を使用し、更
に隔膜としてナフィオン#117を使用して(比較例3
のみ)実施例と同一条件で純銅板に銅メッキを行った。
Flame-stopping comparison 21 In all cases, no coating layer was formed, and an iridium oxide electrode (comparative example 1), a phosphorus-containing copper electrode (comparative example 2), and an iridium oxide electrode (comparative example 3) were used as anodes, respectively. Furthermore, Nafion #117 was used as a diaphragm (Comparative Example 3).
Only) Copper plating was performed on a pure copper plate under the same conditions as in the example.

結果を第1表に示す。The results are shown in Table 1.

第1表から分かるように、単に陽極を不溶性陽圃とした
のみでは2回目以降に曇りが生してしまい、これは添加
剤の分解が生じていることを示している9一方陽極とし
て液浸透性でかつ電気化学的に不活性な表面処理を施し
た不溶性陽極全使用した場合には、いずれも含リン銅溶
性陽極を使用した場合或いは隔膜のみで分離した場合と
同等又はそれに近い特性を示した。又該含リン銅溶性陽
極に見られる後半の銅濃度過剰によるメッキ表面のざら
つきは本実施例では全(見られなかった。
As can be seen from Table 1, if the anode is simply used as an insoluble anode, cloudiness will appear after the second use, which indicates that the additive has decomposed.9On the other hand, as an anode, liquid penetration When all insoluble anodes with electrochemically inert and electrochemically inert surface treatment are used, the properties are the same as or close to those when using phosphorus-containing copper-soluble anodes or when separation is performed using only a diaphragm. Ta. Further, the roughness of the plating surface due to the excessive copper concentration in the latter half, which is observed in the phosphorus-containing copper-soluble anode, was not observed at all in this example.

更に表面処理を施した不溶性陽極の場合、陽極表面はか
なりの厚みのガス層で覆われ、その表面から離脱するガ
ス気泡のサイズは大きく、陽極表面を沿うように上昇し
、隔膜を使用しなくても気液分離が円滑に行われ、電解
液が細かい分散気泡で白濁することはなかった。試験後
に、陽極被覆層の剥離や変色等の異常は′観察されなか
った。
Furthermore, in the case of an insoluble anode that has undergone surface treatment, the anode surface is covered with a fairly thick gas layer, and the gas bubbles that leave the surface are large in size and rise along the anode surface, making it possible to eliminate the use of a diaphragm. Gas-liquid separation was performed smoothly, and the electrolyte did not become cloudy due to fine dispersed bubbles. After the test, no abnormalities such as peeling or discoloration of the anode coating layer were observed.

なお、使用した両軍溶性陽極のうち、白金メンキチタン
電極よりも酸化イリジウム電極の方が添加剤の分解は少
なかった。これは酸素過電圧が白金メッキチタン電極よ
り酸化イリジウム電極の方が300〜400mV低いこ
とによると推測される。
Of the two soluble anodes used, the iridium oxide electrode caused less decomposition of the additive than the platinum titanium electrode. This is presumably because the oxygen overvoltage of the iridium oxide electrode is 300 to 400 mV lower than that of the platinum-plated titanium electrode.

(発明の効果) 本発明による銅メッキ方法は、電気化学的に不活性な被
覆層を形成した陽極とプリント基板用等の被メッキ材か
ら成る陰極を、必要には応じて隔膜により分離し、銅イ
オン及び添加剤含有液を電解液として電解し、前記被メ
ッキ材の表面及び必要に応じてそのスルーホールのメッ
キを行うようにしている。
(Effects of the Invention) The copper plating method according to the present invention includes separating an anode on which an electrochemically inert coating layer is formed and a cathode made of a material to be plated such as a printed circuit board by a diaphragm as necessary. Electrolysis is performed using a solution containing copper ions and additives as an electrolytic solution, and the surface of the material to be plated and, if necessary, the through holes thereof are plated.

従って第1に、電解液中の添加剤が陽極の表面被覆層及
び発生ガスにより形成されるガス層を透過して、陽極表
面の電極活性物質に直接接触し該添加剤が分解されるこ
とが殆どないため、高価な添加剤を殆ど消耗することな
く経済的に操業を行うことができる。また必要に応じて
両極を隔膜により分離したり更に隔膜分離した陽極室側
を加圧したすしておくと前記添加剤の隔膜を通しての前
記陽極活性物質・\の透過がより以上に確実に防止され
、添加剤の消耗はほぼ完全に回避される。これにより本
発明方法における前記添加剤の消耗を、陽極電位が本発
明方法の電位よりも低い従来の溶性陽極を使用する銅メ
ッキ方法における該添加剤の消耗と同等かそれ以下に抑
えることが可能になり、更に前記被覆層を形成する材料
としてイオン交換樹脂のような緻密な薄膜を使用すると
、該薄膜の本質的な添加剤不浸透性と、その表面のガス
発生時に見られるガス層形成の副次的バリア効果と相ま
って、前記添加剤の分解消耗は更に完全に防止される。
Therefore, first, the additive in the electrolyte permeates through the surface coating layer of the anode and the gas layer formed by the generated gas, and comes into direct contact with the electrode active material on the anode surface, causing the additive to be decomposed. Since there is almost no consumption of expensive additives, the operation can be carried out economically. Furthermore, if necessary, by separating the two electrodes with a diaphragm or pressurizing the anode chamber side separated by the diaphragm, the permeation of the anode active substance through the diaphragm of the additive can be more reliably prevented. , additive wastage is almost completely avoided. This makes it possible to suppress the consumption of the additive in the method of the present invention to the same level as or less than the consumption of the additive in the conventional copper plating method using a soluble anode whose anode potential is lower than that in the method of the present invention. Furthermore, when a dense thin film such as an ion exchange resin is used as the material for forming the coating layer, the thin film is essentially impermeable to additives and the formation of a gas layer on its surface when gas is generated. Coupled with the secondary barrier effect, decomposition and consumption of the additives is even more completely prevented.

第2に、陽極が本質的に不溶性であるため、従来のよう
に消耗した溶性陽極の交換のために操業を停止しかつ刺
激性の電解液から該溶性陽極を取出し交換するといった
手間及び熟練を要する作業が不要となるため、作業能率
が大きく向上する。
Second, because the anode is essentially insoluble, replacing a worn-out soluble anode requires the traditional effort and skill of shutting down operations and removing the soluble anode from the irritating electrolyte. This eliminates the need for additional work, greatly improving work efficiency.

第3に、陽極が本質的に不溶性でありかつ添加剤の消耗
を完全に抑えることができるため、含リン銅等の溶性陽
極の使用時に通常具られるスラッジ発生が皆無で、表面
状態の良好なメッキされた被メッキ材を得ることができ
る。
Third, since the anode is essentially insoluble and the consumption of additives can be completely suppressed, there is no sludge generation that normally occurs when using soluble anodes such as phosphorus-containing copper, and the surface condition is good. A plated material can be obtained.

第4に、従来の溶性陽極を被覆層が形成された不溶性陽
極に換えること、外部に銅イオン供給ラインを設置する
こと、更に必要に応じて前記不溶性陽極を袋状隔膜に収
容することのみで、従来の溶性陽極を使用する電解槽を
本発明方法に使用する電解槽に容易に転換することがで
きるため、本発明方法に使用する電解装置を比較的容易
に準備することができる。
Fourth, all that is required is to replace the conventional soluble anode with an insoluble anode on which a coating layer is formed, install an external copper ion supply line, and, if necessary, house the insoluble anode in a bag-like diaphragm. Since an electrolytic cell using a conventional soluble anode can be easily converted into an electrolytic cell for use in the method of the present invention, an electrolytic apparatus for use in the method of the present invention can be prepared relatively easily.

Claims (4)

【特許請求の範囲】[Claims] (1)銅イオン及び添加剤を含有する電解液を不溶性陽
極を使用して電解し陰極であるプリント基板の銅メッキ
を行う方法において、前記不溶性陽極の表面に電気化学
的に不活性な被覆層を形成した陽極を使用することを特
徴とする方法。
(1) In a method of electrolyzing an electrolytic solution containing copper ions and additives using an insoluble anode to copper plate a printed circuit board serving as a cathode, an electrochemically inactive coating layer is formed on the surface of the insoluble anode. A method characterized by using an anode formed with.
(2)不溶性陽極と陰極を隔膜により分離してメッキを
行う請求項1に記載の方法。
(2) The method according to claim 1, wherein the plating is performed by separating the insoluble anode and the cathode by a diaphragm.
(3)被覆層が、フッ素系イオン交換樹脂の薄膜である
請求項1に記載の方法。
(3) The method according to claim 1, wherein the coating layer is a thin film of a fluorine-based ion exchange resin.
(4)被覆層が、TiO_2、Ta_2O_5、ZrO
_2、SnO_2、WO_3、HfO_2及びこれらの
複合酸化物から成る群から選択される薄膜である請求項
1に記載の方法。
(4) The coating layer is TiO_2, Ta_2O_5, ZrO
2. The method according to claim 1, wherein the thin film is selected from the group consisting of _2, SnO_2, WO_3, HfO_2, and composite oxides thereof.
JP63224549A 1988-09-09 1988-09-09 Copper plating method for printed circuit boards Expired - Lifetime JPH0673393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63224549A JPH0673393B2 (en) 1988-09-09 1988-09-09 Copper plating method for printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63224549A JPH0673393B2 (en) 1988-09-09 1988-09-09 Copper plating method for printed circuit boards

Publications (2)

Publication Number Publication Date
JPH0273689A true JPH0273689A (en) 1990-03-13
JPH0673393B2 JPH0673393B2 (en) 1994-09-14

Family

ID=16815533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63224549A Expired - Lifetime JPH0673393B2 (en) 1988-09-09 1988-09-09 Copper plating method for printed circuit boards

Country Status (1)

Country Link
JP (1) JPH0673393B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147572A (en) * 2001-10-02 2003-05-21 Shipley Co Llc Plating bath and method for depositing metallic layer on substrate
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode
JP2013216958A (en) * 2012-04-11 2013-10-24 Matex Japan Co Ltd Insoluble metal electrode, electrolytic device and plating method
WO2015008564A1 (en) * 2013-07-18 2015-01-22 ペルメレック電極株式会社 Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP2017115221A (en) * 2015-12-25 2017-06-29 住友電工プリントサーキット株式会社 Printed wiring board plating device and printed wiring board manufacturing method
WO2017204246A1 (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597484A (en) * 1979-01-16 1980-07-24 Hitachi Ltd Insoluble electrode and its manufacture
JPS57149480A (en) * 1981-03-11 1982-09-16 Showa Denko Kk Electrochemical apparatus with insoluble electrode
JPS62166265U (en) * 1986-04-08 1987-10-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597484A (en) * 1979-01-16 1980-07-24 Hitachi Ltd Insoluble electrode and its manufacture
JPS57149480A (en) * 1981-03-11 1982-09-16 Showa Denko Kk Electrochemical apparatus with insoluble electrode
JPS62166265U (en) * 1986-04-08 1987-10-22

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147572A (en) * 2001-10-02 2003-05-21 Shipley Co Llc Plating bath and method for depositing metallic layer on substrate
JP2007169700A (en) * 2005-12-21 2007-07-05 Victor Co Of Japan Ltd Copper electroplating method using insoluble anode
JP2013216958A (en) * 2012-04-11 2013-10-24 Matex Japan Co Ltd Insoluble metal electrode, electrolytic device and plating method
WO2015008564A1 (en) * 2013-07-18 2015-01-22 ペルメレック電極株式会社 Continuous manufacturing method for electrolytic metal foil and continuous manufacturing device for electrolytic metal foil
JP2015021154A (en) * 2013-07-18 2015-02-02 ペルメレック電極株式会社 Method and apparatus for continuous product of electrolytic metal foil
JP2017115221A (en) * 2015-12-25 2017-06-29 住友電工プリントサーキット株式会社 Printed wiring board plating device and printed wiring board manufacturing method
WO2017204246A1 (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid
JP2017210644A (en) * 2016-05-24 2017-11-30 メルテックス株式会社 Soluble copper anode, electrolytic copper plating apparatus, electrolytic copper plating method, and storage method of acidic electrolytic copper plating liquid
CN109154100A (en) * 2016-05-24 2019-01-04 美录德有限公司 Soluble copper anode, cathode copper electroplanting device, plating method of electrocytic copper and acidic electrolysis copper electroplating liquid store method

Also Published As

Publication number Publication date
JPH0673393B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
US8262871B1 (en) Plating method and apparatus with multiple internally irrigated chambers
JP5293276B2 (en) Continuous electrolytic copper plating method
EP0462943B1 (en) Method of copper plating
EP1264918A1 (en) Electrolytic copper plating method
US6852209B2 (en) Insoluble electrode for electrochemical operations on substrates
JP4490426B2 (en) Insoluble anode with auxiliary electrode
JP2003503598A5 (en)
WO2017204246A1 (en) Soluble copper anode, electrolytic copper plating device, electrolytic copper plating method, and method for preserving acidic electrolytic copper plating liquid
JP3352081B2 (en) Printed circuit board copper plating equipment
JPH0273689A (en) Copper plating method for printed board
TWI683931B (en) Anode for electrolytic copper plating and electrolytic copper plating device using the same
US4586998A (en) Electrolytic cell with low hydrogen overvoltage cathode
JP2510422B2 (en) Copper plating method for printed circuit boards
US6432293B1 (en) Process for copper-plating a wafer using an anode having an iridium oxide coating
JPH06146052A (en) Production of metallic foil by electrolysis
KR100934729B1 (en) Electroless Tin Plating Solution Impurity Removal Apparatus and Method
JP5676515B2 (en) Insoluble metal electrode, electrolysis apparatus, and plating method
KR20200012207A (en) Continuous plating apparatus
KR100586842B1 (en) Composition for acidic copper plating additive producing no slime
KR100925618B1 (en) Electolyric tin plating process using insolulble anode
CN117265607A (en) Blind hole metal piece and electroplating method thereof
JP2023036913A (en) Anodization treatment method of aluminum or aluminum alloy, and hole sealing treatment of anodic oxide film
JPH01184281A (en) Chemical etching method with iodine
JP2002053992A (en) Method for manufacturing metallic foil
JPH04193977A (en) Method for electroplating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 14

EXPY Cancellation because of completion of term