JPH0270407A - Molding die - Google Patents

Molding die

Info

Publication number
JPH0270407A
JPH0270407A JP22235088A JP22235088A JPH0270407A JP H0270407 A JPH0270407 A JP H0270407A JP 22235088 A JP22235088 A JP 22235088A JP 22235088 A JP22235088 A JP 22235088A JP H0270407 A JPH0270407 A JP H0270407A
Authority
JP
Japan
Prior art keywords
medium
flow channel
temperature control
flow path
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22235088A
Other languages
Japanese (ja)
Inventor
Kiyoshi Wada
清 和田
Masayuki Muranaka
昌幸 村中
Masamichi Takeshita
竹下 正道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22235088A priority Critical patent/JPH0270407A/en
Publication of JPH0270407A publication Critical patent/JPH0270407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To form a plastic optical part of high accuracy at low cost by shaping a heat medium flow channel in a simple disk shape. CONSTITUTION:A temperature control heat medium in a tank 16 is heated up to the temperature set in a controller by a heater in the tank 16. The heated temperature control medium is sucked in negative pressure by a pump 17 through a molding die 1. That is, the temperature control heat medium coming out of the tank 16 passes through a hose 15 and proceeds to a medium inlet plate 7b. Then the same passes through a medium outlet plate 6b and the center of an adapter plate 5b, and is transferred from a central flow channel 23b of a flow channel block 4b to a disk-shaped channel 19b. The temperature control medium is expanded in a concentric shape in the disk-shaped flow channel 19b. The temperature control medium expanded fully inside the disk-shaped flow channel 19b flows into a cylindrical flow channel 20b. Then, the temperature control medium is transferred to a flow channel 24 of the medium outlet plate 6b through a through-hole 21 of the adapter 5b. Then, the same is sucked from a hose 15 into the pump 17 and returned to the tank 16 again. A molding die is heated up to the molding starting temperature by said action.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はプラスチックレンズのようなプラスチック光学
部品の成形金型に係り、特に高精度のプラスチック部品
に好適な金型構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold for molding plastic optical parts such as plastic lenses, and particularly to a mold structure suitable for high-precision plastic parts.

〔従来の技術〕[Conventional technology]

プラスチックレンズのような高精度の光学部品の成形に
おいて、光学面を賦形する金型面の温度が不均一な状態
で成形を行うと、成形品の材料密度の差が生じ、冷却時
の収縮度に相違が生じるために成形品に捩り1反りなど
の変形を生じさせてしまう。したがって金型面の温度を
均一状態とする必要がある。
When molding high-precision optical parts such as plastic lenses, if the temperature of the mold surface that shapes the optical surface is uneven, a difference in material density will occur in the molded product, causing shrinkage during cooling. Due to the difference in degree, deformations such as torsion and warpage occur in the molded product. Therefore, it is necessary to keep the temperature of the mold surface uniform.

成形工程中に加熱、冷却を行う場合、成形サイクルを短
縮し、かつ温度均一化を図るには、大流量の熱媒体を、
光学面を賦形する金型面の近くを通すことが望まれる。
When heating and cooling during the molding process, in order to shorten the molding cycle and equalize the temperature, it is necessary to use a large flow rate of heat medium.
It is desirable to pass it near the mold surface that shapes the optical surface.

熱媒体流路が金型面に近づくと、流路形状が金型面の温
度分布に影響を与える。プラスチックレンズやディスク
の場合、その形状が回転対称形を維持しなければならな
い。そのため熱媒体流路形状も回転対称形に近くなけれ
ばならない。
When the heat medium flow path approaches the mold surface, the flow path shape affects the temperature distribution on the mold surface. In the case of plastic lenses and disks, their shape must maintain rotational symmetry. Therefore, the shape of the heat medium flow path must also be close to rotationally symmetrical.

以上のことから特開昭57−187211号公報に記載
のような同心円的な熱媒体流路構造を有する成形金型が
提案されている。
In view of the above, a molding die having a concentric heat medium flow path structure as described in Japanese Patent Application Laid-Open No. 57-187211 has been proposed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、下記の問題点があった61)金型加工
費の点について配慮がされていなかった。すなわち同心
円状の熱媒体流路構造が複雑となり、加工時間を要して
いた。そのため金型加工費が高くなり、ひいては成形品
の価格の増加となった。
The above conventional technology had the following problems: 61) No consideration was given to mold processing costs. In other words, the structure of the concentric heat medium flow path becomes complicated, and processing time is required. This resulted in higher mold processing costs, which in turn led to an increase in the price of the molded product.

2)同心円伏流路では、流路の断面積は大きくても金型
面の断面積の1/2程度にしかならない。
2) In a concentric underground flow path, the cross-sectional area of the flow path is only about 1/2 of the cross-sectional area of the mold surface, even if it is large.

この場合、流路の部分と流路でない部分では熱伝導が異
なるため、温度分布を発生する。また流路形状は完全な
回転対称形にはなり得ない。
In this case, heat conduction is different between the channel portion and the non-channel portion, resulting in a temperature distribution. Further, the flow path shape cannot be completely rotationally symmetrical.

そのため、成形品の精度が劣化する。Therefore, the precision of the molded product deteriorates.

本発明の目的は、上記欠点をなくし、高精度のプラスチ
ック光学部品を低コストで実現することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to realize a high-precision plastic optical component at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、熱媒体流路形状を簡単な形状である円板形
状とすることにより達成される。
The above object is achieved by making the heat medium flow path shape into a simple disk shape.

ただし、流路形状を円板形状とすることにより新たな問
題点が発生するが、以下の解決手段を用いた。
However, a new problem arises when the flow path is shaped like a disk, but the following solution was used.

1)円板形状流路内に、光学面を有する金型入駒側に接
して補強用支えを数ケ所設置する。
1) Install reinforcing supports at several locations in the disc-shaped channel in contact with the mold entry side having an optical surface.

2)上記補強用支えとして低熱伝導で高強度の物質を用
いる。
2) A material with low thermal conductivity and high strength is used as the reinforcing support.

〔作用〕[Effect]

円板形状流路では、中心を入口とし、周辺を出口側とす
ることにより、中心より流出された熱媒体は同心円状に
拡がっていき、外周より出口に向かう。したがって中心
から等距離の位置は全て同じ温度となる。その結果、成
形品は中心から等距離の位置は全て収縮量が同じくなる
。即ち成形品は回転対称形を維持できる。
In the disk-shaped flow path, the center is the inlet and the periphery is the outlet, so that the heat medium flowing out from the center spreads concentrically and moves toward the outlet from the outer periphery. Therefore, all positions equidistant from the center have the same temperature. As a result, all positions equidistant from the center of the molded product have the same amount of shrinkage. That is, the molded product can maintain a rotationally symmetrical shape.

また円板形状流路では、入口と出口の構造だけであるの
で、円板形状自体には特別な形状の加工は必要ない、し
たがって金型加工時間を短縮することができる。
Furthermore, since the disk-shaped channel has only an inlet and an outlet structure, the disk shape itself does not require any special processing, and therefore mold processing time can be shortened.

熱媒体流路は金型面の近くに設けてあるため、円板形状
流路の場合、金型入駒の肉厚が薄くなり強度が劣化する
。しかし数ケ所に設けた高強度の補強用支えにより、樹
脂圧による金型入駒の変形を防止できる。
Since the heat medium flow path is provided near the mold surface, in the case of a disk-shaped flow path, the wall thickness of the mold insert piece becomes thinner and the strength deteriorates. However, high-strength reinforcing supports provided at several locations can prevent the mold pieces from deforming due to resin pressure.

上記補強用支えは低熱伝導物質であるので、同心円伏流
路の場合に発生したような温度分布の発生を防止できる
Since the reinforcing support is made of a material with low thermal conductivity, it is possible to prevent the occurrence of temperature distribution that occurs in the case of concentric underground channels.

〔実施例〕〔Example〕

以下1本発明の一実施例を第1図〜第4図により説明す
る。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図は本発明の一実施例の成形金型の断面図である。FIG. 1 is a sectional view of a molding die according to an embodiment of the present invention.

成形金型1は固定架体2a、可動架体2b、レンズ11
の1方の面の賦型する固定入駒3a、可動人駒3b、流
路ブロック4a、4b、アダプタ板5a、5b、媒体入
口板6a、6b、媒体出口板7a、7b、加圧板8.油
圧シリンダ9により構成されている。成形金型rの中に
は成形機(図示せず)とキャビティ10を結ぶスプル1
2、ランナ13、ゲート14が存在する。また固定入駒
3a、可動入駒3bと流路ブロック4a。
The molding die 1 includes a fixed frame 2a, a movable frame 2b, and a lens 11.
A fixed input piece 3a, a movable human piece 3b, flow path blocks 4a, 4b, adapter plates 5a, 5b, medium inlet plates 6a, 6b, medium outlet plates 7a, 7b, pressure plate 8. It is composed of a hydraulic cylinder 9. Inside the mold r is a sprue 1 that connects the molding machine (not shown) and the cavity 10.
2, a runner 13, and a gate 14 are present. Also, a fixed insert piece 3a, a movable insert piece 3b, and a flow path block 4a.

4bとの間には熱媒体流路が設けられる。各流路ブロッ
ク4a、4bの中心を通る流路は各媒体入口板6a、6
bからホース15によりタンク16に接続されている。
4b, a heat medium flow path is provided. A flow path passing through the center of each flow path block 4a, 4b is connected to each medium inlet plate 6a, 6.
b is connected to a tank 16 by a hose 15.

また各流路ブロック4a、4bと固定入駒3a、可動入
駒3bとの間に設けられた流路は各媒体出口板6a、6
bよりホース15を通じポンプ17に接続されている。
In addition, the flow paths provided between each flow path block 4a, 4b, fixed input piece 3a, and movable input piece 3b are connected to each medium outlet plate 6a, 6.
b is connected to a pump 17 through a hose 15.

タンク16とポンプ17も接続されている。また油圧シ
リンダ9は油圧ポンプ18に接続されている。
A tank 16 and a pump 17 are also connected. Further, the hydraulic cylinder 9 is connected to a hydraulic pump 18.

第2図は第1図の成形金型の可動入駒3b周辺の拡大断
面図である。可動入駒3bは光学面と反対側を凹形状と
しである。 この凹形状の底面3b1と流路ブロック4
bは一定の間隔を有して配置される。ここで金型入駒底
面3b1と流路ブロック4bで形成される空間19bは
第3図に示すように円板形状流路となる。
FIG. 2 is an enlarged sectional view of the vicinity of the movable insert piece 3b of the mold shown in FIG. The movable inserting piece 3b has a concave shape on the side opposite to the optical surface. This concave bottom surface 3b1 and the channel block 4
b are arranged at regular intervals. Here, the space 19b formed by the mold inserting piece bottom surface 3b1 and the channel block 4b becomes a disk-shaped channel as shown in FIG.

また前記可動入駒3bの凹形状内側面3b2と流路ブロ
ック4b外側面は一定の間隔を有して配置されている。
Further, the concave inner surface 3b2 of the movable inserting piece 3b and the outer surface of the flow path block 4b are arranged with a constant interval.

ここで形成される空間20bは円筒形状流路となる。円
筒形状流路20bはさらにアダプタ板5bを介し媒体入
口板6bに通じている。アダプタ板5bは第4図に示す
ように数ケ所の貫通孔21bを有している。媒体入口板
6bでは各貫通孔21bによる流路を1本にまとめる流
路24構造となっている。
The space 20b formed here becomes a cylindrical flow path. The cylindrical channel 20b further communicates with the medium inlet plate 6b via the adapter plate 5b. The adapter plate 5b has several through holes 21b as shown in FIG. The medium inlet plate 6b has a flow path 24 structure in which the flow paths formed by the through holes 21b are combined into one.

円板形状流路19b1円筒形状流路20b中には数ケ所
補強用支え22が配置されている。この補強用支え22
は高強度で低熱伝導の物質で作られている。
Reinforcing supports 22 are arranged at several locations in the disc-shaped flow path 19b1 and the cylindrical flow path 20b. This reinforcing support 22
is made of a material with high strength and low thermal conductivity.

以上のように構成された成形金型の動作を説明する。な
お温調媒体の動作は可動側のみ説明するが固定側も同様
である。
The operation of the molding die configured as above will be explained. Note that the operation of the temperature regulating medium will be explained only on the movable side, but the same applies to the fixed side.

タンク16内のヒータ(図示せず)により、タンク16
内の温調媒体をコントローラ(図示せず)に設定された
温度に加熱する。加熱された温調媒体はポンプ17によ
り成形金型1を介して負圧で引き込まれる。すなわちタ
ンク16を出た温調媒体はホース15を通り媒体入口板
7bに進む。そして媒体出口板6b、アダプタ板5bの
中心を通り流路ブロック4bの中心流路23bから円板
形状流路19bに送られる6円板形状流路19b内で温
調媒体は同心円状に拡がっていく。そして円板形状流路
19b内いっばいに拡がった温調媒体は円筒形状流路2
0bに流れ込む。その後温調媒体はアダプタ5bの貫通
孔21を介して媒体出口板6bの流路24に移る。そし
てホース15からポンプ17内に吸い込まれ、再びタン
ク16に戻る。この動作により成形金型は成形開始温度
まで加熱される。ここで可動入駒3bの光学面の温度の
回転対称性は非常に優れている。
A heater (not shown) in the tank 16 causes the tank 16 to
The temperature regulating medium inside the chamber is heated to a temperature set in a controller (not shown). The heated temperature regulating medium is drawn through the molding die 1 by the pump 17 under negative pressure. That is, the temperature regulating medium leaving the tank 16 passes through the hose 15 and advances to the medium inlet plate 7b. The temperature control medium then spreads concentrically within the 6-disc-shaped channel 19b that passes through the center of the medium outlet plate 6b and the adapter plate 5b and is sent from the center channel 23b of the channel block 4b to the disc-shaped channel 19b. go. The temperature regulating medium that has spread all the way inside the disc-shaped channel 19b is the cylindrical channel 2.
Flows into 0b. Thereafter, the temperature regulating medium moves to the flow path 24 of the medium outlet plate 6b via the through hole 21 of the adapter 5b. Then, it is sucked into the pump 17 through the hose 15 and returns to the tank 16 again. This operation heats the mold to the molding start temperature. Here, the rotational symmetry of the temperature of the optical surface of the movable inserting piece 3b is very excellent.

次に成形4i(図示せず)より溶融樹脂が射出され、ス
プル12、ランナ13、ゲート14を介してキャビティ
10に充填される。その後、油圧ポンプ18により油圧
シリンダ9を前進させ加圧板8を介して成形品11を圧
縮する。それと同時にタンク16内の温調媒体を所定の
温度に冷却し、前述と同様の動作により温調媒体を円板
形状流路19b1円筒形状流路20bに送る。この時点
においても温調媒体は完全な同心円状に拡がるため温度
の回転対称性には優れている。
Next, molten resin is injected from a mold 4i (not shown) and filled into the cavity 10 via the sprue 12, runner 13, and gate 14. Thereafter, the hydraulic cylinder 9 is advanced by the hydraulic pump 18 to compress the molded product 11 via the pressure plate 8. At the same time, the temperature regulating medium in the tank 16 is cooled to a predetermined temperature, and the temperature regulating medium is sent to the disk-shaped channel 19b1 and the cylindrical channel 20b by the same operation as described above. Even at this point, the temperature regulating medium spreads in a perfect concentric circle, so the rotational symmetry of the temperature is excellent.

射出時、及び圧縮時に可動入駒3bには400〜100
0kg/cdの圧力が付加されたが、補強用支え22と
してセラミックを使用しているため変形することはなか
った。
400 to 100 to the movable entry piece 3b during injection and compression.
Although a pressure of 0 kg/cd was applied, no deformation occurred because ceramic was used as the reinforcing support 22.

冷却が終了すると成形品は取り出され、再び温調媒体は
加熱され、最初の状態に戻る。
When cooling is completed, the molded product is taken out and the temperature control medium is heated again to return to its initial state.

取り出された成形品は回転対称性の優れた高精度である
The molded product taken out has high precision with excellent rotational symmetry.

入駒3bとアダプタ板5b、アダプタ板5bと流路ブロ
ック4b、アダプタ板5bと媒体出口板6b、媒体出口
板6bと媒体入口板7bは銀ロウ付で容易に密着させる
ことができ、媒体の漏れなどの心配はない。
The input piece 3b and the adapter plate 5b, the adapter plate 5b and the flow path block 4b, the adapter plate 5b and the medium outlet plate 6b, and the medium outlet plate 6b and the medium inlet plate 7b can be easily brought into close contact with each other by silver soldering. There is no need to worry about leaks.

なお本実施例では金型の加熱・冷却時に温調媒体を加熱
・冷却したが、タンクを複数装備し、各タンクの温調媒
体を異なる温度としておき、切換あるいは混合比率を変
化させてもさしつがえない。
In this example, the temperature control medium was heated and cooled when heating and cooling the mold, but it is also possible to install multiple tanks, set the temperature control medium in each tank at a different temperature, and change the switching or mixing ratio. I can't stand it.

また本実施例では加熱−冷却の温度パターンであるが一
定温度でもさらに複雑な温度パターンであってもかまわ
ない。また本実施例では射出圧縮成形の場合であるが、
射出成形や圧縮成形であっても問題はない。
Furthermore, although the present embodiment uses a heating-cooling temperature pattern, it may be a constant temperature or a more complicated temperature pattern. Furthermore, although this example deals with injection compression molding,
There is no problem with injection molding or compression molding.

以上のように中心流路から円板形状流路、円筒形状流路
へ移動する構造とすることにより、金型温度の回転対称
性を向上でき、成形品の精度を向上することができた。
By creating a structure in which the flow moves from the central flow path to the disk-shaped flow path and then to the cylindrical-shaped flow path as described above, it was possible to improve the rotational symmetry of the mold temperature and improve the precision of the molded product.

また、本発明の構造とすることにより複雑な同心円状流
路の加工は必要なく、単なる平面と円の加工でよいため
加工時間が短縮できた。すなわち金型加工費用が安くな
りひいては成形品のコスト低下となった。
Further, by adopting the structure of the present invention, there is no need to process complicated concentric circular flow channels, and machining of simply planes and circles is sufficient, so that the machining time can be shortened. In other words, the cost of mold processing became cheaper, which in turn led to a reduction in the cost of molded products.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、熱媒体流路を円板形状と
することにより、金型温度の回転対称性を従来の1/2
以下に低減でき、精度を2倍以上に向上できた。また、
円板形状流路により流路形状を簡素にでき金型加工費を
低減できた。
As described above, according to the present invention, by making the heat medium flow path into a disk shape, the rotational symmetry of the mold temperature can be reduced to 1/2 that of the conventional one.
The accuracy was more than doubled. Also,
The disk-shaped flow path made it possible to simplify the flow path shape and reduce mold processing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の成形金型の断面図、第2図
は第1図の成形金型の主要部の拡大断面図。 第3図は第2図のI−1線矢視図、第4図は第2図のn
−n線矢視図である。 1・・・成形金型、3a、3b・・・固定、可動入駒、
6・・・媒体出口板、7・・・媒体入口板、19・・・
円板形状流路、20・・・円筒形状流路、23・・・中
心流路。 躬 I /ど /7 第 図 第 回
FIG. 1 is a cross-sectional view of a molding die according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the main parts of the molding die shown in FIG. 1. Figure 3 is a view taken along the line I-1 in Figure 2, and Figure 4 is a view of n in Figure 2.
-N line arrow view. 1... Molding mold, 3a, 3b... Fixed, movable insert piece,
6... Medium outlet plate, 7... Medium inlet plate, 19...
Disk-shaped channel, 20... Cylindrical channel, 23... Center channel.謬I/Do/7 Figure No. 1

Claims (1)

【特許請求の範囲】[Claims] 1、光学面を賦形する金型入駒の光学面と反対側の面と
、中心に熱媒体用の流路が設けてある流路ブロックを一
定の間隔を有して配置し、前記金型入駒の光学面と反対
側の面と前記流路ブロックで挟まれた円板形状の空間を
熱媒体流路としたことを特徴とする成形金型。
1. The surface of the mold inserting piece that shapes the optical surface opposite to the optical surface and the flow path block having a flow path for the heat medium in the center are arranged at a constant interval, and the mold A molding die characterized in that a disc-shaped space sandwiched between the surface of the input piece opposite to the optical surface and the flow path block is used as a heat medium flow path.
JP22235088A 1988-09-07 1988-09-07 Molding die Pending JPH0270407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22235088A JPH0270407A (en) 1988-09-07 1988-09-07 Molding die

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22235088A JPH0270407A (en) 1988-09-07 1988-09-07 Molding die

Publications (1)

Publication Number Publication Date
JPH0270407A true JPH0270407A (en) 1990-03-09

Family

ID=16780964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22235088A Pending JPH0270407A (en) 1988-09-07 1988-09-07 Molding die

Country Status (1)

Country Link
JP (1) JPH0270407A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545366A (en) * 1994-06-10 1996-08-13 Lust; Victor Molding arrangement to achieve short mold cycle time and method of molding
US5702735A (en) * 1994-06-10 1997-12-30 Johnson & Johnson Vision Products, Inc. Molding arrangement to achieve short mold cycle time
AU716599B2 (en) * 1994-06-10 2000-03-02 Johnson & Johnson Vision Products, Inc. Molding arrangement to achieve short mold cycle time
JP2015058643A (en) * 2013-09-19 2015-03-30 日本電気株式会社 Mold and injection molding method
JP2015182415A (en) * 2014-03-26 2015-10-22 日本電気株式会社 mold apparatus and molding method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545366A (en) * 1994-06-10 1996-08-13 Lust; Victor Molding arrangement to achieve short mold cycle time and method of molding
US5702735A (en) * 1994-06-10 1997-12-30 Johnson & Johnson Vision Products, Inc. Molding arrangement to achieve short mold cycle time
AU716599B2 (en) * 1994-06-10 2000-03-02 Johnson & Johnson Vision Products, Inc. Molding arrangement to achieve short mold cycle time
JP2015058643A (en) * 2013-09-19 2015-03-30 日本電気株式会社 Mold and injection molding method
JP2015182415A (en) * 2014-03-26 2015-10-22 日本電気株式会社 mold apparatus and molding method

Similar Documents

Publication Publication Date Title
JP2662023B2 (en) Injection molding method and apparatus
GB1223084A (en) Mold for injection-molding of thermoset materials
US4462780A (en) Injection molding apparatus
JPH0270407A (en) Molding die
JP3507178B2 (en) Manufacturing method of plastic sheet
JPS60242022A (en) Injection device
JPH05177640A (en) Temperature control structure of mold
CN110450368B (en) High heat dissipation injection mold
JPS6260622A (en) Injection compression mold
JPH05278088A (en) Mold for molding optical disc
JPS63296912A (en) Injection molding device
JP4084525B2 (en) Optical disk mold and optical disk substrate molding method
JPS61233520A (en) Preparation of molded product
KR860000803B1 (en) Hot sprue assembly for an infection molding machine
JPS61290024A (en) Mold for molding plastic lens
JPH0724890A (en) Injection mold and injection molding method
JPH058261A (en) Mold for molding plastic lens
CN116766491A (en) Injection molding method and mold for plastic product
JP2002172628A (en) Manufacturing method and device for rubber product
JPH0243009A (en) Plastic molding mold
JPS61182918A (en) Injection compression mold
SU1516366A1 (en) Method and apparatus for manufacturing articles by injection moulding of thermoplastics
JP4694287B2 (en) Mold for molding
JPS6391216A (en) Molding mold
JPH01115606A (en) Resin molding die