JPH0248439A - Glass fiber bundle and production of fiber-reinforced resin form using same - Google Patents
Glass fiber bundle and production of fiber-reinforced resin form using sameInfo
- Publication number
- JPH0248439A JPH0248439A JP63194533A JP19453388A JPH0248439A JP H0248439 A JPH0248439 A JP H0248439A JP 63194533 A JP63194533 A JP 63194533A JP 19453388 A JP19453388 A JP 19453388A JP H0248439 A JPH0248439 A JP H0248439A
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- glass fiber
- epoxy
- frp
- epoxy resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003365 glass fiber Substances 0.000 title claims abstract description 47
- 229920005989 resin Polymers 0.000 title claims description 22
- 239000011347 resin Substances 0.000 title claims description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 35
- 239000004593 Epoxy Substances 0.000 claims abstract description 26
- 239000003822 epoxy resin Substances 0.000 claims abstract description 22
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 22
- 238000001035 drying Methods 0.000 claims abstract description 20
- 239000007787 solid Substances 0.000 claims abstract description 15
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims abstract description 13
- 238000010992 reflux Methods 0.000 claims abstract description 9
- 238000004513 sizing Methods 0.000 claims description 25
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 22
- 238000000862 absorption spectrum Methods 0.000 claims description 9
- 239000000284 extract Substances 0.000 claims description 9
- 229920001187 thermosetting polymer Polymers 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 6
- 238000004506 ultrasonic cleaning Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 abstract description 11
- 238000009835 boiling Methods 0.000 abstract description 7
- 239000000835 fiber Substances 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 238000002835 absorbance Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 11
- 125000003118 aryl group Chemical group 0.000 description 7
- 125000003700 epoxy group Chemical group 0.000 description 6
- 239000012783 reinforcing fiber Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- -1 fatty acid esters Chemical class 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 239000011342 resin composition Substances 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LCFVJGUPQDGYKZ-UHFFFAOYSA-N Bisphenol A diglycidyl ether Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C(C=C1)=CC=C1OCC1CO1 LCFVJGUPQDGYKZ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- XUCHXOAWJMEFLF-UHFFFAOYSA-N bisphenol F diglycidyl ether Chemical compound C1OC1COC(C=C1)=CC=C1CC(C=C1)=CC=C1OCC1CO1 XUCHXOAWJMEFLF-UHFFFAOYSA-N 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 101150087532 mitF gene Proteins 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000010215 titanium dioxide Nutrition 0.000 description 1
- 238000002137 ultrasound extraction Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は繊維補強樹脂体(FRP)の製造に好適に用い
られるガラス繊維束並びにFRPの製造方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a glass fiber bundle suitably used for manufacturing fiber reinforced resin (FRP) and a method for manufacturing FRP.
[従来の技術]
ラッシングから引出したガラス繊維に集束剤を対手、集
束、乾燥してなるガラス繊維束(ストランド)はFRP
の製造に広く用いられる。[Prior art] Glass fiber bundles (strands) obtained by applying a sizing agent to glass fibers pulled out from a lashing, converging, and drying are FRP.
Widely used in the production of
集束剤の成分はストランドの使用目的に応じて選択され
るか、エポキシ樹脂を被膜形成剤として使用した集束剤
は、高強度FRP用ストストランドるために賞用されて
いる。The components of the sizing agent are selected depending on the purpose of use of the strand, and sizing agents using epoxy resin as a film forming agent are used for forming strands for high-strength FRP.
高強度を必要とするFRPは、補強用繊維として長尺の
ストランドを用い、このストランドに液状の熱硬化性樹
脂を含浸させ、ストランドを緊張せしめた状態で該樹脂
を硬化させることによって製造される。FRP, which requires high strength, is manufactured by using long strands as reinforcing fibers, impregnating these strands with liquid thermosetting resin, and curing the resin while keeping the strands under tension. .
このような高強度FRPの製造法としては引抜き成型法
、フィラメントワインディング法(FW法)か知られて
いる。As methods for manufacturing such high-strength FRP, pultrusion molding method and filament winding method (FW method) are known.
[発明が解決しようとする課題]
高強度FRPに要、求される性能は近時次第にシビャに
なっており、強度が大きく、煮沸試験後或は繰返し応力
を与えた場合の強度低下の小さい製品が要望されている
。[Problems to be solved by the invention] The performance required of high-strength FRP has become increasingly severe in recent years, and products with high strength and small strength loss after boiling tests or when subjected to repeated stress are needed. is requested.
強度は、FRP中の補強繊維の含有率を大とする程向上
するか、補強繊維の含有率を大とすると液状の熱硬化性
樹脂の含浸か不均一となり易い。The strength improves as the content of reinforcing fibers in FRP increases, or if the content of reinforcing fibers increases, the impregnation of the liquid thermosetting resin tends to become uneven.
又補強繊維として強度の大きい、炭素繊維、アラミド繊
維のような特殊繊維を用いることにより、FRPの強度
を向上させることができるが、このような特殊繊維は、
FRP用として汎用されているガラス繊維に比し高価で
あり、価格面から用途が制約される難点がある。In addition, the strength of FRP can be improved by using special fibers with high strength such as carbon fibers and aramid fibers as reinforcing fibers.
It is more expensive than glass fiber, which is commonly used for FRP, and its uses are restricted due to price.
本発明は、強度が大きく、煮沸試験後或は繰返し応力を
与えた場合の強度低下の小さいFRPの得られるような
ガラス繊維束(ストランド)、並びにストランドを用い
、強度か大きく、煮沸試験後或は繰返し応力を与えた場
合の強度低下の小さいFRPを得る方法を提供すること
を目的としている。The present invention uses glass fiber bundles (strands) and strands that provide FRP that has high strength and exhibits a small decrease in strength after a boiling test or when subjected to repeated stress. The objective is to provide a method for obtaining FRP with a small decrease in strength when subjected to repeated stress.
[課題を解決するための手段コ
上記目的を達成するために、本発明においては、FRP
用補強amとして、ガラス繊維にエポキシ樹脂を含む集
束剤を対手集束、乾燥してなる長尺ガラス繊維束てあり
且つ、ガラス繊維束20grをジオキサン25mlを用
いて1時間還流抽出した溶液に含まれるエポキシ化合物
のエポキシ当量が600以下であり、且つ好ましくはこ
の溶液の固型分含有量が0.02〜0.5grであるガ
ラス繊維束、更に好ましくは上記条件を満足し、且つ、
ガラス繊維束50grをクロロホルム300mlを用い
て2時間超音波洗浄して抽出した溶液の赤外吸収スペク
トルの916cm−”付近のエポキシ基の吸光度と82
0 cm−’付近の芳香族隣接2Hの吸光度を夫々A、
BとしたときA/Bか0.2以上であるガラス繊維束を
用い、又ガラス繊維束にエポキシ樹脂を含む集束剤を対
手集束、乾燥してなる長尺ガラス繊維束であり、且つこ
のガラス繊維束20grをジオキサン25+wJlを用
いて1時間還流抽出した溶液に含まれるエポキシ樹脂の
エポキシ裏層が600以下であり、且つ好ましくはこの
溶液の固型分含有量が0.02〜0.5grである長尺
のガラス繊維束に液状の熱硬化性樹脂を含浸させ、この
ガラス繊維束を緊張した状態で硬化せしめることにより
繊維補強樹脂体を製造し、或は更に好ましくは上記条件
を満足し、且つこのガラス繊維束50grをクロロホル
ム300mlを用いて2時間超音波洗浄して抽出した溶
液の赤外吸収スペクトルの916 cm−’付近のエポ
キシ基の吸光度と820CI−’付近の芳香族隣接2H
の吸光度を夫々A、 BとしたときA/Bか0.2以上
である長尺のガラスm雄束に液状の熱硬化性樹脂を含浸
させ、このガラス繊維束を緊張した状態で硬化せしめる
ことによりFa雄補強樹脂体を製造する。[Means for Solving the Problems] In order to achieve the above object, in the present invention, FRP
As a reinforcement am, a long glass fiber bundle is prepared by manually focusing and drying a sizing agent containing an epoxy resin on glass fibers, and the glass fiber bundle is contained in a solution obtained by extracting 20 gr of glass fiber bundle under reflux for 1 hour using 25 ml of dioxane. A glass fiber bundle in which the epoxy equivalent of the epoxy compound contained is 600 or less, and preferably the solid content of the solution is 0.02 to 0.5 gr, more preferably satisfying the above conditions, and
The absorbance of the epoxy group near 916 cm-'' in the infrared absorption spectrum of the solution extracted by ultrasonically cleaning 50 gr of glass fiber bundle with 300 ml of chloroform for 2 hours and 82
The absorbance of aromatic adjacent 2H near 0 cm-' is A, respectively.
A long glass fiber bundle is obtained by using a glass fiber bundle whose A/B ratio is 0.2 or more when B is used, and by manually focusing a sizing agent containing an epoxy resin on the glass fiber bundle and drying it. The epoxy backing layer of the epoxy resin contained in the solution obtained by extracting 20 gr of glass fiber bundles using dioxane 25 + wJl under reflux for 1 hour is 600 or less, and preferably the solid content of this solution is 0.02 to 0.5 gr. A fiber-reinforced resin body is manufactured by impregnating a long glass fiber bundle with a liquid thermosetting resin and curing the glass fiber bundle under tension, or more preferably, a fiber-reinforced resin body that satisfies the above conditions. , and the absorbance of the epoxy group near 916 cm-' and the aromatic adjacent 2H near 820 CI-' of the infrared absorption spectrum of the solution extracted by ultrasonically cleaning 50 gr of this glass fiber bundle with 300 ml of chloroform for 2 hours.
Impregnating a long male bundle of glass with a liquid thermosetting resin in which A/B is 0.2 or more when the absorbance of A and B are respectively, and hardening the glass fiber bundle under tension. An Fa male reinforced resin body is manufactured by the following steps.
次に本発明を更に具体的に説明する。Next, the present invention will be explained in more detail.
本発明者は、集束剤としてエポキシ樹脂を使用したスト
ランドを用いて得られる高強度FRPの引張り強度、剪
断強度等の性能を一層向上させ、且つ煮沸試験後或は繰
返し応力を与えた場合の強度低下の小さいFRPを得る
ため幾多の実験を重ねた結果法の知見を得た。The present inventor has aimed to further improve the tensile strength, shear strength, and other properties of high-strength FRP obtained using strands using epoxy resin as a sizing agent, and to improve the strength after a boiling test or when subjected to repeated stress. As a result of numerous experiments, we have obtained the knowledge of a method to obtain FRP with minimal deterioration.
(1)エポキシ樹脂を被膜形成剤として含む集束剤(木
集束剤という)を対手集束してなるストラノド中に含ま
れるエポキシ樹脂の有するエポキシ環は、加熱、乾燥中
に熱の作用、或は集束剤中の他の成分との反応により開
環し易いこと。(1) The epoxy rings of the epoxy resin contained in the stranood obtained by manually binding a sizing agent (referred to as a wood sizing agent) containing an epoxy resin as a film forming agent may be damaged by the action of heat during heating and drying, or Easily ring-opened by reaction with other components in the sizing agent.
(2)ストランド中に残存するエポキシ環の量とFRP
の強度等の性能は密接な関係を有し、エポキシ環の残存
量が大きい程FRPの強度等の性能は向上する傾向を有
すること。(2) Amount of epoxy rings remaining in the strand and FRP
There is a close relationship between the strength and other performances of FRP, and the greater the residual amount of epoxy rings, the better the strength and other performances of FRP tend to be.
(3)本発明者は、上記(2)の関係について更に研究
を重ねた結果次のことが見出された。(3) The present inventor further researched the relationship in (2) above and found the following.
(1)ストランド20grをジオキサン25mlを用い
て1時間還流抽出した溶液(以下抽出液という)のエポ
キシ当量か600以下となるよう、本集束剤の組成、ス
トランドの乾燥条件を定めることにより好適な結果の得
られること。(1) Suitable results can be obtained by determining the composition of the sizing agent and drying conditions for the strands so that the epoxy equivalent of a solution obtained by extracting 20g of strands with 25ml of dioxane under reflux for 1 hour (hereinafter referred to as the extract) is 600 or less. What you get.
(2)又上記ジオキサン抽出液中に含まれ固型分の含有
量が0.02〜0.5grとなるよう本集束剤の組成、
ストランドの乾燥条件を定めることにより高強度FRP
用ストストランドて一層好適なストランドの得られるこ
と。(2) The composition of the sizing agent is such that the solid content contained in the dioxane extract is 0.02 to 0.5 gr;
High-strength FRP can be produced by setting the drying conditions for the strands.
To obtain a strand more suitable for use as a strand.
(3)更に上記条件を満足し、且つガラス繊維束50g
rをクロロホルム300nJ1を用いて2時間超音波洗
浄して抽出した溶液の赤外吸収スペクトルの916 c
m−”付近のエポキシ基の吸光度と820 cm−”付
近の芳香族隣接2Hの吸光度を夫々A、BとしたときA
/Bが0.2以上となるよう、本集束剤の組成、ストラ
ンドの乾燥条件を定めることにより更に好適な結果の得
られること。(3) Furthermore, the above conditions are satisfied, and the glass fiber bundle is 50g.
916 c of the infrared absorption spectrum of the solution extracted by ultrasonically cleaning r with chloroform 300 nJ1 for 2 hours.
When the absorbance of the epoxy group near m-" and the absorbance of the aromatic adjacent 2H near 820 cm-" are respectively A and B, A
A more suitable result can be obtained by determining the composition of the present sizing agent and the drying conditions of the strand so that /B is 0.2 or more.
本発明は、上記知見に基づく、新たなる提案である。The present invention is a new proposal based on the above knowledge.
次に本発明について更に具体的に説明する。Next, the present invention will be explained in more detail.
請求項1,2.3記載のストランド(以下本ストランド
という)は次のようにして製造することかできる。The strand according to claims 1 and 2.3 (hereinafter referred to as the present strand) can be manufactured as follows.
本集束剤中に含有せしむべきエポキシ樹脂としては、ビ
スフェノールAジグリシジルエーテル、ビスフェノール
Fジグリシジルエーテル、フェノールボラック型エポキ
シ樹脂、脂環式エポキシ樹脂等を好適に用いることかで
きる。As the epoxy resin to be contained in the present sizing agent, bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, phenol borac type epoxy resin, alicyclic epoxy resin, etc. can be suitably used.
又エポキシ樹脂としてはエポキシ当量が150〜600
好ましくは190〜500のものを使用するのが適当で
ある。In addition, the epoxy resin has an epoxy equivalent of 150 to 600.
Preferably, it is appropriate to use one with a molecular weight of 190 to 500.
又本集束剤中のエポキシ樹脂の含有量は、固型分として
0.1〜10wt%、好ましくは0.5〜5wt%とす
るのが適当である。Further, the content of the epoxy resin in the present sizing agent is suitably 0.1 to 10 wt%, preferably 0.5 to 5 wt% in terms of solid content.
本集束剤中には、エポキシ樹脂の他に潤滑剤、カップリ
ンク剤等を含有せしめるのが好ましく、更にエポキシ樹
脂以外の被膜形成剤を含有させることもできる。The sizing agent preferably contains a lubricant, a coupling agent, etc. in addition to the epoxy resin, and can also contain a film forming agent other than the epoxy resin.
潤滑剤としては、高級脂肪酸エステル、ポリエチレング
リコール等が、ヌカツブリング剤としては、γ−アミノ
ピロピルトリエトキシシラン等が、又エポキシ樹脂以外
の被膜形成剤としては、ポリエステル樹脂、ポリウレタ
ン樹脂等が適当である。Suitable lubricants include higher fatty acid esters, polyethylene glycol, etc., γ-aminopropyltriethoxysilane and the like are suitable as a bubbling agent, and polyester resins, polyurethane resins, etc. are suitable as film forming agents other than epoxy resins. .
本集束剤の対手量は固型分としてガラス繊維に対し0.
1〜5wt%、好ましくは0.2〜2wt%とするのか
適当である。The amount of this sizing agent is 0.0% as a solid content relative to glass fiber.
It is appropriate to set it at 1 to 5 wt%, preferably 0.2 to 2 wt%.
ブッシングから引出したガラス繊維束 剤を対手集束し、次いで乾燥する。Glass fiber bundle pulled out from bushing The agent is manually concentrated and then dried.
前述したように、ジオキサン抽出液中のエポキシ当量か
600以下、好ましくは500以下、又抽出液中の固型
分の含有量が好ましくは0.02〜0、5gr、特に好
ましくは0.05〜0.2grとなるよう、更に又上記
条件を満足し、且つこのガラス繊維束50grをクロロ
ホルム300mlを用いて2時間超音波洗浄して抽出し
た溶液の赤外吸収スペクトルの916cm−’付近のエ
ポキシ基の吸光度と820 cm−’付近の芳香族隣接
2Hの吸光度を夫々A、BとしたときA/Bが0.2以
上となるように乾燥条件及び本集束剤の組成を定める。As mentioned above, the epoxy equivalent in the dioxane extract is 600 or less, preferably 500 or less, and the solid content in the extract is preferably 0.02 to 0.5 gr, particularly preferably 0.05 to 5 gr. 0.2 gr, and also satisfies the above conditions, and the epoxy group near 916 cm-' in the infrared absorption spectrum of the solution extracted by ultrasonically cleaning 50 gr of this glass fiber bundle with 300 ml of chloroform for 2 hours. The drying conditions and the composition of the sizing agent are determined so that A/B is 0.2 or more, where A and B are the absorbance of 2H near 820 cm and the aromatic adjacent 2H near 820 cm-', respectively.
なお、吸光度の測定方法は次の通りである。The method for measuring absorbance is as follows.
図面[横軸を波数(cm−”) 、縦軸を透過率とした
赤外線吸収スペクトルを示すグラフ]において、A′て
示す916cm−”付近のエポキシ基のピークの吸光度
Aと、B′て示す820 cm−1付近の芳香族隣接2
Hのピークの吸光度Bをグラフから求める。吸光度Aを
求める際の基準となるラインmとしては、980 c+
+−’付近と880 an−’付近のスペクトルの谷1
,2(透過率の高いところ)を結ぶ直線を用い、又Bを
求める際の基準となるラインnとしては880 cm−
’付近と780 cm−’付近の谷2,3を結ぶ直線を
採用する。吸光度A。In the drawing [a graph showing an infrared absorption spectrum with the horizontal axis as the wave number (cm-'') and the vertical axis as the transmittance], the absorbance of the epoxy group peak near 916 cm-'' is indicated by A', and the absorbance is indicated by B'. Aromatic neighbor 2 near 820 cm−1
Obtain the absorbance B of the H peak from the graph. The line m, which is the standard for determining absorbance A, is 980 c+
Spectral valley 1 near +-' and 880 an-'
, 2 (places with high transmittance), and the line n, which is the standard when calculating B, is 880 cm-
A straight line connecting the valleys 2 and 3 near '' and 780 cm-' is adopted. Absorbance A.
Bは長さa、b、c、dを用いて下記のように求められ
る。B is determined as follows using lengths a, b, c, and d.
d
A= log −B= log −3c
なおジオキサンによる抽出は、ストランド20gjを、
好ましくは2〜3cm程度に切断し、フラスコ中に入れ
、ジオキサンを25ml注ぎ、還流冷却器を用い、これ
らの抽出液を沸騰せしめることにより行う。抽出所要時
間は、1時間と定める。dA=log-B=log-3c For extraction with dioxane, strand 20gj is
Preferably, the mixture is cut into pieces of about 2 to 3 cm, placed in a flask, poured with 25 ml of dioxane, and the extracts are brought to a boil using a reflux condenser. The time required for extraction is set as 1 hour.
クロロホルムによる抽出は、ストランド50grを、好
ましくは2〜3cmに切断し、ビーカー中に入れ、クロ
ロホルム300 m文を注ぎ、フラスコを40 kH
z、 50Wの超音波発信機を設けた水槽中に浸し、抽
出を行う。抽出時間は2時間と定める。For extraction with chloroform, cut 50 gr of strands, preferably into 2-3 cm pieces, place them in a beaker, pour in 300 m of chloroform, and heat the flask to 40 kH.
z, Extract by immersing in a water tank equipped with a 50W ultrasonic transmitter. The extraction time is set as 2 hours.
なおこの際、ビーカーの上部をアルミ箔等で覆い、クロ
ロホルムの蒸発、逸散を防ぐのか適当である。At this time, it is appropriate to cover the top of the beaker with aluminum foil or the like to prevent evaporation and escape of chloroform.
h記条件を満足するガラス繊維束を得るための好適な条
件は次の通りであり、以下述べる乾燥温度を低くし、乾
燥時間を短縮する程、又集束剤中のエポキシ環と反応し
易い物質の含有量を小とする程−層好適な結果、即ち請
求項2,3の条件をも満足するガラス繊維束をうること
ができる。Suitable conditions for obtaining a glass fiber bundle that satisfies the conditions described in h. The smaller the content of the glass fibers, the more favorable the results, that is, the glass fiber bundles that also satisfy the conditions of claims 2 and 3 can be obtained.
(1)乾燥を低温で行い、且つ乾燥時間を短縮すること
。(1) Drying at low temperature and shortening drying time.
上記目的を達成するとめには乾燥速度を大とすることか
肝要である。In order to achieve the above objective, it is important to increase the drying rate.
このためには乾燥の雰囲気の湿度を低く保つこと、乾燥
炉中の雰囲気を強制循環すること、ストランドと雰囲気
との接触面積を大とすることが有効である。To this end, it is effective to keep the humidity of the drying atmosphere low, to forcefully circulate the atmosphere in the drying oven, and to increase the contact area between the strands and the atmosphere.
なお、接触面積を大とするためには、ストランドを円筒
状に回巻する場合、円筒を小型とすること、又ストラン
ド間の空隙率か大となるよう回巻することか好ましい。In order to increase the contact area, when the strands are wound into a cylindrical shape, it is preferable to make the cylinder small or to wind the strands so that the porosity between the strands is large.
(2)エポキシ環か開環しないよう、本集束剤の組成を
定めること。(2) The composition of the sizing agent should be determined so that the epoxy ring does not open.
このためには、エポキシ環と反応し易い物質、例えば強
酸、アミン化合物の含有量を低くするのか望ましい。For this purpose, it is desirable to reduce the content of substances that easily react with epoxy rings, such as strong acids and amine compounds.
次に請求項4,5.6記載のFRPの製造法に就いて説
明する。Next, a method for producing FRP according to claims 4 and 5.6 will be explained.
本ストランドに含浸せしむべき液状の熱硬化性樹脂とし
ては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノ
ール樹脂等が例示されるか、エポキシ樹脂か特に好まし
い。Examples of the liquid thermosetting resin to be impregnated into the strand include unsaturated polyester resins, epoxy resins, phenol resins, etc., and epoxy resins are particularly preferred.
なお、上記樹脂中には、アミン化合物、酸無水物のよう
な硬化剤、ベンジルジメチルアミンのような硬化促進剤
、酸カル、タルク、チタンホワイトのような充填剤、顔
料等を含有せしめることもでき、本発明の熱硬化性樹脂
とはこのような添加物を含む樹脂(樹脂組成物)を含む
ものであり、以下の説明においては、樹脂と総称する。The above resin may also contain amine compounds, curing agents such as acid anhydrides, curing accelerators such as benzyldimethylamine, fillers such as acid cal, talc, titanium white, pigments, etc. The thermosetting resin of the present invention includes a resin (resin composition) containing such additives, and is collectively referred to as resin in the following description.
樹脂を、常法に従い、本ストランドに過剰量含浸せしめ
、余分の樹脂をスクイズして樹脂量を所定量とし、所定
形状を有する型中な通過せしめる間に加熱し、或はFW
法により型に巻付けて加熱する。本ストランドは緊張せ
しめられた状態て樹脂は硬化し、強度が大きく、煮沸試
験後或は繰返し応力を与えた場合の強度低下の小さいF
RPを得ることかできる。The strand is impregnated with an excessive amount of resin according to a conventional method, the excess resin is squeezed to make the resin amount a predetermined amount, and the strand is heated while being passed through a mold having a predetermined shape, or FW
Wrap it around a mold and heat it using the method. The resin of this strand hardens under tension, resulting in high strength and low strength loss after boiling tests or when repeated stress is applied.
You can also get RP.
なお、FRP中の本ストランドの重−砥%(GC)は5
0〜80wt%、好ましくは60〜75wt%とするの
か適当である。In addition, the heavy abrasion% (GC) of this strand in FRP is 5
It is appropriate to set it at 0 to 80 wt%, preferably 60 to 75 wt%.
[作 用]
ガラス繊維束20grをジオキサン25mlを用いて1
時間還流抽出した溶液のエポキシ出量か600以下であ
り、且つ好ましくはこの溶液の固型分含有量が0.02
〜0.5grであるストランド、更に好ましくは上記条
件を満足し、且つ、ガラス繊維束50grをクロロホル
ム300nlを用いて2時間超音波洗浄して抽出した溶
液の赤外吸収スペクトルの916 cl’付近のエポキ
シ基の吸光度と820 cm−’付近の芳香族隣接2H
の吸光度を夫々A、BとしたときA/Bが0.2以上で
あるストランドをFRP用補強繊維として用いることに
より、ストランドFRPのマトリクス樹脂との結合力を
高め、FRPの強度を向上させる。[Function] 20g of glass fiber bundle is mixed with 25ml of dioxane.
The epoxy output amount of the solution extracted under reflux for a period of time is 600 or less, and preferably the solid content of this solution is 0.02
~0.5 gr, more preferably satisfies the above conditions, and has an infrared absorption spectrum near 916 cl' of a solution obtained by ultrasonically cleaning 50 gr of glass fiber bundles with 300 nl of chloroform for 2 hours. Absorbance of epoxy group and aromatic adjacent 2H around 820 cm-'
By using a strand with A/B of 0.2 or more as a reinforcing fiber for FRP, when the absorbance of FRP is A and B, respectively, the bonding force with the matrix resin of the strand FRP is increased, and the strength of FRP is improved.
[実施例1コ
次の組成を有する集束剤を23用のガラス繊維に固型分
として0.5 wt%附与対手4,000本集束し、ス
トランドとした。[Example 1] A sizing agent having the following composition was applied to 23 glass fibers at a solid content of 0.5 wt% and 4,000 fibers were bundled by hand to form a strand.
集束剤の組成
乳化エポキシ樹脂 4.5 wt%(エポキシ
当量 190)
γ−アミノプロピル
トリエトキシシラン 0.5 wt%高級詣肪酸
エステル 0.6 wt%酢酸 0.2
wt%
このストランドを16kg円筒状に回巻し、湿度30%
の雰囲気を強制循環せしめた乾燥炉で乾燥した。Composition of sizing agent Emulsified epoxy resin 4.5 wt% (epoxy equivalent 190) γ-aminopropyltriethoxysilane 0.5 wt% higher fatty acid ester 0.6 wt% acetic acid 0.2
wt% This strand is wound into a 16 kg cylinder, and the humidity is 30%.
It was dried in a drying oven with forced circulation of atmosphere.
乾燥時間は17hr、乾燥温度は120°Cてあった。The drying time was 17 hours, and the drying temperature was 120°C.
このストランドを30+uiに切断したものを20gr
、フラスコに入れ、ジオキサン251Mを加え、還流冷
却器を付1ノ、ジオキサンを沸騰せしめて、1時間抽出
を行った。This strand was cut into 30+ui and weighed 20g.
The mixture was placed in a flask, 251M of dioxane was added, a reflux condenser was attached, the dioxane was boiled, and extraction was performed for 1 hour.
抽出液中の固型分の含有量は0.06gr、エポキシL
5tは330、又このストランドの長さ30mmの切断
物50grをフラスコに入れ、クロロホルム300ml
を注ぎ、フラスコを40KHz、50Wの超音波発信機
を設けた水槽中に浸し、2時間超音波抽出を行った溶液
の赤外線吸収スペクトルの916cm−’付近のエポキ
シ基の吸光度Aと820CI11− ’付近の芳香族隣
接2Hの吸光度をBとしたとき、吸光度A、Bの比は0
.25であった。The solid content in the extract is 0.06g, epoxy L
5t is 330, and put 50g of this 30mm cut strand in a flask and add 300ml of chloroform.
The flask was poured into a water tank equipped with a 40 KHz, 50 W ultrasonic transmitter, and ultrasonic extraction was performed for 2 hours. When the absorbance of aromatic adjacent 2H is B, the ratio of absorbances A and B is 0.
.. It was 25.
このストランドに次の組成を有する樹脂組成物を含浸せ
しめ、FW法により、GC70wt%の一方向強化シー
l〜を製造した。This strand was impregnated with a resin composition having the following composition, and a unidirectional reinforced seal 1~ of 70 wt% GC was manufactured by the FW method.
このシートの剪断強度は7.56kg/mITfであり
、又煮沸100hr後の強度保持率は92%であった。The shear strength of this sheet was 7.56 kg/mITf, and the strength retention rate after boiling for 100 hours was 92%.
樹脂組成
エピコート828
(商品名;油化シェル酸) 100重量部アミン系硬
化剤 10重量部[実施例2]
実施例1と同じ集束剤を用い、120°Cで24hr乾
燥したストランドを用いて同様な実験を行った。結果は
次の通りであった。Resin composition Epicoat 828 (trade name: oily shell acid) 100 parts by weight Amine curing agent 10 parts by weight [Example 2] Using the same sizing agent as in Example 1, the same procedure was carried out using strands dried at 120°C for 24 hours. We conducted an experiment. The results were as follows.
エポキシ当量 530
固型分 0.06
A/B 0−18
剪断強度 7.:18kg/ m m′強度保
持率 90%
[実施例3]
実施例1と同じ集束剤を用い、120℃で17hr乾燥
したストランドを用いて同様な実験を行った。結果は次
の通りであった。Epoxy equivalent weight 530 Solid content 0.06 A/B 0-18 Shear strength 7. : 18 kg/mm m' Strength retention rate 90% [Example 3] A similar experiment was conducted using the same sizing agent as in Example 1 and a strand dried at 120° C. for 17 hours. The results were as follows.
エポキシ当量 390
固型分 0.016
A / B O,22
剪断強度 7.40kg/mrrr′強度保持
率 90%
[比較例コ
実施例1と同じ集束剤を用い、130℃て24hr乾燥
したストランドを用いて同様な実験を行った。結果は次
の通りであった。Epoxy equivalent: 390 Solid content: 0.016 A/BO, 22 Shear strength: 7.40 kg/mrrr' Strength retention: 90% A similar experiment was conducted using The results were as follows.
エポキシ当量 840
固型分 0.05
A/B0.16
剪断強度 7. lokg/ m rn’強度
保持率 87%
C発明の効果]
ガラス繊維束を補強繊維として用い強度が大きく1煮沸
試験後の強度保持率の大きい、或は繰返し応力を与えた
場合の強度低下の小さいFRPをうろことができる。Epoxy equivalent weight 840 Solid content 0.05 A/B0.16 Shear strength 7. lokg/m rn' Strength retention rate 87% C Effects of the invention] Glass fiber bundles are used as reinforcing fibers, and the strength is high, and the strength retention rate after one boiling test is high, or the decrease in strength is small when repeated stress is applied. You can roam around FRP.
第4図は赤外線吸収スペクトルを示すグラフである。 図中、m、nは吸光度を求める際の基準ラインを示す。 FIG. 4 is a graph showing an infrared absorption spectrum. In the figure, m and n indicate reference lines for determining absorbance.
Claims (6)
束、乾燥してなる長尺ガラス繊維束において、ガラス繊
維束20grをジオキサン25mlを用いて1時間還流
抽出した溶液に含まれるエポキシ樹脂のエポキシ当量が
600以下であることを特徴とするガラス繊維束。(1) In a long glass fiber bundle obtained by applying a sizing agent containing epoxy resin to glass fibers, sizing, and drying, the epoxy resin contained in the solution obtained by refluxing and extracting 20g of glass fiber bundles with 25ml of dioxane for 1 hour. A glass fiber bundle having an epoxy equivalent of 600 or less.
である請求項1記載のガラス繊維束。(2) Solid content in the extract is 0.02-0.5gr
The glass fiber bundle according to claim 1.
を用いて2時間超音波洗浄して抽出した溶液の赤外吸収
スペクトルの916cm^−^1付近のエポキシ基の吸
光度と820cm^−^1付近の芳香族隣接2Hの吸光
度を夫々A、BとしたときA/Bが0.2以上である請
求項2記載のガラス繊維束。(3) 50g of glass fiber bundle in 300ml of chloroform
In the infrared absorption spectrum of the solution extracted by ultrasonic cleaning for 2 hours using The glass fiber bundle according to claim 2, wherein A/B is 0.2 or more.
束、乾燥してなる長尺ガラス繊維束であり、且つこのガ
ラス繊維束20grをジオキサン25mlを用いて1時
間還流抽出した溶液のエポキシ当量が600以下である
長尺のガラス繊維束に液状の熱硬化性樹脂を含浸させ、
このガラス繊維束を緊張した状態で硬化せしめることを
特徴とする繊維補強樹脂体の製造方法。(4) A long glass fiber bundle obtained by applying a sizing agent containing an epoxy resin to glass fibers, converging and drying, and epoxy equivalent of a solution obtained by extracting 20g of this glass fiber bundle under reflux for 1 hour using 25ml of dioxane. Impregnating a long glass fiber bundle with a liquid thermosetting resin of 600 or less,
A method for producing a fiber-reinforced resin body, which comprises curing the glass fiber bundle under tension.
である請求項4記載の製造方法。(5) Solid content in the extract is 0.02-0.5gr
The manufacturing method according to claim 4.
を用いて2時間超音波洗浄して抽出した溶液の赤外吸収
スペクトルの916cm^−^1付近のエポキシ基の吸
光度と820cm^−^1付近の芳香族隣接2Hの吸光
度を夫々A、BとしたときA/Bが0.2以上である請
求項5記載の製造方法。(6) 50g of glass fiber bundle in 300ml of chloroform
In the infrared absorption spectrum of the solution extracted by ultrasonic cleaning for 2 hours using 6. The manufacturing method according to claim 5, wherein A/B is 0.2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63194533A JP2603520B2 (en) | 1988-08-05 | 1988-08-05 | Method for producing glass fiber bundle and fiber reinforced resin body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63194533A JP2603520B2 (en) | 1988-08-05 | 1988-08-05 | Method for producing glass fiber bundle and fiber reinforced resin body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0248439A true JPH0248439A (en) | 1990-02-19 |
JP2603520B2 JP2603520B2 (en) | 1997-04-23 |
Family
ID=16326119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63194533A Expired - Lifetime JP2603520B2 (en) | 1988-08-05 | 1988-08-05 | Method for producing glass fiber bundle and fiber reinforced resin body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2603520B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021075109A1 (en) * | 2019-10-17 | 2021-04-22 | 日本電気硝子株式会社 | Glass direct roving production method and glass direct roving |
CN114088654A (en) * | 2021-10-12 | 2022-02-25 | 南京玻璃纤维研究设计院有限公司 | Method for evaluating effectiveness of glass fiber coating and application thereof |
-
1988
- 1988-08-05 JP JP63194533A patent/JP2603520B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021075109A1 (en) * | 2019-10-17 | 2021-04-22 | 日本電気硝子株式会社 | Glass direct roving production method and glass direct roving |
JP2021062997A (en) * | 2019-10-17 | 2021-04-22 | 日本電気硝子株式会社 | Method for manufacturing glass direct roving and glass direct roving |
CN114088654A (en) * | 2021-10-12 | 2022-02-25 | 南京玻璃纤维研究设计院有限公司 | Method for evaluating effectiveness of glass fiber coating and application thereof |
CN114088654B (en) * | 2021-10-12 | 2024-06-04 | 南京玻璃纤维研究设计院有限公司 | Method for evaluating effectiveness of glass fiber coating and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2603520B2 (en) | 1997-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104760299B (en) | A kind of fibrofelt enhancing composite solar components frame and preparation method thereof | |
JPH02133685A (en) | Cable of fiber-reinforced composite material | |
CN108350195A (en) | FRP molded product and its manufacturing method | |
JPH03221535A (en) | Chemorheologically produced matrix resin composition, manufacture of preimpregnated fibers, and their use for fabricating composite part | |
JPH0248439A (en) | Glass fiber bundle and production of fiber-reinforced resin form using same | |
CA1084888A (en) | Supply package for wet-impregnated multifilament roving | |
JP2008030443A (en) | Method of manufacturing building member | |
KR20170094239A (en) | Process for producing a composite article | |
CN106633655B (en) | A kind of thermosetting resin extremely-low density laminated material and preparation method thereof | |
JPH054965B2 (en) | ||
JPH0284577A (en) | Surface-treated carbon fiber | |
JPH06206262A (en) | Pultrusion method for fiber-reinforced furan resin compositematerial | |
CN109135188A (en) | A kind of pultrusion epoxy-resin systems and its composite material of preparation | |
CN110001076A (en) | A kind of electric force pole tower of fiber winding forming and preparation method thereof | |
CN111019295A (en) | Carbon fiber composite material, carbon fiber wound climbing stick rod and preparation method thereof | |
CN101789289B (en) | Manufacturing method of carbon fiber composite core | |
JP3115023B2 (en) | Manufacturing method of fiber reinforced resin molded product | |
UA39851C2 (en) | METHOD FOR PREPARATION OF 2,2-DIMETHYL-3 - [(Z) -1-PROPENYL] CYCLOPROPANOCARBONIC ACID AND INTERMEDIATE COMPOUNDS | |
JPH0248440A (en) | Production of fibrous form for reinforcing resin and production of fiber-reinforced resin form | |
JPS61195827A (en) | Molding method of fiber reinforced plastic spring | |
EP0711796A1 (en) | Process for producing wound bodies | |
TW199900B (en) | fiber reinforced furan resin composite and method of preparing thereof | |
JPH0353089B2 (en) | ||
CN111848884A (en) | Preparation method of maleic anhydride modified hemp stalk core powder | |
SU960201A1 (en) | Process for producing prepreg |